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Data on wealth distributions in trading markets show a power law behavior x−�1+�� at the high end, where,
in general, � is greater than 1 �Pareto’s law�. Models based on kinetic theory, where a set of interacting agents
trade money, yield power law tails if agents are assigned a saving propensity. In this paper we are solving the
inverse problem, that is, in finding the saving propensity distribution which yields a given wealth distribution
for all wealth ranges. This is done explicitly for two recently published and comprehensive wealth datasets.
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Economic systems have received a great deal of attention
from a physical viewpoint, sharing features common to a
wide variety of complex systems �1�. Problems such as the
emergence of a self-organized critical state �2,3�, the predict-
ability of financial markets �4� or stochastic decision making
�5�, have been studied in this framework.

In particular, the problem of wealth distribution in a soci-
ety is ubiquitous and interesting, since abundant data is
available. Certainly, it is complicated by the fact that a num-
ber of issues are relevant in the dynamics of wealth in a
society, such as economic policies, natural resources, human
psychology, competition, external markets, etc. A number of
physics-based models have been developed, which, while
simple, reproduce various features of economic systems.

Examples of these are the kinetic trading models, pro-
posed by Refs. �6–8�, that are represented by a number of
agents, which interact by trading money. Total money is con-
served and wealth is distributed across agents, eventually
reaching an equilibrium distribution which depends on the
details of the interaction. Thus, these models are analogous
to a simulation of interacting particles in a gas where agents
that trade and exchange money correspond to particles that
collide and exchange energy. The analogy has proved to be
extremely useful, and elements of Boltzmann transport
theory have been used to study the evolution of these models
�3,9�. For example, a standard simulation of a gas of hard
spheres with elastic binary collisions has an exponential
equilibrium distribution for the kinetic energy, denominated
a Maxwell-Boltzmann distribution. Analogously, in the sim-
plest version of kinetic trading models, agents may exchange
any portion of their current wealth which, unsurprisingly,
yields an exponential wealth distribution. However, in many
cases �earthquake intensities, word frequencies in languages,
citations of scientific papers, particle velocities in turbulent
plasmas, etc.� power law distribution functions are observed,
and economic systems are no exception �see Eq. �1� below�.
Although general statistical mechanics frameworks have
been proposed to deal with these systems �see, e.g., Refs.
�10–12��, there is still the problem of identifying which fea-
tures in a given dynamics are relevant to yield non-
Maxwellian distribution functions.

In this paper we will concern ourselves specifically with
the distribution of wealth. We show that a simple kinetic
model for trading is able to reproduce observed wealth dis-
tribution data. The key factor is that each agent has a spend-

ing propensity, distributed nonuniformly across agents
�2,6,7�. In this paper we solve the inverse problem of finding
the spending propensity distribution which yields a given
wealth distribution. By doing so, we show that kinetic trad-
ing models can fit observed data for all wealth ranges, not
only in the high end tail where Pareto’s law is valid. These
findings also show that nondissipative binary interactions be-
tween otherwise independent agents, lead to power law dis-
tributions, as long as full exchange is not possible �see Ref.
�13� for a similar suggestion�. Such an insight, which has not
been reported before as far as we know, may be useful to
describe other physical systems which tend toward non-
Maxwellian equilibria.

For economic systems, it is a well known observation that
the probability of an agent of having wealth x is

P�x� � x−�1+�� �1�

for large x, with an observed value of � between 1 and 2
�14,15�. This was first noted by Pareto in the 1890’s �16�, and
has been also observed in different countries and in different
periods of time �17–21�. As mentioned above, if agents can
exchange any amount of their current wealth, a Maxwellian
equilibrium is found. A power law tail can be obtained in
more refined models, assigning a random saving propensity
0��i�1 to each agent, such that, at each interaction each
agent only trades a certain amount of her or his wealth. How-
ever, these models yield power law tails with exponent 1
�2,3,9,22–24�.

This difficulty can be overcome by choosing a nonuni-
form saving propensity distribution, but so far efforts have
dealt with studying the effects of a particular choice
�2,6,7,25�, and to only fit the asymptotic behavior, in the
Pareto regime. We will show, instead, that kinetic trading
models are able to fit observed wealth distribution data not
only for Pareto indexes ��1, and for all wealth ranges.
Thus, these models can be quantitatively, not just qualita-
tively, consistent with observed data. In particular, we will
show how to reproduce with our model two recently pub-
lished data sets, one of them provided by the United Nations,
and regarded as “the most comprehensive study of personal
wealth ever undertaken” �26�. In turn, the model will provide
us with the average spending propensity distribution, which
may yield useful constraining information to more refined
models.
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We start by reformulating these kinetic trading models in
terms of an spending propensity 0��i�1 of each of the N
agents. An agent i who has money xi,t at time t, exchanges
part of her or his money with an agent j, such that at time
t+1 their respective money is

xi,t+1 = �1 − �i�xi,t + ��ixi,t + � jxj,t��i,j,t, �2�

xj,t+1 = �1 − � j�xj,t + ��ixi,t + � jxj,t��1 − �i,j,t� ,

where self-interactions j= i are not considered. Here t only
labels time steps, and �i,j,t is taken from a uniform distribu-
tion U�0,1�. �Notice that there is no sum over repeated in-
dexes in Eq. �2�; whenever a sum is intended, it will be
explicitly indicated.� Let us note that this two-agent ex-
change model conserves the total amount of money.

For �i=1 �when agents can exchange any portion of the
money they have�, Eqs. �2� are analogous to the energy ex-
change equation between two particles in a standard simula-
tion of a gas of hard spheres with elastic binary collisions. In

this case, each collision must conserve total momentum P�

and kinetic energy E. For two particles i, j, if nonprimed
letters represent quantities before the collision, and primed
ones represent quantities after the collision, Ei,j =Ei+Ej =Ei�
+Ej�. Since the direction of the velocities before the collision
is in general random �for a random initial condition�, the
kinetic energy for each particle after the collision turns out to
be a random quantity. Thus, Ei�=ri,jEi,j =ri,j�Ei+Ej�, Ej�= �1
−ri,j�Ei,j = �1−ri,j��Ei+Ej�, with ri,j some random number be-
tween 0 and 1. In terms of energy, a collision simply consists
of a random redistribution of the sum of the kinetic energies.
This is the same as Eqs. �2�, if �i=1 and replacing energy Ei
by money xi. In this sense, the model described by Eqs. �2� is
equivalent to a hard sphere particle simulation, seen only in
“energy space.” This observation suggests that we call this a
“kinetic trading model” �6–8�.

Equations �2� describe a single interaction at time t be-
tween two given agents i and j. The simulation is started by
assigning to each agent a spending propensity 0��i�1,
from a given distribution as discussed above, and a certain
amount of money xi,0. The initial conditions for the amount
of money are not relevant for the equilibrium distribution,
except for very singular situations. The model is then iterated
for a long enough time, choosing at random which pair of
agents interact at each time step. In every respect, the proce-
dure is the same as if a saving propensity �i is used instead,
as mentioned above. The change �i→�i=1−�i may appear
as trivial, but it turns out that high end tails are more sensi-

tive to nonuniformity in �i rather than �i �7�. This is due, in
turn, to the nontrivial mapping of distributions when they are
nonuniform. In the following, we will show how the equilib-
rium probability distribution of wealth is determined by the
distribution of the �i’s. First, we can rewrite Eq. �2� as

xi,t+1 = �1 − �i�xi,t + �i,j,t��ixi,t + wi,j,t� , �3�

where wi,j,t=� jxj,t, for j� i. We now average Eq. �3� over
time. If �i,j,t is uncorrelated in time and with the choice of
agents i and j, then this average can be written as

�xi,t+1� = �xi,t� − ��ixi,t� + ��i,j,t����ixi,t� + �wi,j,t�� . �4�

For long enough times, agent i will interact with every
other agent j several times, so that �wi,j,t� can be regarded as
an average both over agents and time. Thus, it makes sense
to calculate it as an average over j, followed by an average
over t:

�wi,j,t� =� 1

N − 1 �
j=1,j�i

N

� jxj,t	 →
N→�

�
j=1

N

�� jxj,t�

N
. �5�

Taking the average of �i,j,t as 1 /2, and noting that the
equilibrium distribution is stationary, i.e., �xi,t+1�= �xi,t�, Eq.
�4� yields

��ixi,t� =

�
j=1

N

�� jxj,t�

N
. �6�

Equation �6� shows that the random variable ��ixi,t� is
equal to its mean for all i, therefore it is a constant ��ixi,t�
=	. Since we have taken �i as constant in time, we have

�xi,t� =
	

�i
. �7�

Figure 1�a� illustrates Eq. �7�, presenting results from run-
ning a simulation with model �2�, with �i taken from a uni-
form distribution ��i= i /N�. 	 can be calculated using the
conservation of money �i=1

N �xi,t�=M, where M is the total
amount of money in the system.

Using Eq. �7� we may establish a connection between the
wealth distribution P�x� and the spending propensities distri-
bution P���. First, we notice that in the relevant wealth
range �xi,t�
xi, since dispersion is small �see Fig. 1�b��.
Thus, since P�x�dx= P���d�, we obtain
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FIG. 1. �a� Scatter plot of �xi,t�
versus 1 /�i. �b� Coefficient of
variance of wealth versus average
agents’ wealth. Results from run-
ning a simulation of the exchange
model �2�, with �i= i /N �uniform
distribution�. The straight lines are
a least squares fit of the data.
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P�x� = �P�����=	/x
	

x2 . �8�

Equations �7� and �8� are consistent with Refs. �6,7�. For a
uniform distribution of �, P��� constant, we recover the
known result that the wealth distribution follows a power law
with Pareto index �=1 �2,3,9,22–24�.

Equations �7� and �8� establish how the distribution in
spending propensities P��� determines the wealth distribu-
tion P�x�. They show that, by using a proper distribution for
�i, in principle one should be able to reproduce any power
law behavior at the high end of the wealth distribution, not
just �=1. If P���
�
 for small values of �, then the Pareto
index is 1+
, an asymptotic result also found in Refs.
�2,6,7�. However, we will show that they provide a system-
atic way to solve the inverse problem, of finding the spend-
ing propensity distribution P��� which yields a given wealth
distribution. In doing so, we will also show that kinetic trad-
ing models can fit observed distributions for all wealth
ranges, not only at the high end. This will be explicitly done
by simulating two recently published wealth distribution
datasets.

In 2006, UNU-WIDER published the World Distribution
of Household Wealth, being the most complete study of per-
sonal wealth currently available, including datasets for in-
come distribution, financial assets and debts, land, buildings,
etc., and covering 228 countries �26�. This study presents
data on purchasing power parity �PPP� and official exchange
rate bases. For this work, we have considered the latter,
which is preferable when studying large values of wealth
�26�. However, the main conclusions do not change if PPP
data are used.

Data for this study are plotted as gray dots in Fig. 2�a�.
Two regimes of power law behavior can be observed. The

value of �, calculated by the Newman’s method �27� and the
Kolmogorov-Smirnov’s test �28�, is �
1.5 in the large
wealth range, consistent with Pareto’s findings �16� and other
studies �14,15,19–21�.

We now attempt to simulate this data using model �2�. In
order to do that, we need an appropriate distribution of �i.
First, we calculate the cumulative distribution function of
wealth data F�x� from UNU-WIDER’s data. Then, from Eq.
�7� it follows that u=F����1 /F�x�, so that we can construct
�i=F−1�ui� for N uniform random numbers, with 0�ui�1.
Alternatively, we may set ui= i /N �22�. Using this set of �i
we run the model �2� and look at the resultant equilibrium
wealth distribution. Results are presented in Figs. 2�a� and
2�b� for wealth and � distributions, respectively. It can be
seen that this simple model of exchange with spending pro-
pensities is able to reproduce the observed data, even if the
Pareto index is clearly different from 1. Furthermore, the
model works over the whole range of wealth, not just the
high-end tail.

In order to consider a better data source for large wealth
values, we also analyzed the 2006 Forbes list of billionaires
of the world. Data are plotted as gray dots in Fig. 3�a�, as
well as their fit by a power law distribution with �=1.4,
close to the original observation by Pareto �16�, and the re-
sults of the UNU-WIDER data. Hence they represent two
consistent data sets, and complement each other. Using the
procedure outlined above, we reconstructed the billionaires
wealth distribution using the model equation �2�. Figure 3�a�
shows that the model generates a wealth distribution that is
in very good agreement with Forbes’s data, once the proper
spending propensity distribution is determined �Fig. 3�b��.

For both datasets, UNU-WIDER and Forbes, a spending
propensity distribution F��� has been obtained, consistent
with the corresponding wealth distribution. However, it is
interesting to note that, within its more limited range,

FIG. 2. Data and model fit for UNU-WIDER’s data �26�. Rings, model results; dots, original data; light line, analytic results from Eq. �7�;
dark line, power-law fit. �a� Distribution function for wealth x, from UNU-WIDER’s data. �b� Distribution function for spending propensity
�, fitted by a log-normal distribution �dashed line�. F�x� and F��� denote cumulative distribution functions.
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FIG. 3. Same as Fig. 2, but for
Forbes’s world billionaires wealth
distribution. �a� Forbes’s world
billionaires wealth distribution.
�b� � distribution for Forbes’s
data. It slightly departs from a
uniform distribution �dashed line�.
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Forbes’s data yield a distribution which is consistent with
UNU-WIDER’s data, both for F�x� and F���.

In summary, we have studied a simple trading model
based on the kinetic theory of gases. When individual spend-
ing propensities are introduced in these models, it is shown
that the model is able to reproduce observed wealth equilib-
rium distribution data, not only in the asymptotic regime,
with Pareto index different than 1, but also for all wealth
ranges. This is done explicitly by solving the inverse prob-
lem of finding the spending propensity distribution given two
recent wealth distribution estimates, and then running the
model. The tail of the wealth distribution is more sensitive to
nonuniformity in the distribution of �i rather than �i=1
−�i. The strong correlation between wealth x and the inverse
of spending propensity �i, as expressed in Eq. �7�, implies
that a given variation �� /�i has a larger effect if the indi-
vidual’s spending propensity �i is closer to zero than to one.
This means, for instance, that decreasing the consumption
level of a poor individual, which in itself implies a big sac-
rifice on her/his part since saving capabilities are lower, has
less incidence on the overall wealth distribution than increas-
ing the consumption level of a rich individual. A result which
may at first sight seem obvious, but the strength of the model
is that we can quantitatively estimate how efficient this effect
is, and thus can have interesting consequences in terms of
economic policies development.

We would like to stress here that the model provides two
distributions, a wealth distribution which reproduces ob-
served data, and a spending propensity distribution. In this
sense, we can regard the � distribution as a prediction of the
model, which can, in principle, be tested against real data.
However, as far as we know, such data is not readily avail-

able, at least for the world datasets we analyzed. Certainly, it
would be interesting to validate the � distribution by inde-
pendent means, but that requires to have reliable data for a
given community, both for its spending propensity and
wealth. We plan to pursue such line of research in a future
work.

Finally, it is interesting to note that traditionally, the non-
Maxwellian distribution functions have been related to other
features, such as correlated systems, memory effects or dis-
sipative interactions �10�. However, the model studied here
has nondissipative binary interactions between otherwise in-
dependent agents. It differs from a regular gas with elastic
interactions only in the fact that full exchange between
agents is not permitted �while still being conservative�. Yet,
this seemingly naive change in the dynamics can have a pro-
found effect on the equilibrium distribution function �13�,
and provides an insight which may be useful for other physi-
cal systems exhibiting equilibrium distributions with non-
Maxwellian behavior, where similar underlying dynamics
may be involved.
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