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Abstract

Fractal antennae have very special properties:

(1) They are broad band antennae, i.e. they radiate, and detect, very
e�ciently for a wide range of frequencies. The frequency range is speci�ed
by the smallest and largest size present in the antenna. The radiation,
and hence the detection, e�ciency depends slowly on frequency between
these two limits.

(2) They can display considerable gain over normal dipole type of an-
tennae and this gain depends slowly on frequency over a large frequency
range. This antenna gain can be related to the spatio-temporal structure
of the radiation pattern.

(3) They can display spatial structure. The spatial structure is also
related to the antenna gain, as the antenna concentrate radiated power
in certain postions and now in others. This spatial structure can be very
useful when directionality is required.

1 Fractal Antennae and Coherence

For the purposes of this work, we assume that a fractal antenna can be formed
as an array of "small" line elements having a fractal distribution in space. Such
description is consistent with our understanding of fractal discharges and light-
ning observations as discussed by LeVine and Meneghini [1978], Niemeyer et

al. [1984], Sander [1986], Williams [1988], and Lyons [1994]. Appendix A de-
velops the theory for the calculation of the �elds produced by a fractal antenna
composed of small line elements and for the calculation of the array factor in
the far �eld of the fractal.
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Fractals are characterized by their dimension. It is the key structural pa-
rameter describing the fractal and is de�ned by partitioning the volume where
the fractal lies into boxes of side ". We hope that over a few decades in ", the
number of boxes that contain at least one of the discharge elements will scale as
N (") � "�D. It is easy to verify that a point will have D = 0, a line will have
D = 1 and a compact surface will have D = 2 . The box counting dimension
[Ott, 1993] is then de�ned by

D '
lnN (")

ln(1
"
)

(1)

For a real discharge there is only a �nite range over which the above scaling law
will apply. If " is too small, then the elements of the discharge will look like
one-dimensional line elements. Similarly, if " is too large, then the discharge will
appear as a single point. It is, therefore, important to compute D only in the
scaling range, which is hopefully over a few decades in ". The fractal dimension
will be an important parametrization for the fractal discharge models that we
will explore later, and will impact signi�cantly the intensity and spatial structure
of the radiated pattern.

We consider a fractal antenna as a non uniform distribution of radiating
elements (Fig. 1). Each of the elements contributes to the total radiated power
density at a given point with a vectorial amplitude and phase, i.e.

E �E� � (
NX
n=1

Ane
i�n ) � (

NX
m=1

Ane
i�m )� =

X
n;m

(An �A
�
m)e

i(�n��m) (2)

The vector amplitudes An represent the strength and orientation of each of the
individual elements, while the phases �n are in general related to the spatial
distribution of the individual elements over the fractal, e.g. for an oscillating
current of the form ei!t the phases vary as � � kr where k = !

c
and r is the

position of the element in the fractal.
In the sense of statistical optics, we can consider the ensemble average of Eq.

(2), using an ergodic principle, over the spatial distribution P (�1; �2;�3;:::;A1;A2;A3; :::)
of the fractal elements [Goodman, 1985]. For simplicity we assume that the dis-
tributions for each of the elements are independent, and also the same, hence

G =
NX
n;m

D
(An �A

�
m)e

i(�n��m)
E
= N2(

D
jAj2

E
N

+
N � 1

N
jhAij

2 ��
ei����2)
By requiring that

D
jAj

2
E
= jhAij

2
= 1 we obtain that the ensemble average

is

hE �E�i � G = N2(
1

N
+
N � 1

N

��
ei����2)
If the distribution of the phases is uniform (e.g. random) then < ei� >= 0 and
G = 1=N . On the other hand, if there is perfect coherence we have < ei� >= 1
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Figure 1: A spatially nonuniform distribution of radiators, each contributiong
to the total radiation �eld with a given phase.

and G = 1. In general, a fractal antenna will display a power law distribution
in the phases P�(�) � ��� (multiplied by the factor 1 � e��

��

so it is �nite
at the origin), where � = 0 corresponds to the uniform distribution case and
� ! 1 corresponds to perfect coherence. Figure 2 shows the plot of

��
ei����
as a function of �: It can be seen that a power law distribution of phases, or
similarly a power law in the spatial structure, gives rise to partial coherence.

If the distribution of the vector amplitudes does not satisfy the above re-
lations, e.g. the radiators are oriented in arbitrary directions, then the power

density will be less coherent due to
D
jAj2

E
� jhAij2. A similar result can be

achieved by having a power law distribution in the amplitudes. In conclusion,
the radiation �eld from a power law distribution of phases will have a point
where the phases from the radiators will add up almost (partially) coherently
showing a signi�cant gain over a random distribution of phases. Hence the
concept of a fractal antenna.

The partial coherence of the radiators depends on the spatial power law
distribution. Such a power law distribution of phases can be visualized with
the help of Cantor sets [Ott, 1993]. A family of Cantor sets is constructed by
successively removing the middle � < 1 fraction from an interval, taken as [0,1],
and repeating the procedure to the remaining intervals (see Fig. 3). At the nth

step, a radiator is placed at the mid-point of each of the remaining intervals.
Note that for � = 0 we obtain a uniform distribution of elements, but for � 6=

0 the radiators are non-uniformly distributed, and in fact the spatial distribution
follows a power law that can be described by its fractal dimension. Suppose that
for " we require N (") intervals to cover the fractal, then it is clear that with
"
0

! "
2(1 � �) we would require 2N ("

0

) intervals to cover the fractal. But the
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Figure 2: A plot of
��
ei����2 as a function of �.

fractal is the same, therefore, N (") = 2N ("
0

). From the scaling N (") � "�D we
obtain that the dimension is given by

D = �
ln 2

ln(1��2 )

We can go further, and write a formula for the radiation �eld due to the
��Cantor set of radiators. Note that if at the nth step we have the radiators
placed at the sequence of points Sn = fxiji = 1; :::; 2n�1g then at the nth+1 step
each radiator at xi will be replaced by two radiators at xi�

1
2n+1 (1��)

n�1(1+�)
generating the sequence Sn+1 = fxiji = 1; :::; 2ng. Since we start with S1 = f12g
the sequences Sn at the nth step are trivially constructed. The radiation �eld
(see Eq. (1)) from this ��Cantor set at the nth step can then be written as

E =
nX

m=1

(�1)m�me
ikLa xm+i�m (3)

where k = !
c
, L is the spatial extent of the fractal, a = bx � br is the angular

position of the detector, and �m (taken as zero) is the phase of the mth element.
The radiators are given a strength proportional to the measure �i (or length)
of the segment which de�nes it.

The space dependence of the radiation �elds is plotted in Fig. (4)a-b for
� = 1=3 (D = 0:63) and � = 0 (D = 1) respectively, where the sets have been
taken to the 5th level. The most relevant issue for our purposes is the fact that
there is a direction at which phases add coherently (partially) for � = 1=3 while
this does not happen for the homogeneous case � = 0.
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AND SO ON

Figure 3: The construction of the fractal distribution of the radiators from the
��Cantor set.
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Figure 4: The spatial dependence of the radiation �elds for (a) � = 1=3, D =
0:63 and (b) � = 0, D = 1.

Therefore, partial coherence occurs naturally in systems that have power-
law spatial distributions. We are now ready to turn to the properties of fractal
antennae with propagating currents. Speci�cally, how tortuosity and branching
can increase the radiated �eld intensity in some locations as compared with
single dipole antennae.

2 Radiation and Simple Fractal Models

To illustrate the properties of fractal antennae compared to those of simple
dipole radiators, we take the fractal antenna as composed of small line elements
and compute its far �eld radiation pattern. For an oscillating current I(t) =
Ioe

�i!t that propagates with speed � =v/c along the antenna, the contribution
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from each line element to the total radiation �eld is (from Eq. (1))

crEn(r; t)

Io
= e�i!teikr

�bLn
(1� �an)

eikpnbnei
ksn
� (eikLnanei

kLn
� � 1) (4)

where an = bLn�br, pn is the position of the beginning of the line element from the
origin, and bn = bpn �br. Radiation occurs when there is a change in the direction
of the propagating current. Also note that mathematically we can describe a
radiator with a nonpropagating current in the non-physical limit � !1.

In general, the radiation pattern of an antenna can be e�ectively excited,
only by certain frequencies corresponding to the characteristic length scales of
the antenna, e.g. kL � 1 (see Eq. (4)). Therefore, if there is no characteristic
size, as in the case of a power law structure, then the antenna will generate
an e�ective radiation pattern for a whole range of frequencies controlled by the
smaller and largest spatial scale. Such antenna is called a broad band antenna,
and that is why fractal antennae are so important in many applications.

By spatially superposing these line radiators we can study the properties
of simple fractal antennae. Of special interest, to our high altitude lightning
work, is to compare the radiation pattern of these fractal models with a simple
(meaning one line element) dipole antenna.

2.1 Gain Due to Tortuosity

The �rst element in understanding fractal antennae is the concept of tortuosity
in which the path length between two points is increased by requiring that the
small line elements are no longer colinear. A simple tortuous model is displayed
in Fig. 5, where the parameter " represents the variation from the simple dipole
model (line radiator), i.e. the dipole is recovered as "! 0.

Except for the propagation e�ect, we can observe that this antenna (Fig. 5)
can be considered as the contribution from a long line element (a dipole) plus the
contribution from a Cantor set of radiators as described in the previous section
(see Eq. (3)). Therefore, the tortuosity naturally increases the radiation �eld
intensity, at least in some direction, as compared with the single dipole element.

The �eld can be written for the structure of 5, with the help of Eq. (4), as
the superposition of the 2N line elements, and is given by the normalized �eld

E(") =
�(eiklaxei

kl
� � 1)

(1� �ax)
bx+ �eiklaxei

kl
� (eik"ayei

"kl
� � 1)

(1� �ay)
by + : : : (5)

where l = L
N

is the length of the small segments composing the tortuous path,
and ax = bx � br and ay = by � br. It is clear that in the limit "! 0 we recover the
single dipole radiation pattern. The e�ect of the tortuosity can now be posed
as the behavior of the normalized P(") = E(") �E�(") for " 6= 0. In general the
analysis can be simpli�ed in the limit for small ", i.e. P(") ' P(0)+P0(0)"+ : : :.
Of course P(0) is the dipole contribution, and P0(0)" is the change in the radiated
power density due to tortuosity. The dipole has a maximum in the radiated
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Figure 5: A simple tortuous variation of a line radiator. Note that the antenna
will radiate every time there is a change in direction.

power density P(0) ' 4�2

(1��ax)2
, while the tortuous contribution goes as P0(0)" '

4�kL"
(1��ax)2

f(ax; ay; kL; �;N ) . The function f depends on the given parameters,

but its maximum is of the order f � 1 with clear regions in (ax; ay) where it is
positive.

For our purposes, the most important contribution comes from the fact that
P0(0)" is essentially independent of N and it scales as �P � �k�s = �kL";
which corresponds to the increase in the path length of the antenna due to the
tortuosity. Such technique can be applied to other geometries, giving essentially
the same scaling �P � �k�s result. This fact will be extremely relevant in our
analysis since lightning has naturally a tortuous path.

2.2 Fractal Tortuous Walk

More generally, a fractal tortuous path can also be constructed in terms of a
random walk between two endpoints [Vecchi, et al., 1994]. We start with a
straight line of length L, to which the midpoint is displaced using a Gaussian
random generator with zero average and deviation � (usually � = 0:5Li). The
procedure is then repeated to each of the straight segments N times. There is a
clear repetition in successive halving of the structure as we go to smaller scales,
making this antenna broad band. Figure 6a shows a typical tortuous fractal
where the division has been taken to the N=8 level and in which the pathlength
s has increased 5 times, i.e. s = 5L. We can estimate the fractal dimension by
realizing that the total length should go as Ltot � L( s

h`i )
D�1, where h`i is the
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average segment size. This formulation is completely equivalent to Eq. (1).
We let an oscillating current, e.g. Ioei!t; propagate along the fractal, but in

real applications we can imagine the oscillating current lasting for only a �nite
time 1=�. In order to have a �nite current pulse propagating through the fractal
random walk, we let I(t) = Io(e��t�e�
t)(1+cos(!t))�(t) with ! = 2��nf and
�(t) as the step function. Here nf represent the number of oscillations during
the decay time scale 1/� . We chose the decay parameters as � = 103 s�1 and

 = 2 � 105 s�1, hence 
=� = 200, which correspond to realistic parameters
for lightning [Uman, 1987]. The radiated power density is then computed using
Eq. (12) and is shown in Fig. 6b for nf = 5 and � = 0:1 at the position ax = 0,
ay = 0; r = 60 km. The dipole equivalent is given by the dashed lines in all 3
panels. The peak in the radiated power density is about 10 times larger than for

the dipole case, which agrees well with the results P0(0)"
P(0) � 2���s

c�
nf � 10 even

though the e�ect from the tortuosity is not small. The larger path length of
the tortuous discharge produces an increase in the radiation as compared with
a dipole radiator. Of course there is a limit due to energy conservation, but in
practical applications we are well under it. The increase in the high frequency
components of the radiated �eld power spectrum (Fig. 6c), as compared with
the dipole antenna, will be responsible for the spatially structured radiation
pattern.

Figure 6: The fractal random walk (a) and its instantaneous radiated power
density (b) as well as its power spectrum (c). The dashed lines represent the
behavior of the single dipole.

The far �eld array factor R = �
R
dtE2 (de�ned in Appendix A) and the
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peak power density depend on the path length, or equivalently on the number
N of divisions of the fractal. Figure 7b shows the array factor as a function of
the path length for the fractal shown in Fig. 7a. Here nf = 5 so that the peak
of the array factor is at ax = 0 and ay = 0. There is a clear increase in the array
factor from the tortuous fractal as compared with the single dipole.

Figure 7: (a) The tortuous discharge. (b) The array factor dependence, nor-
malized to the dipole, on the pathlength.

Therefore, the e�ect of tortuosity can increase the radiated power density at
certain locations as compared to a single dipole antenna.

Another important concept related to fractal antennae is the spatial struc-
ture of the radiation �eld. We can see from the array factor, Eq. (13), that
for large nf f [�; �] ' e�� (2 + cos(�� )). The spatial dependence of the array

factor will be determined by the factor ���r

c
over the fractal. Consequently, the

radiation pattern will have spatial structure when ���r

c
> 2�; which translate

into nf > 50. Figure 8b shows the array factor at the height h = 60 km for the
discharge structure shown in Fig. 8a with nf = 200. Therefore, such a tortu-
ous fractal can also display a spatial structure in the radiation pattern. But it
is more natural for the spatial structure to be generated through a branching
process as we will see in the next section.

There is an energy constraint that limits the degree of tortuosity of a fractal
lightning discharge since we cannot radiate more energy than what is initially
stored as separated charge. Also, if the line elements of the antenna given by Fig.
5 get too close together, then their contribution to the radiated �eld will tend
to cancel each other. Therefore, there is an optimal number of elements forming
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Figure 8: The fractal structure (a) and its array factor(b) showing clear spatial
structure in the radiation pattern.

an antenna, and this optimal number translates into an optimal dimension of
the fractal, more on this later.

2.3 Branching and Spatial Structure

Another element in understanding fractal antennae is the concept of branching.
Take the simple branching element shown in Fig. 9 where the current is divided
between the two branching elements. We can compute the radiation �eld, for a
propagating current Ioei!t, as

E(") = bx�(eik`axei k`� � 1)

(1� �ax)
+by�eik`axei k`�

(1� �ay)

1

2
f(eik`"ayei

"k`
� �1)�(e�ik`"ayei

"k`
� �1)g : : :

(6)
where ` = L=2 and " is the variation from the single dipole, i.e. we recover the
dipole as "! 0.

Again, the analysis can be simpli�ed in the limit for small ", i.e. P(") '
P(0) + P0(0)" + : : : . Of course P(0) is the dipole contribution, and P0(0)"
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Figure 9: A simple branching situation in which we distribute the current among
the branching elements.

is the change in the radiated power density due to the line branching. The

dipole has a maximum in the radiated power density P(0) ' 4�2

(1��ax)2
, while

the branching contribution goes as P0(0)" ' �kL"

(1��ax)2
f(ax; ay; kL; �;N ). The

function f depends on the given parameters, but its maximum is of the order
f � 1 with clear regions in (ax; ay) where it is positive. Therefore, the branching
process can give rise to an increase in the radiated power density at certain
position. Of course this increase is due to the increase in the path length.
This e�ect will saturate as " is increased passed one, since then the strongest
contribution will come from the dipole radiator given by 2"L.

A interesting and manageable broadband antenna can be described in terms
of the Weierstrass functions [Werner and Werner, 1995]. We take successive
branching elements, as shown in Fig. 10a, where we distribute the current at
each branching point so that the branching element keeps a fraction � of the
current. The nth branching element is displaced by a factor "n with respect to
the origin. If we concentrate only on the contribution from the last branching
set, as shown in Fig. 10a, we can write the �eld as

Ex �
NX
n=1

"n(do�2) cos(kl"nay + �n(�))

�n(�) =
kl

�
"n�1(2 + ")

where we have rede�ned � = "do�2 and ay = cos � . In the limit � !1 and N!
1 we obtain the Weierstrass function that is continuous but not di�erentiable,
i.e. is a fractal, and furthermore, its dimension in the sense given by Eq. ( 1)
is do. For the purpose of illustration we truncate the above sum to N = 8. In
Fig. 10b, we show the dependence of the �eld as a function of ay � [�1; 1] with
ax = 0 for � ! 1. The parameters values are shown in the �gure caption.
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Figure 10c shows the gain factor given by

G =
max jEj2

1
2

R
day jEj

2

as a function of the dimension do � [0; 1]. We chose this range since the fractal
already has a dimension 1 in the perpendicular directions, i.e. D=1+do.

Figure 10: The branching process to produce a Weierstrass radiation pattern.
(a) The brunching process with the branching length increasing as "nL and the
current decreasing as �nIo. (b) the radiation pattern with � !1 given perfect
coherence. (c) The gain vs the dimension. It also contains the parameters used
in all 3 �gures. (d) Patial coherence for � = 0:1.

Note the increase in the gain as a function of dimension. In general, there is
an optimal value of D that generates the highest power density and that does
not necessarily has to be for D = 2. In Fig. 10b all the elements from the
antenna add up coherently at ay = 0, hence providing perfect coherence. For
a �nite � < 1 the propagation brings a di�erent phase shift at each element.
Figure 10d shows the e�ect for � = 0:1 as a function of �. Note that at no point
there is perfect coherence, but there is clear partial coherence. The peak value
of E2 is actually sensitive to �.
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Even though fractal antennae naturally lead to the concept of an increase
in the peak radiated power, it also has a second important consequence due
to branching. As we have seen in the case of the Wiertrauss function, fractal
antennae naturally result in the generation of a spatial structure in the radiated
power density. This interplay between the spatial structure and the increase in
the peak radiated power are the essential ingredients of fractal antennae and
why they are so important. A clear example can be illustrated in Fig. 10d
where there are multiple relevant peaks of the radiated power in space.

3 Modeling Lightning as a Fractal Antenna

The hypothesis of this work is that the structure of the red sprites can be
attributed to the fact that the power density generated by lightning does not
have the smooth characteristics expected from the dipole model of Eq. 7, but
the structured form expected from a fractal antenna [ Kim and Jaggard, 1986;
Werner et al., 1995]. Previous studies of lightning assumed that the RF �elds
causing the atmospheric heating and emissions, were produced by an horizontal
dipole cloud discharge moment M that generates an electric �eld at the height
z, given by

E =
M

4��oz3
+

1

4��ocz2
dM

dt
+

1

4��oc2z

d2M

dt2
(7)

where c is the velocity of light and �o is the permitivity of free space. It is im-
portant to realize that a lightning discharge must be horizontal, as in intracloud
lightning, to project the energy upwards into the lower ionosphere. A vertical
discharge, as in cloud-to-ground lightning, will radiate its energy horizontally
as a vertical antenna.

It is obvious that such a horizontal dipole results in electric �elds that vary
smoothly with distance. However, it is well known that lightning discharges
follow a tortuous path [LeVine and Meneghini, 1978]. It was shown [ Williams,
1988] that intracloud discharges resemble the well known Lichtenberg patterns
observed in dielectric breakdown. In fact a time-integrated photograph of a sur-
face leader discharge is illustrated by Figure 11 . These patterns have been re-
cently identi�ed as fractal structures of the Di�usion Limited Aggregate (DLA)
type with a fractal dimension D � 1:6 [Sander, 1986; Niemeyer et al., 1984].

As noted previously, the tortuous path increase the e�ective dipole moment,
since now the pathlength along the discharge is longer that the Euclidean dis-
tance. To understand this analogy, we construct a tortuous walk between two
points separated by a distance R as shown in Fig 12. Take the tortuous path
as N small steps of averaged step length Lo � R, then the total path length S
along the tortuous discharge is

S � NLo � (
R

Lo
)D�1R

where the number of small steps is N � ( R
Lo
)D with D as the box counting

dimension [Ott, 1993]. As we have seen before, the change in the path length
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Figure 11: Time-integrated photograph of a surface leader discharge (Lichten-
berg pattern) [Niemeyer et al., 1984]

increases the radiated power density as E2 = E2
o + �k(S � R) where E2

o � �2

Therefore, for R � 10 km (typical for an intracloud discharge), Lo � 50 m,

� = 0:1, and D � 1:6, with obtain E2

E2
o
� 1 + kR

�
(( R

Lo
)D�1 � 1) � 1 + 5f(kHz)

where f is the frequency of the current.
This is only an analogy, but it gives us good intuition that a fractal lightning

discharge will produce an increase in the radiated �eld intensity, at least locally,
as compared with a dipole model and a spatially structured radiation pattern.
A fractal dielectric discharge of size R can be modeled as a set of non-uniformly
distributed small current line elements [ Niemeyer et al., 1984] that represent
the steps of the discharge breakdown as it propagates during an intracloud
lightning discharge. The size of the elementary current steps is about Lo � 50
m [Uman, 1987]. As a current pulse propagates along this horizontal fractal
discharge pattern it radiates energy upwards (see Appendix A on how the �elds
are calculated) as well as downward.

To determine the extent over which the non-uniformity of the lightning dis-
charge current a�ects the power density structure projected in the lower iono-
sphere, we will now construct a simple fractal model of the lightning discharge
that will yield a spatio-temporal radiation pattern at the relevant heights.

3.1 Fractal Lightning: Stochastic Model

We want to generate a fractal model that can be parametrized by its fractal di-
mension. For this purpose, we followNiemeyer et al. [1984] who proposed a two
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Figure 12: Tortuous path between two point.

dimensional stochastic dielectric discharge model that naturally leads to fractal
structures. In this model the fractal dimension D can be easily parametrized
by a parameter �. Femia et al. [1993] found experimentally that the propa-
gating stochastic Lichtenberg pattern is approximately an equipotential. Then,
the idea is to create a discrete discharge pattern that grows stepwise by adding
an adjacent grid point to the discharge pattern generating a new bond. The
new grid point, being part of the discharge structure, will have the same poten-
tial as the discharge pattern. Such local change will a�ect the global potential
con�guration, see Fig. 13.

The potential for the points not on the discharge structure is calculated by
iterating the discrete two dimensional Laplace's equation

r2� = 0
�i;j =

1
4 (�i+1;j + �i�1;j + �i;j+1 + �i;j�1)

until it converges. This method reproduces the global in
uence of a given dis-
charge pattern as it expands. The discharge pattern evolves by adding an ad-
jacent grid point. The main assumption here is that an adjacent grid point
denoted by (l,m) has a probability of becoming part of the discharge pattern
proportional to the � power of the local electric �eld, which translates to

p(i; j) =
��i;jP
l;m

��
l;m

in terms of the local potential. Here we have assumed that the potential at
the discharge is zero. The structure generated for � = 1, corresponding to a
Lichtenberg pattern, is shown in Fig. 14.
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Figure 13: Diagram of the discrete discharge model.

The color coding corresponds to the potential. Figure 15 shows a plot of
N (") vs. Log(") for the fractal discharge of Fig. 14, i.e. � = 1:0. Again
the scaling behavior only occurs over a few decades, but it is very clear. The
dimension of this structure is D ' 1:6.

Note that this model, and also the dimension of the discharge, is parametrized
by �. Intuitively we expect that when � = 0 the discharge will have the same
probability of propagating in any direction, therefore, the discharge will be a
compact structure with a dimension D = 2. If � ! 1 then the discharge will
go in only one direction, hence D = 1. Between these two limits, the dimension
will be the function D(�) shown in Fig 16. As an example the corresponding
structure generated for � = 3 (Fig 17) has a dimension of D = 1:2.

To compute the radiated �elds, we must describe the current along each of
the segments of the fractal discharge. We start with a charge Qo at the center
of the discharge. The current is then discharged along each of the dendritic
arms. At each branching point we chose to ensure conservation of current, but
intuitively we know that a larger fraction of the current will propagate along
the longest arm. Suppose that a current Io arrives at a branching point, and
if Li is the longest distance along the ith branching arm, we intuitively expect
that the current on the ith arm should be proportional to L�i . Therefore, we
satisfy charge (or current) conservation if the current along the ith branching
arm is

Ii =
L�iP
j L

�
j
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Figure 14: Fractal discharge generated with � = 1.

3.2 Computing the Fields from the Fractal Structure

A current pulse propagates along the horizontal (in the x-y plane) 2 dimensional
fractal discharge structure, e.g. I(x; t) = I(t � s

v ) generating radiation �elds.
The radiation �eld is the superposition, with the respective phases, of the small
line current elements. The intracloud current pulse is taken as a series of train
pulses that propagate along the arms of the antenna

I(t) = Io(e
��t � e�
t)(1 + cos(!t))�(t)

with ! = 2��nf and �(t) as the step function. Here nf represent the number
of oscillations during the decay time scale 1/�. We chose the decay parameters
as � = 103 s�1 and 
 = 2 � 105 s�1, hence 
=� = 200, which correspond to
realistic parameters for lightning [Uman, 1987]. The total charge discharged is
then Q = Io=�, which for Io = 100 kA gives Q � 100 C. As we have seen before,
we require nf � 100 to create the spatial structures so that the exponential
decay e��t can be considered as the envelope of the oscillating part.

On a given position the time dependence of the �eld intensity E2 has a
fractal structure, as it is shown in Fig. 18a for the stochastic discharge model
with � = 3. The frequency spectrum of the electric �eld is shown in Fig.
18b. It is very important to realize that the relevant frequencies are below a
few hundred kHz. By restricting the �eld frequencies to below a few hundred
kHz, the analysis is greatly simpli�ed, since then the conductivity and dielectric
tensors can be considered as independent of time in the lower ionosphere (see
Appendix B).

The large conductivity of the ground at these frequencies can be included by
assuming to �rst order an image discharge of opposite current below a perfectly
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Figure 15: The plot of lnN (�) vs 1
�
for � = 1.

conductive plane. The primary discharge is taken to be at zo = 5 km above the
ground. This parameter is not very relevant, since we are interested in the �eld
at heights of about h � 80 km, therefore, moving the discharge from 5 to 10 km
will only change the �eld strength by a marginal 10%.

3.3 How does the Fractal Dimension A�ect the Field Pat-
tern?

For a 2-dimensional fractal structure, we expect that the strength of the radiated
power density depends on the fractal structure, i.e. its fractal dimension. If the
strength of the k Fourier component is Ak then the �eld in the far �eld [ Jackson
1975] at r along the axis of the fractal will be given by

E �

Z
dkAk

Z
�

d�R(�) sin(k�)

where d� (the fractal measure) is the contribution of the fractal from a given
polar position (�,�). R(�) is the phase contribution from the elements of the
fractal at position (�,�) and in the far �eld should be proportional to the direc-
tion of the local current. Note that a radially propagating uniform 2 dimensional
current structure will generate no �eld at the axis since contributions to R(�)
from di�erent parts of the fractal will cancel each other.

The cross section of the fractal at a given radius � will resemble a Cantor set
in � � [0; 2�], and the phase contribution will be given by S(�) =

R
�
d�R(�; �)

which will be �nite for an asymmetrical fractal. The integration can be carried as
a Lebesgue integral or as a Riemann-Stieltjes integral over this pseudo-Cantor
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Figure 16: The dimension of the stochastic model as a function of � with the
estimated error bars.

set [Royden, 1963]. Note that if the fractal is uniformly distributed along �,
corresponding to D=2, then S(�) = 0. Similarly, for a delta function at � =
�o corresponding to D=1, S(�) gives a positive contribution. S(�) is a very
complicated function that depends on the details of the current distribution
along the fractal. In an average sense we can suppose that S(�) � f(D) where
f(D = 1) = 1 and f(D = 2) = 0 but f can be greater than one for other values
as has been investigated in previous sections when branching and propagation
occurs. Therefore,

E�f(D)

Z
dkAk

Z
�

dm(�) I(�) sin(k�)

where dm(�) represents the amount of the fractal between � and � + d� and
I(�) is the averaged current over � at radius �. A fractal will have a mass up
to a radius � given by m(�) = ( �

Lo
)D by noting that a 2 dimensional antenna

will have more elements than a one dimensional fractal. In general, due to the
branching process, some of the current does not reach the radius R. But for
simplicity, if all of the current reaches the end of the fractal at radius R, then
dm(�) I(�) = d�. In such case, the above integral gives

E�f(D)

Z
dk k�1Ak(1 � cos(kR))
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Note that " = ( `
R
) in some sense selects the Fourier component k = 2��

"R
which

has a strength Ak � N (") � "�D . The integral over k gives g(D) ' (Lo
R
)D�1;

therefore, the �eld is given by

E�f(D)g(D) (8)

which shows that the �eld has a maximum value at a speci�c value of D � [1; 2]
since f(D) decreases and g(D) increases with D respectively.

On the other hand, the Rayleigh length, the distance beyond which the �eld
start decaying to their far �eld values, behaves as RL(") �

"R
2�� for a given ".

Red sprites occur at a height z � 80 km, therefore, for z > RL("); elements
with sizes smaller than " do not contribute to the �eld, i.e. as we increase z we
wash out the information of increasingly larger spatial scales of the fractal. It is
the power law dependence, as speci�ed by the fractal dimension, that determine
the �eld pattern.

Even though, the radiation pattern will depend on the details of the fractal
structure, we expect that the most relevant parameter in determining the ra-
diation pattern will be the fractal dimension, as found by Myers et al. [1990]
for simple fractals. There is an interplay between the dimension and the spatial
structure of the radiation pattern. For a dimension close to D � 1or D � 2,
there will be no signi�cant spatial structure. While an intermediate dimension
can produce a signi�cant spatial structure.

3.4 Fields from the Stochastic Model

First we start by computing the array factor based on the far �eld approximation
(see Appendix A). We take nf � 200 and � = 0:1 and compute the array factor
at a height z = 60 km. Figure 19 shows the array factor for the discharge
structure shown in Fig. 17 with � = 3.

The length of the elementary current elements is about 100 m. The array
factor shows clear structure. A cross-section of the normalized array factor are
shown in Fig. 20 and Fig. 21 for � = 1 and � = 2 respectively.

Similarly, the array factor at x = 10 km, y = 10 km, z = 60 km is shown as
a function of the fractal dimension of the discharges for � = 0:05 and � = 0:025
in Fig. 22a for nf = 0 and Fig. 22b for nf = 200.

The fractal dimension dependence of the array factor is very intriguing, but is
of clear signi�cance for our lightning studies. What about the time dependence
of the radiations �elds? Figure 23 shows the time dependence of the radiation
�elds for � = 1; 2; 3; 5; 10 with nf = 200; 50; 1 where each �gure is carefully
labeled. Again the relevance of the � = 3 case is very striking. Each column
of graphs represent the time dependence for nf = 200; 50; 1 respectively, where
the rows represent the case for � = 1; 2; 3; 5; 10. The amplitude of the �eld has
been multiplied by the factor displayed next to the graph.

We take the case for � = 3 and we study the dependence of the array factor
as a function of the current frequency as parametrized by nf : Figure 24 shows
the frequency dependence of the array factor at this location x = 10 km, y = 10
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km, z = 60 km. Initially the array factor increases linearly with nf as expected
but then it starts to oscillate as the spatial variation of the �eld pattern becomes
relevant.

In conclusion, the fractal nature of the discharges, being a simple random
walk or a stochastic discharge model, leads naturally to an increase in the peak
power density as compared with the dipole model. This increase is related to the
increase in the antenna path length, or tortuosity, and on the branching process.
It will be shown later that this gain in peak power density leads to a signi�cant
reductions in the discharge properties (e.g. charge, peak current) required to
produce the observed sprite emissions. Furthermore, if the discharge has a high
frequency component, as expected from an acceleration and deceleration process
in each of the single steps, then the radiation pattern can show spatial structure.
This spatial structure of the lightning induced radiation pattern will be related
to the spatial structure of the red sprites in the next chapter.

4 Appendix A: Fields from a Fractal Structure

The �elds from a line element can be solve with the help of the Hertz Vector
[Marion and Heald, 1980]. In order to solve Maxwell's equations we de�ne, in
empty space, the vector function Q [ Marion and Heald, 1980] that is related
to the current density J and the charge density � as

J = �
@Q

@t

� = r �Q

Note that Q solves the continuity equation trivially, and furthermore, it can be
used to de�ne another vector function, namely the Hertz vector �(x; t); as

r2��
1

c2
@2�

@t2
= �4�Q

where the �elds are then de�ned as

B(x; t) =
1

c
r�

@�(x; t)

@t

E(x; t) = r�r��(x; t)

The time-Fourier transformed Maxwell's equations, with Q(x; !) = i
!
J(x; !)

and J(x; !) = bLI(l; !); can be solved with the help of the Hertz vector �,

�(x; !) =
i

!

Z L

0

J(l; !)
e
ik



x�lbL




x�lbL


 dl (9)

where the line element has orientation L and length L, and is parametrized by
l � [0; L]. Values with the hatb indicate unit vectors, variables in bold indicate
vectors, ! is the frequency, k = !

c
. The time dependence can be found by

inverting the above equation.
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4.1 Fields from a Fractal Antennae

A current pulse propagates with speed � = v
c
along a fractal structure. At the

nth line element with orientation Ln and length Ln, which is parametrized by
l � [0; Ln], the current is given by I(l; sn; t) = Io(t�

sn+l
v ) where sn is the path

length along the fractal (or if you prefer a phase shift). The radiation �eld is
the superposition, with the respective phases, of the small line current elements
that form the fractal. For a set frn;Ln; I(sn; t) jn = 0; :::; Ng of line elements,
such as shown in the example diagram of Fig. 25, the Hertz vector is given by

�(x; !) =
X
fng

bLn i

!

Z Ln

0

Io(!)e
i!
v
(sn+l) e

ikkrn�lbLnk
k rn � lbLn kdl (10)

where rn is the vector from the beginning of the nth line element to the �eld
position x, ! is the frequency and k = !

c
.

We must realize that in general Eq. 10 for � is very complicated, but we
are interested in the far �eld of the small line elements (rn � L). Therefore,
we can take the far �eld approximation of the small line elements to obtain a
closed form solution for the Fourier transformed �elds as

B(x; !) = �
X
fng

k2eikrn

rn
f(sn; !; rn)[1 +

i

(krn)
](bLn � brn)

E(x; !) = �
P

fng
k2eikrn

rn
f(sn; !; rn)[(1 +

i
(krn)

+ i2

(krn)2
)cLn

�brn(bLn � brn)(1 + 3i
(krn)

+ 3i2

(krn)2
]

where the geometric factor is given by

f(sn; !; rn) =
i

!

Z Ln

0
Io(sn; l; !)e

�i(bLn�brn)kldl = iei
c
v
sn

!
Io(!)

Z Ln

0
ei(

c
v
�(bLn�brn)k)ldl

f(sn; !; rn) =
�Io(!)ei

!
v
sn

ck2(1� �(bLn � brn)) (1� ei(
c
v
�(bLn�brn)k)Ln)

Note that even though we are in the far �eld of the small line elements, we
can be in fact in the intermediate �eld with respect to the global fractal struc-
ture. Therefore, phase correlations over the fractal can be extremely relevant,
and produce spatially nonuniform radiation �elds. We then invert the Fourier
transform of the �eld to real time and obtain the spatio-temporal radiation
pattern due to the fractal discharge structure

B(x; t) =
X
fng

�(bLn � brn)
crn(

c
v
� (bLn � brn)) [Io(� ) jt��1t��2

+
c

rn
I1(� ) j

t��1
t��2

]

E(x; t) =
P

fng
1

crn(
c
v
�(bLn �brn)) [(Io(� ) jt��1t��2 +

c
rn
I1(� ) j

t��1
t��2 +

c2

r2n
I2(� ) j

t��1
t��2)

bLn�
brn(bLn � brn)(Io(� ) jt��1t��2

+ 3c
rn
I1(� ) j

t��1
t��2 +

3c2

r2n
I2(� ) j

t��1
t��2)]

(11)
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where

I1(t) =

Z t

�1

d�Io(� )

I2(t) =

Z t

�1
d�

Z �

�1
d�

0

Io(�
0

)

can be calculated exactly for the current described above, and where

�1 =
rn
c
+
sn
v

�2 =
rn + (bLn � brn)Ln

c
+
sn + Ln

v
+ (bLn � brn)Ln

c

The value of �1 and �2 correspond to the causal time delays from the two end
points of the line element.

Before �nishing this section we want to mention that there is an inherent
symmetry in the radiation �elds. In general we will assume that the current is
given by I(t) = Ioe

��t(1� cos(2�n�t))�(t) where �(t) is the step function, and
n � 1. Note that the total charge discharged by this current is Q=Io=� where
1=� is the decay time of the current. But since the current propagates along the
fractal, the radiation �elds at a given position in space will last for a time given
by � = s

v + � where s is the largest path length along the fractal. The �elds

are invariant as long as �t , L�
v and r� are kept constant in the transformation.

Such scaling can become relevant in studying the properties of radiation �elds
from fractal antennae.

In general we will use the power density S(W=m2) = c"oE
2(V=m); where

1/c"o is the impedance of free space, as a natural description for the amount of
power radiated through a cross-sectional area.

4.2 The Far �eld

The far �eld is approximately given by

E(x; t) =
X
fng

�Io(� ) j
t��1
t��2

crn(1� �(bLn � brn)) (12)

In general we are going to use a current pulse de�ned as I(t) = Io(e
��t �

e�
t)(1 + cos(!t))�(t) with ! = 2��nf and �(t) as the step function. Here nf
represent the number of oscillations during the decay time scale 1/� . We chose
the decay parameters as � = 103 s�1 and 
 = 2 � 105 s�1, hence 
=� = 200,
which correspond to realistic parameters for lightning [Uman, 1987].

As a measure of the amount of energy radiated to a given point in the far
�eld, we can de�ne an array factor as R(x; y; z) � �

R
E2dt: From Eq. (12 ) we

can write this array factor as

R '
�2�2

4(4 + 5�2 + �4)

X
n;m

bLn � bLm InIm
(1� �an)(1 � �am)rnrm

ff [
��� fn � � fm

�� ; �]+
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f [
��� in � � im

�� ; �]� f [
��� fn � � im

�� ; �]� f [
��� in � � fm

�� ; �]g (13)

f [�; �] = e�� [2 + 2�2 + (�2 � 2) cos(�� ) + 3� sin(�� )]

where � in = �( rn
c
+ sn

v ) corresponds to the parameters from the beginning (i)
of the line element, and similarly for the endpoint (f). Also � = 2�nf and In is
the current strength of the nth element. The array factor can be normalized by
maximum in the array factor corresponding to the single dipole, i.e.,

Ro '
�2I2o A

4(1� �a)2h2

where A = f
3�4��2f [ 1

�v
(��r�L);�]

2(4+5�2+�4) g ' 1; with �r ' Lbx � br as the di�erence in

distance between the beginning and end points of the dipole to the detector
position. h is the height of the detector.
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Figure 17: Fractal discharge generated for � = 3 .
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Figure 18: (a) The �eld power density due to the stochastic discharge model at
a given position as a function time (b) and the frequency spectrum of the �eld.
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Figure 19: The array factor for � = 3.

Figure 20: Cross-section of the ar-
ray factor for � = 1:

Figure 21: Cross-section of the ar-
ray factor for � = 2:
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Figure 22: The array factor (a) For nf = 1 and (b) for nf = 200. The graph
has been interpolated for the purpose of illustration.
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Figure 23: The time dependence of the radiation �elds for the fractal models.
See explanation in text.
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Figure 24: The array factor as a function of nf for � = 3:
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Figure 25: A diagram that explains all the variables and coe�cients
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