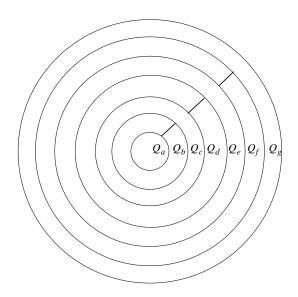
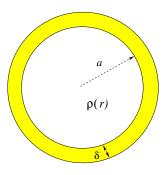
Universidad de Chile Facultad de Ciencias Departamento de Física

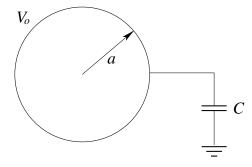

Electromagnetismo

Guía Nº 3 Publicada el 27 de abril de 2010 Profesor: José Rogan C. Ayudantes: Macarena Muñoz G.

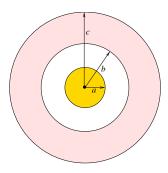
Alejandro Varas B.


1. Considere un condensador formado por dos esferas concéntricas de radios a y b respectivamente. Supongamos que el espacio entre ambas esferas es vacío y que la esfera interior tiene una carga q/4 y la exterior -q/4, encuentra la capacidad del condensador.

2. Consideremos un conjunto de siete esferas conductoras concentricas equiespaciadas y cargadas con cargas Q_a , Q_b , Q_c , Q_d , Q_e , Q_f , Q_g respectivamente, ver figura. Se conectan, mediante un hilo conductor, la primera con la segunda, la tercera con la cuarta y así sucesivamente, esto hace que las esferas conectadas estén al mismo potencial. Encuentre la capacitancia del sistema, generalize para n esferas cargadas.



- 3. Encuentre la capacitancia de los siguientes sistemas:
 - Dos esferas conductoras concéntricas, de radio a y b tal que a < b.
 - Dos placas conductoras planas y paralelas de área A, separadas por una pequeña distancia d.
 - Dos cilindros conductores concéntricos, de radio a y b tal que a < b.
- 4. Calcule la capacitancia de un sistema compuesto por dos mantos cilíndricos conductores de radios a y b con a menor que b y de largo L(use el resultado de un cilindro infinito). Demuestre que si $a \approx b$, se recupera la fórmula del condensador de placas paralelas. Hint: $\ln(1+x) \approx x$ para $x \ll 1$


5. Suponga un aislante esférico de radio a, con densidad de carga $\rho(r)$ en su interior, cubierto por una corteza conductora de espesor δ como se indica en la figura. Además, se sabe que en el interior del aislante el campo eléctrico es $\vec{E}_{in} = k \left(\frac{r}{a}\right)^4 \hat{r}$.

- a) Encuentre $\rho(r)$.
- b) Encuentre la densidad de carga superficial en el interior y el exterior del conductor.
- c) Determine el potencial en todo el espacio.
- 6. Una esfera de radio a se carga a potencial V_0 y se aisla. Posteriormente se conecta a tierra a través de un condesador cuya capacidad es C, ver figura. (Por definición la tierra está a potencial cero independientemente de la carga que adquiera)
 - a) Calcule el potencial final de la esfera, la carga final en la esfera y en el condensador.
 - b) ¿Cuánta energía se disipó al hacer la conexión a tierra?

7. Considere dos conductores esféricos concéntricos, uno sólido de radio a, conectado a tierra (V(r=a)=0), y el otro, que consiste en un cascarón de radio interior b y exterior c, sobre el cual se ha depositado una carga Q. Calcule la carga inducida sobre la esfera interior y el campo eléctrico en todo el espacio. Ver figura.

