Capítulo 11

Polinomios ortogonales

11.1 Definiciones

Definición 11.1 Sean $f, g \in C[a, b]$ y sea p(x) > 0 continua en el intervalo [a, b]. Definimos el producto interno de f y g con función de peso p de la forma siguiente:

$$\langle f, g \rangle \equiv \int_a^b f^*(x)g(x)p(x) dx$$
 (11.1)

Definición 11.2 Sean $\{P_n(x)\}_{n\in\mathbb{N}^0}$ un conjunto de polinomios reales, donde $P_n(x)$ es un polinomio de grado n. El conjunto $\{P_n(x)\}_{n\in\mathbb{N}^0}$ forma un sistema ortogonal de polinomios con la función de peso p(x) si

$$\langle P_n, P_m \rangle = \delta_{nm} A_m \ . \tag{11.2}$$

11.2 Teoremas

Teorema 11.1 Sean $\{P_n(x)\}_{n\in\mathbb{N}^0}$ polinomios ortogonales en [a,b] con la función de peso p(x). Sea Q_k un polinomio cualquiera de grado k. Entonces $P_n(x)$ es ortogonal a Q_k si n>k.

Demostración Escribamos el polinomio $Q_k(x)$ como sigue

$$Q_k(x) = \sum_{\nu=0}^k a_{\nu} x^{\nu} .$$

Podemos escribir los x^{ν} como combinación de los polinomios $P_n(x)$,

$$x^{\nu} = \sum_{\mu=0}^{\nu} b_{\mu} P_{\mu}(x) , \quad \text{con } b_{\mu} \propto \langle x^{\nu}, P_{\mu} \rangle ,$$

por lo tanto,

$$Q_k(x) = \sum_{\nu=0}^k a_{\nu} \sum_{\mu=0}^{\nu} b_{\mu} P_{\mu}(x) ,$$

$$\langle P_n, Q_k \rangle = \sum_{\nu=0}^k a_{\nu} \sum_{\mu=0}^{\nu} b_{\mu} \langle P_n, P_{\mu} \rangle = \sum_{\nu=0}^k a_{\nu} \sum_{\mu=0}^{\nu} b_{\mu} \delta_{n\mu} = 0 , \quad \text{si } n > k.$$

q.e.d.

Teorema 11.2 Los ceros de los polinomios ortogonales son reales y simples.

Demostración Consideremos el polinomio $P_{n+1}(x)$ que tiene n+1 raíces. Por el teorema anterior

$$\langle Q_k, P_{n+1} \rangle = \int_a^b Q_k^*(x) P_{n+1}(x) p(x) \ dx = 0 \qquad \forall \ k \le n \ .$$

Supongamos que $P_{n+1}(x)$ no tiene raíces reales en [a,b]. Al considerar $Q_k=1$ obtenemos

$$\int_a^b 1 \times P_{n+1}(x) p(x) \ dx \neq 0 \ .$$

Esto contradice lo anterior, lo que significa que P_{n+1} tiene por lo menos una raíz en [a,b]. Sea α esa raíz. Podemos factorizar P_{n+1} como

$$P_{n+1}(x) = (x - \alpha)S_n(x).$$

Si $n \ge 1$ se debe tomar $Q_k = (x - \alpha)$, y como por un lado debe complirse

$$\langle P_{n+1}, x - \alpha \rangle = 0$$
,

y por otro lado, de (11.1),

$$\langle P_{n+1}, x - \alpha \rangle = \int_a^b 1 \times (x - \alpha)^2 S_n(x) p(x) \ dx \neq 0$$

si $S_n(x)$ no tiene una raíz en [a,b], hay nuevamente contradicción. Por lo tanto, $S_n(x)$ tiene por lo menos una raíz en [a,b]. Siguiendo con este procedimiento encontramos que $P_{n+1}(x)$ tiene n+1 raíces reales.

Nos falta demostrar que las raíces son simples. Sea $x = \alpha$ una raíz no simple, es decir,

$$P_{n+1}(x) = (x - \alpha)^m S_{n+1-m}(x)$$
, con $m \ge 2$.

Si m es par, sea $Q_k(x) = S_{n+1-m}(x)$.

Si m es impar, sea $Q_k(x) = (x - \alpha)S_{n+1-m}(x)$.

Supongamos que m es impar por simplicidad (si n es par la demostración es análoga), entonces

$$\langle P_{n+1}, Q_k \rangle = \int_a^b (x - \alpha)^m S_{n+1-m}(x) (x - \alpha) S_{n+1-m}(x) p(x) dx$$
$$= \int_a^b (x - \alpha)^{m+1} [S_{n+1-m}(x)]^2 p(x) dx \neq 0,$$

distinta de cero porque cada factor de la función subintegral es positivo, en los dos primeros casos por ser las potencias pares y en el último por definición de p(x). Por otra parte, grado $[Q_k(x)] = n + 1 - m + 1 = (n + 1) - (m - 1) < n + 1$, lo cual significa que

$$\langle P_{n+1}, Q_k \rangle = 0$$
. $\Rightarrow \Leftarrow$

Por lo tanto, las raíces deben ser simples.

q.e.d.

Teorema 11.3 Teorema de unicidad (sin demostración)

Sea $\{P_n(x)\}_{n\in\mathbb{N}^0}$ y $\{Q_n(x)\}_{n\in\mathbb{N}^0}$ dos conjuntos de polinomios ortogonales que satisfacen la misma relación de ortogonalidad en [a,b] son iguales. Es decir, si

$$\int_a^b P_n^*(x) P_m(x) p(x) \ dx = \int_a^b Q_n^*(x) Q_m(x) p(x) \ dx \Longrightarrow P_n(x) = Q_n(x) \ .$$

11.3 Relación de recurrencia

Sea $\{P_n(x)\}_{n\in\mathbb{N}^0}$ un conjunto de polinomios ortogonales.

$$P_n(x) = a_n x^n + b_n x^{n-1} + c_n x^{n-2} + \cdots$$
(11.3a)

$$P_{n-1}(x) = a_{n-1}x^{n-1} + b_{n-1}x^{n-2} + c_{n-1}x^{n-3} + \cdots$$
(11.3b)

$$P_{n+1}(x) = a_{n+1}x^{n+1} + b_{n+1}x^n + c_{n+1}x^{n-1} + \cdots$$
 (11.3c)

Luego se puede escribir

$$xP_n(x) = \sum_{j=0}^{n+1} \beta_{nj} P_j(x) = \beta_{n0} P_0 + \beta_{n1} P_1 + \dots + \beta_{n+1} P_{n+1} ,$$

donde

$$\beta_{nj} = \int_a^b p(x)x P_n(x) P_j^*(x) \ dx = \beta_{jn}^* \ .$$

Vemos que $\beta_{nj} \neq 0$ sólo si n = j, j - 1, j + 1, luego

$$xP_n(x) = \beta_{n n+1} P_{n+1}(x) + \beta_{n n} P_n(x) + \beta_{n n-1} P_{n-1}(x) . \qquad (11.4)$$

Reemplazando (11.3) en (11.4) y comparando potencias, obtenemos para los coeficientes

$$\beta_{n \, n+1} = \frac{a_n}{a_{n+1}} \,, \qquad \beta_{n \, n} = \frac{b_n}{a_n} - \frac{b_{n+1}}{a_{n+1}} \,. \qquad \beta_{n-1 \, n} = \frac{a_{n-1}}{a_n} \,,$$

Reemplazando en (11.4) estos resultados, tenemos finalmente

$$\left[\frac{a_n}{a_{n+1}}P_{n+1}(x) + \left[\frac{b_n}{a_n} - \frac{b_{n+1}}{a_{n+1}} - x\right]P_n(x) + \frac{a_{n-1}}{a_n}P_{n-1}(x) = 0\right]$$
(11.5)