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The dispersion relation for circularly polarized electromagnetic waves propagating in the direction
of an external magnetic field in a relativistic electron-positron plasma with arbitrary constant drift
velocities is obtained for constant temperature in the homentropic regime. This result is an exact
solution of the nonlinear magnetofluid unification field formalism introduced by S. Mahajan
�Phys. Rev. Lett. 90, 035001 �2003��, where the electromagnetic and fluid fields are coupled through
the relativistic enthalpy density. The behavior of electromagnetic and Alfvén branches of the
dispersion relation are discussed for different temperatures. © 2009 American Institute of Physics.
�doi:10.1063/1.3272667�

I. INTRODUCTION

Relativistic electron-positron plasmas have received
much attention because they are relevant in several environ-
ments, either of astrophysical or laboratory nature. Examples
of this are accretion disks,1–3 models of early universe,4,5

ultraintense lasers,6 laboratory and tokamak plasmas,7,8 pul-
sar magnetospheres,9,10 or hypothetical quark stars.11 Several
effects in these plasmas relate to wave propagation, such as
the proposed pulsar radio emission processes,12 bulk accel-
eration of relativistic jets,13 quasar relativistic jets,14 or
electron-positron pair annihilation into one-photon in the
presence of a strong magnetic field.15

In several of the environments mentioned above, relativ-
istic effects and temperature play an important role; thus it is
fundamental to understand wave propagation modes in rela-
tivistic plasmas with temperature. In this paper we will focus
in the particular case of circularly polarized electromagnetic
waves, which, although simple, allows us to study in detail
the effect of relativistic temperatures on wave propagation in
relativistic hot plasmas.

Exact solutions for the plasma equations can be found
for cold nonrelativistic plasmas. For instance, circularly po-
larized Alfvén electromagnetic waves propagating parallel to
an external magnetic field are an exact solution of the mag-
netohydrodynamic equations even when the amplitude is
large.16 Also, a circularly polarized wave in a multiple ion
species plasma with drifts is a finite amplitude solution of the
cold plasma model.17 The nonlinear propagation of circularly
polarized electromagnetic waves in unmagnetized electron-
positron-ion plasmas has also been studied in the cold18 and
relativistically hot19 cases, showing the existence of stable
localized structures.

Here we propose an approach which permits to find an
exact solution for the propagation modes in a relativistic
electron-positron plasma with constant, arbitrary tempera-
ture, within the context of a fluid theory. This can be done by

basing our approach on the magnetofluid field unification
formalism in Ref. 20.

In this unification approach, the whole plasma is treated
as a unique field where the electromagnetic field is coupled
with the charged fluid field through a function that carries
statistical information of the system. This leads to a simple
and elegant way to describe relativistic plasmas. Using this
approach, we derive the dispersion relation for circularly po-
larized waves of arbitrary amplitude propagating along a
constant magnetic field, for arbitrary temperatures.

The paper is organized as follows. In Sec. II, a brief
summary of the magnetofluid unification approach is pre-
sented. Then, in Sec. III, the dispersion relation for circularly
polarized waves is derived. In Sec. IV, it is solved numeri-
cally and several features are discussed. Finally, in Sec. V,
results are summarized and conclusions are outlined.

II. MAGNETOFLUID UNIFICATION

Usually, the interaction of particles with electromagnetic
fields is described by introducing a “minimal coupling” in
the momentum, p→p−eA /c, where A is the vector poten-
tial. This leads to an energy-momentum conservation equa-
tion. This equation and Maxwell equations, describe the ba-
sic dynamics of charged relativistic particles in plasmas.

In Ref. 20 it was suggested that the coupling of a rela-
tivistic charged fluid, at a given temperature, with the elec-
tromagnetic field can be described by an antisymmetric field
tensor that contains the statistical information of the system.
Thus, the set of equations to describe the plasma dynamics in
the homentropic regime, for species j, is the Maxwell equa-
tions, the continuity equation, and the equation

qjUj�
Mj

�� = 0. �1�

The field Mj
�� is the tensor that couples the electromagnetic

and the fluid fields. This tensor is defined as Mj
��=F��

+ �mjc
2 /qj�Sj

��, with F�� as the electromagnetic tensor, qj is
the charge, and where it is introduced the new antisymmetric
tensor Sj

��=���f jUj
v�−���f jUj

�� representing the relativistica�Electronic mail: fasenjo@zeth.ciencias.uchile.cl.
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thermal fluid. Here, Uj
�→ �� j ,� jv j /c� is the four-velocity

of the fluid, v j is the species velocity, � j = �1−v j
2 /c2�−1/2,

v j
2=v j ·v j, and c is the speed of light.

The parameter f is a function of the temperature T. An
explicit form for f�Tj� can be obtained by assuming a given
statistical behavior for the gas. For instance, if the system
follows a Maxwell–Jüttner equilibrium distribution,19,20

f�Tj� =

K3�mjc
2

kBTj
�

K2�mjc
2

kBTj
� � f j , �2�

where K2 and K3 are the modified Bessel functions of order
two and three, respectively, and kB is the Boltzmann con-
stant. However, within the treatment carried out in this paper,
no explicit description for the function f is needed, and all
the analytical and numerical results that follow �except for
Eq. �13�� are independent of the underlying particle distribu-
tion function, as it should be for any fluid theory.

The spacelike components of Eq. �1� yield the plasma
motion equation,

� �

�t
+ v j · ���f j� jv j� =

qj

mj
�E +

v j

c
� B� −

1

n̄jmj� j

� pj .

�3�

An alternative form of this equation, in terms of the enthalpy
density h, can be found in Ref. 21.

The formalism of magnetofluid unification in Ref. 20 is
very general and allows us to study the dynamics of a
charged fluid �plasma� in an electromagnetic field in a uni-
fied way, treating them as a single field. It is a basis for
further theoretical developments, like the study of the inter-
action of plasmas with non-Abelian fields.22 On the other
hand, it also provides a general framework to study various
plasma physics phenomena, taking into account relativistic
temperature effects in a consistent way. In particular, the ef-
fect of relativistic temperatures on wave propagation in plas-
mas can be studied systematically. For the sake of simplicity,
in this paper we will consider an equal mass electron-
positron plasma, where a circularly polarized electromag-
netic wave propagates along a constant background magnetic
field.

III. CIRCULARLY POLARIZED WAVES

We consider a circularly polarized wave that propagates
along the z axis, whose electric and magnetic fields are given
by

E�z,t� = E�sin�kz − �t�x̂ − cos�kz − �t�ŷ� , �4�

B�z,t� = B�cos�kz − �t�x̂ + sin�kz − �t�ŷ� , �5�

respectively. In addition, there is a background uniform mag-
netic field B0=B0ẑ. Electrons and positrons have equal con-
stant drift velocities v0=v0ẑ and equal constant densities
np=ne=n. We will also denote their mass by mp=me=m and
their charge by qp=−qe=e.

In principle, we assume that electrons and positrons have
constant but different temperatures, so that fe� fp. It turns
out, as we will see below, that the purely transverse circu-
larly polarized wave is an exact solution of the field equa-
tions, which is consistent with the assumption of no pressure
fluctuations, that is, no fluctuations in f .

The particle velocities induced by the wave field are
purely transverse, hence, the amplitude of the circularly po-
larized velocity is proportional to the constant amplitude of
the circularly polarized vector potential field �which can be
easily shown in the Lorentz gauge, for instance�, and the
relativistic factor,

� j = �1 − v j
2/c2 − v0

2/c2�−1/2, �6�

is constant for both species.
With all these considerations, Eq. �3� yields

f j� j
�v j

�t
= − f j� j�v j + v0� · �v j

+
qj

m
�E +

�v j + v0�
c

� �B + B0�� . �7�

All the circularly polarized quantities have a space-time de-
pendence of the form eikz−i�t. We can write the velocity in the
polarization representation as vxj + ivyj =v j�ei�kz−�t�, the elec-
tric field as Ex+ iEy =E�ei�kz−�t�, and the magnetic field as
Bx+ iBy =B�ei�kz−�t�. Thus, Eq. �7� yields

v j� = i
qj

m
�E� + iB�v0/c

f j� j�� − �cj
� , �8�

where �cj =qjB0 /mc and ��=�−kv0 are the gyrofrequency
for both species and the Doppler shifted frequency,
respectively.

From Maxwell equations it can be shown that

E� = − i
�

ck
B�, �− k2 +

�2

c2 �E� =
4�

c2

�J�

�t
, �9�

where J�=Jx+ iJy =� jnqjv j� is the transverse current, and n
is the density measured in the laboratory frame.

Using Eq. �9�, Eq. �8� can be rewritten as

v j� =
��

f j� j�� − �cj

qjB�

mck
. �10�

Finally, this leads to the following dispersion relation for an
electron-positron plasma

�2 − c2k2 = �
j=e,p

�p
2� ��

f j� j�� − �cj
� , �11�

with �p=	4�ne2 /m as the electron plasma frequency. This
dispersion relation is an exact solution of the plasma equa-
tions, for finite amplitude circularly polarized propagating
waves along the magnetic field in a relativistic plasma with
temperature.

It is interesting to note that Eq. �11� differs from the cold
plasma case23 only through a factor f j. We can understand
this as follows. For single particle motion, it is possible to
convert a nonrelativistic result into a relativistic one by
changing mj→� jmj. This is possible because mass is in-
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volved in the momentum equation. However, this simple re-
placement is not possible for a fluid, since velocity is related
nonlinearly to momentum through � j. Therefore, the average
on momentum 
p j� is not equivalent to 
� j�
mjv j�. We can
think, though, that there is some proportionality factor be-
tween both quantities, say f j, such that 
p j�= f j
� j�
mjv j�.
Thus, it would be possible to convert a nonrelativistic fluid
force equation into a relativistic one with the same prescrip-
tion as for single particles, 
mjv j�→ 
p j�, but, in order to take
into account the statistics, mj→ f j� jmj. This is exactly
what is needed to go from the cold fluid dispersion relation
�f j =� j =1 in Eq. �11��, to Eq. �11�.

As an example, let us assume that the temperature of
electrons and positrons is the same and that there is no drift.
In this case, fp= fe� f , and Eq. �11� becomes

c2k2

�2 = 1 −
�p

2

�
� 1

f�p� − �c
+

1

f�e� + �c
� , �12�

where �c=eB0 /mc is the positron gyrofrequency.
For f =1, the dispersion relation for a cold relativistic

plasma is recovered.21,23 The same result as in Ref. 23 can be
obtained from a kinetic approach,24 in the limit where the
velocity distribution is a Dirac delta �see, e.g., Eq. �23� in
Ref. 24�.

The opposite limit corresponds to kBT�mc2. If f j is
given by Eq. �2�, then f�T��4kBT /mc2�1. Thus, Eq. �12�
yields the dispersion relation for a very hot relativistic mag-
netized electron-positron plasma,

c2k2

�2 = 1 −
�p

2

�  1

�p
4kBT

mc2 � − �c

+
1

�e
4kBT

mc2 � + �c� . �13�

In particular, we notice that when the temperature is very
high, the transverse mode becomes a light mode c2k2=�2,
consistent with the relativistic decrease in the effective
plasma frequency. Also, light wave modes are the solution of
Eq. �13� in the ultrarelativistic limit 1 /� j→0. Notice that,

although Eq. �13� was obtained for a specific functional form
of f with temperature, as given by Eq. �2�, the asymptotic
behavior of transverse modes described here is expected to
be independent of the particle distribution function, consis-
tent with the fact that we are treating the plasma as a fluid.

IV. ANALYSIS OF THE DISPERSION RELATION

In order to study the dispersion relation �Eq. �12�� we
will normalize all frequencies to the positron gyrofrequency
�c, and velocities to the speed of light c. It is convenient to
define two adimensional parameters, related to the plasma
frequency and to the wave amplitude,

a =
�p

2

�c
2 , 	 =

e�A�
mc2 =

e�E��
mc�

=
e�B��
mc2k

, �14�

where A is the vector potential of the wave. Notice that 	
corresponds to the particle transverse momentum due to the
wave.

In order to plot the dispersion relation, Eqs. �6�, �10�,
and �11� are solved simultaneously for � j, v j�, and �, for a
given k, as outlined in Ref. 24. In Fig. 1 the dispersion rela-
tion �12� is plotted for various values of f , and for a=1,
	=0.1. There are two branches: an electromagnetic branch,
with a lower cutoff at the effective plasma frequency, and an
Alfvén branch, which has an upper cutoff in wave number,
and an upper cutoff in frequency.

The black dotted line corresponds to the relativistic cold
plasma, f =1. It can be seen that, as mentioned in Sec. III,
when the temperature increases the effective plasma fre-
quency decreases, and the electromagnetic wave becomes a
light wave. This effect can be better appreciated in Fig. 2,
where the effective plasma frequency �p

eff �given by the
lower frequency cutoff for the electromagnetic branch in Fig.
1� is plotted for the same values of f used in Fig. 1. �p

eff also
decreases due to the relativistic effect on the mass, and thus
we plot it as a function of 	 as well. However, for large
enough temperatures, the variation of the plasma frequency
with wave amplitude is negligible.

0 1 2 3 4

ck/Ω
c

0

1

2

3

4

5
ω

/Ω
c

FIG. 1. Electromagnetic and Alfvén branches for the general dispersion
relation, Eq. �12�, for a=1, 	=0.1. Solid line: cold plasma case �f =1�;
dashed line: f =2; and dotted line: f =10.

0 1 2 3

α

0

1

2

ω
pef

f /Ω
c

FIG. 2. Effective plasma frequency �p
eff as a function of wave amplitude 	,

for various temperatures. Solid line: cold plasma case �f =1�; dashed line:
f =2; and dotted line: f =10.
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Regarding the Alfvén branch, Fig. 1 shows that it starts
at the origin following the usual linear dispersion relation,
�=vAk. In this region, �p, �e�1. Then, the Alfvén velocity
can be obtained from Eq. �12� by first rewriting it in the
form,

c2k2 = �2 − 2f�p
2 �2

�f��2 − �c
2 .

If �f 
�c, which is always satisfied for low enough frequen-
cies, we find that the Alfvén velocity is given by

vA =
c

	1 + 2f�p
2/�c

2
. �15�

As wave number increases along the Alfvén branch,
there is an upper frequency cutoff �crit given by

�crit

�c
=

1

f
�1 + �	

f
�2/3�−3/2

. �16�

Thus, when temperature increases, Alfvén waves are eventu-
ally confined to a very narrow frequency band. This can also
be seen in Fig. 1.

Another interesting feature of the Alfvén branch is the
existence of a maximum value for the wave number, kmax.
This upper cutoff occurs because one species �positrons, in
this case� becomes ultrarelativistic, essentially moving with
the speed of light in the wave field, thus, �p=�. Electrons do
not resonate with the wave, so �e is finite. In order to obtain
an analytic expression for the wave number cutoff for the
Alfvén branch, let us first notice that, from Eq. �10�, it fol-
lows that

�

f� j� − �cj
= �

1

	

v�j

c
, �17�

where the plus �minus� sign corresponds to positrons �elec-
trons�, so the dispersion relation �Eq. �12�� can be written,

c2k2 = �2 −
�p

2

	c
�v�p − v�e� . �18�

The cutoff occurs for �=0, and in this limit v�p�−c �notice
that the left-hand term in Eq. �17� is negative along the
Alfvén branch for all values of k�, whereas v�e becomes
negligible. Thus, it follows that the maximum wave number
is given by

kmax =
�p

c		
. �19�

This is consistent with the numerical result in Fig. 1. Notice,
in particular, that kmax depends only on wave amplitude, not
on temperature. One could argue that, if the transverse par-
ticle velocity is ultrarelativistic, then thermal velocities are
not relevant.

Finally, it is interesting to calculate the group velocity of
the waves. This is shown in Fig. 3, where the group velocity
vg is plotted for both branches of the dispersion relation,
taking the same f values as in Fig. 1. The electromagnetic
wave branch, as expected, starts with zero group velocity for
small wave numbers, and approaches c as k increases. On the

other hand, the Alfvén branch starts with vg equal to the
Alfvén velocity �15�, and as the wave number increases, the
group velocity tends to zero as �→�crit, Eq. �16�. Then it
becomes negative, tending toward minus infinity when
k→kmax, where the corresponding transverse velocity of the
positrons equals the speed of light.

V. SUMMARY

In this paper we have used the magnetofluid unification
formalism proposed in Ref. 20 to derive the dispersion rela-
tion of waves including relativistic temperature effects in a
consistent way, within the context of a fluid theory. Thermal
information is enclosed in a single function f j, related to the
enthalpy density for species j, which depends only on tem-
perature and particle mass. In particular, we have studied the
propagation of circularly polarized waves along a constant
background magnetic field, improving on previous results for
relativistic cold plasmas.23,24

Two branches are present: an electromagnetic and an
Alfvén branch. The electromagnetic branch has a lower cut-
off at an effective plasma frequency �p

eff, which decreases
with temperature and wave amplitude due to the relativistic
increase in effective mass of the particles. As temperature
increases, though, the effect of wave amplitude on �p

eff be-
comes negligible. When relativistic effects are larger, either
due to the Lorentz factors � j or the thermal function f j, the
electromagnetic wave becomes a nondispersive light wave.

The Alfvén branch, on the other hand, shows several
interesting features. For very small wave numbers it is non-
dispersive, with an Alfvén velocity vA which depends only
on temperature, not wave amplitude. As wave number in-
creases, a maximum frequency �crit, corresponding to a criti-
cal wave number kcrit, is reached. This upper cutoff depends
both on wave amplitude and temperature. Thus, as tempera-
ture increases, Alfvén waves are confined to an ever nar-
rower frequency bandwidth. At this critical wave number, the
group velocity for Alfvén waves becomes zero. For kkcrit,

0 1 2 3 4

ck/Ω
p

-5

-4

-3

-2

-1

0

1

v g
/c

FIG. 3. Group velocity vg for the waves in Fig. 1 vs wave number, for
different temperatures, and for a=1, 	=0.1. Solid line: cold plasma case
�f =1�; dashed line: f =2; and dotted line: f =10. Curves tending asymptoti-
cally to vg /c=1 correspond to the electromagnetic branch in Fig. 1, and
curves diverging to vg /c=−� correspond to the Alfvén branch.
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the group velocity is negative, eventually becoming infinite
at a certain maximum wave number k=kmax. This upper fre-
quency cutoff for Alfvén wave numbers depends only on
wave amplitude, not temperature. The anomalous behavior
of the waves in this regime deserves further attention, and
will be studied elsewhere.

We should stress here that we have found an exact solu-
tion to the relativistic fluid equations. A critical assumption is
the fact that particle velocities are purely transverse with
respect to the background magnetic field, which is true for
circularly polarized electromagnetic waves of arbitrary am-
plitude. In particular, this means that no pressure or density
fluctuations appear, and that f is constant. We plan to explore
the possibility of extending the above analysis to include
a pressure tensor,25 a case in which we do not expect to
find exact solutions, but which can certainly be studied
numerically.

Other subjects currently under consideration are the
study by means of computer simulations, which opens the
possibility to consider more complicated propagation modes,
the study of instabilities due to species drifts, which have
been included in Eq. �11�, and parametric decays.26
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