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Chapter 9

A MINIMAL MODEL OF CITY TRAFFIC:
CHAOS, CRITICAL BEHAVIOR AND CONTROL

J. A. Valdivia, B. A. Toledo, V. Muñoz and J. Rogan

1. Introduction

The complex behavior displayed in traffic patterns is an interesting field
of physics that have been attracting some attention for several decades [7],
in particular for their statistical [10, 19] and dynamical [9, 24] properties.
There are a number references on traffic jams, chaotic traffic flows, bus-
route problems, pedestrian flows, etc. [6, 12–14, 16, 17]. In particular, the
development of complex behavior in traffic flows determines, in a certain
way, the efficiency of the transportation infrastructure of a city, region, or
country. In this context, traffic flows, with and without passing, have been
studied extensively in the literature [1, 15], e.g., cellular automaton mod-
els, mean-field theories which test the microscopic evolution, hydrodynamic
models which approach collective behavior, etc. [11, 20].

In this chapter, we will formulate “a minimal model of city traffic”,
where we will follow the behavior of cars moving through a sequence of
street light signals, and discuss different control schemes. In this model,
the street lengths can be fixed or variable and the control is applied to the
frequency and relative phase of the traffic lights.

It is worth noticing that the timing of traffic lights must be close to
the characteristic traveling time e.g., including car interaction and so on
between signals, since longer or shorter timing will slow down the car mean
speed, and may contribute to jam the road [18]. This suggests that reso-
nant conditions may lead to efficient traffic systems, but more importantly,
resonance and control are related. Moreover, it will be shown that around
resonance, for our model, dynamical variables follow certain power laws.
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Such power laws resemble scaling relations near second order phase transi-
tions, and in view of this analogy we refer to them as critical behavior. We
plan to characterize this criticality and derive the critical behavior close to
the resonance in terms of traveling time, velocity, and fuel consumption.
In particular, we will discuss in detail a common control strategy used in
cities, the “green wave” [3], in which a green signal is made to propagate
with velocity vwave the applicability to other synchronization strategies will
be discussed below.

This particular control method tends to produce clusters of vehicles,
and due to this high correlation, a precise knowledge of the leading car can
provide us with information about the cluster itself. Therefore, as long as
the leading car represents the behavior of the cluster to which it belongs
(this occurs for low noise conditions), we can describe with a single car
model some common states in traffic behaviors involving clusters of vehi-
cles [11]. Because of this, we will limit ourselves in this chapter to study a
single car moving through a sequence of traffic lights [22, 23].

Hence, within this model, we will analyze three control strategies: (a) the
zero phase strategy, (b) the green wave strategy, and (c) a Parrondo-like
strategy that considers the transients.

2. The Microscopic Model

The aim of our approach is to follow the details of one vehicle moving
through a sequence of traffic lights in one dimension. The separation be-
tween the nth and (n + 1)th traffic light is Ln. The nth light is green if
sin(ωnt + φn) > 0 and red otherwise, where ωn is the frequency of the nth

traffic light, and φn is the phase shift. Note that these two parameters are
important if we were trying to control the traffic flow.

A car in this sequence of traffic lights can have (a) an acceleration a+

until its velocity reaches the cruising speed vmax, (b) a constant speed vmax

with zero acceleration, or (c) a negative acceleration −a− until it stops,
hence

dv

dt
=
{ a+ θ(vmax − v) , accelerate,

−a− θ(v) , brakes,
(1)

where θ(x) is the Heaviside step function.
As the car approaches the nth traffic light with velocity v the driver

must make a decision, to step on the brakes or not, at the distance (the last
stopping point) v2/2a− depending on the sign of sin(ωnt+φn). Note that if
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Fig. 1. The possible situations at the decision point, namely, (1) continuing, (2) braking
to stop at x = L before the light turns green again, and (3) braking and accelerating
again as the light turns green before stopping completely.

(v2
max/2a+)+(v2

max/2a−) < Ln, then v = vmax and the car reaches cruising
speed before reaching the decision point. Also in general it makes sense that
(2π/ωn) > (vmax/a−), (vmax/a+) so that the traffic light does not change
too fast from red to green. Of course as the vehicle brakes two things can
happen, the car can stop completely and wait until the light turns on again,
or it can start accelerating before it stops completely if the light changes.
Here we start observing the discontinuous nature of the model.

The type of trajectories between two traffic lights are described in Fig. 1,
which clearly shows the typical kinematics associated to this model.

It is interesting to mention that this simplified model may still be rel-
evant in the case of many cars going through the traffic light sequence,
but with the effective parameters depending on the density of interacting
cars. For example, you may have observed while driving through a city that
the effective averaged acceleration seems to depend on the number of cars
waiting at the traffic light. Similarly, the averaged effective cruising speed
also seems to depend on the density of cars going through the sequence of
traffic lights.

We now study the situation of a car traveling through a sequence of N

traffic lights, which in essence assumes a city with regular city blocks. We
expect that iterating this map may reveal interesting information about the
behavior of traffic flow in a city, even with this simplified model. The car
enters the sequence of traffic lights with velocity v0 and time t0. The set
of rules described above determine a 2-D map M(vn, tn) that evolves the
state (tn,vn) at the nth traffic light to state (tn+1,vn+1) at the (n + 1)th

traffic light. This map is constructed explicitly in the appendix.
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2.1. Fuel consumption

Even though travel time and velocity are good characterizations of the ef-
ficiency of a road system, fuel consumption is also of interest to drivers. In
general, fuel efficiency will improve if the number of times the car stops is
reduced, but it depends on the specific sequence of brakings and accelera-
tions, and thus on the initial conditions. However, general conclusions can
be obtained by studying the evolution of the attractor solution.

To account for fuel consumption, we need to study the main sources
of dissipation in the car’s motion. Fuel consumption is proportional to the
mechanical energy produced by the engine, given by

∫ tf

t0
Fv dt, where t0

and tf are the initial and final times for the complete journey, and F is
the forward force or thrust. Besides the engine thrust, we have the rolling
friction Fr which opposes the motion, and Fd, where we include other re-
sisting forces such as aerodynamic drag. Therefore, if m is the car mass,
the following equation holds:

F = ma+ + Fr + Fd . (2)

An analogous equation for the braking state is not necessary, as we assume
that the forward force provided by the engine is zero while braking. Let us
consider each term in Eq. (2) separately. The car acceleration is a+, as given
by Eq. (1), and the total injection of energy due to the acceleration from
rest to vmax is mv2

max/2. Each time the car stops, this energy is wasted, so
this term represents the effect of the driver’s behavior on fuel consumption.
The rolling friction is estimated as Fr = µmg, where mg is the weight of
the car and µ is the coefficient of rolling friction [5]. Rolling dissipation is
thus given by

∫
Frvdt ∼ FrL, which is a function of the distance between

traffic lights. Both sources of energy losses can be compared through the
dimensionless number fr ≡ 2FrL/mv2

max ∼ 2µgL/v2
max which is fr ∼ 0.2

for a car traveling at 50 km/h between lights 200 m apart and a rolling
coefficient of µ = 0.01 [21].

Finally, the force Fd is a function of the car velocity. Most of the fuel con-
sumption in a non-stop journey is due to the rolling and drag forces, since
accelerations are minimal. However, if the car passes through a sequence of
traffic lights, it moves at lower speeds, and then drag is less important than
rolling friction. Hence, we neglect drag dissipation in our analysis. We also
neglect other dissipative sources such as the energy needed to keep the mo-
tor running (in particular, the energy wasted while standing at the traffic
light) and the energy lost due to internal frictions in the car mechanisms [4].
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Thus, under city traffic conditions, total fuel consumption can be esti-
mated as

C =
∫ tf

t0

Fv dt = ma+L+ + Fr (L+ + L0) , (3)

where L+ is the portion of the traveling length in which the driver was
accelerating and L0 is the distance traveled at constant speed.

For now, we will concentrate on studying the dynamics for a given value
of vmax. Note that this parameter is very relevant in actual city situations
since different drivers are willing to reach different values of vmax, and traffic
light control strategies, achieved through ωn and φn, will be very sensitive
to its distribution. Furthermore, if we assume that the traffic parameters
are, to first order, functions of the density or number of cars, then control
strategies must take this into account specially during traffic jams.

3. Zero Phase Control Strategy: Resonant Behavior

In Ref. [23], a specific strategy of traffic light synchronization was consid-
ered, namely, all lights have equal phase φn = 0. This synchronization,
which we consider now, makes sense only if Ln = L. Later on we will
relax this restriction when we apply other control strategies. Note that
we could consider different Ln = L + ∆Ln values and different frequen-
cies ωn = ω + ∆ωn values as induced phase shifts ∆φn = ∆Ln/vmax and
∆φn = ∆ωnL/vmax respectively. That is why we concentrate for simplicity
on the situation Ln = L, and ωn = ω.

If the period of the signals, 2π/ω, is equal to the cruising time, Tc, after
a short transient (passing a few traffic lights), the car will arrive at each
successive decision point when the light’s phase is the same. It is important
to note that such resonance between the car motion and traffic signals cor-
responds to a very narrow region of parameters (see the period-1 orbit in
Fig. 2). Thus, the interesting regime for controlling traffic situations cor-
responds to a narrow region around the condition 2π/ω = Tc. Introducing
the dimensionless quantity Ω̄ = ωTc/2π, resonance occurs at Ω̄ = 1.

Figure 2 gives the bifurcation diagram of a car starting from rest at the
first traffic light. For a given frequency of the traffic lights, characterized
by Ω̄, the normalized speed vn/vmax and time travel between traffic lights
(tn+1 − tn)/Tc at the nth light is plotted. A transient of 500 time steps has
been removed. This is too large a number of traffic lights to be relevant in
real traffic situations, but it is necessary to reach the attractor for all the
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Fig. 2. Bifurcation diagram for the normalized (a) speed at the traffic lights and (b) time
travel between traffic lights, versus normalized frequency Ω̄, for a+ = 2 m/s2, a− =
6 m/s2, vmax = 14 m/s, and L = 200 m. A transient of 500 time steps has been removed.

initial conditions plotted (specially in the region very close to the period-
doubling bifurcation, where convergence is particularly slow). However, we
should point out that most of the initial conditions converge to the attractor
in as few as 5–20 traffic lights.

It is important to notice that even in this model there is already an
interesting nontrivial behavior in the range 0.75 < Ω̄ < 1 as displayed in
Fig. 2, where a necessary condition for complexity emerges even from the
dynamics of a single car. It includes a period doubling bifurcation transition
to chaos, where the Lyapunov exponent is estimated in Toledo et al. [2004]
for a similar situation. It is interesting to note that this chaotic behavior
is produced by the finite accelerating and braking capabilities of the cars,
and is thus independent of the interactions between cars. This is one of the
reasons for which this model could be an interesting starting point for a
first principles approach to traffic in cities.

3.1. Existence of a chaotic regime

The bifurcation diagram of Fig. 2 suggests a period doubling bifurcation to
chaos as we increase Ω. A crisis occurs as the chaotic attractor collides with
one of the velocity thresholds, producing an inverse period double bifurca-
tion. If we zoom into one of the frequency ranges where the map displays
complex behavior, as shown in Fig. 3(a), we find an intricate structure of
steady and chaotic behavior.

Estimating the relevance of this chaotic behavior and its sensitivity to
perturbation and noise, may be of importance in control strategies. In this
sense a finite amplitude Lyapunov exponent can be estimated [2]. Let us
take a trajectory in the attractor that starts from (u0, τ0) and an initially
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Fig. 3. The bifurcation diagram, (a) zoom for Fig. 4(b), and (b) the associated Lya-
punov exponent.

perturbed trajectory that starts from (u0, τ0 + δ0), with for example δ0 =
10−7. The error is iterated n times producing δn. Care must be taken to
include only the scaling region where

δn ∼ δ0e
λn .

Given an initial condition over the attractor an exponent can be estimated
by a fitting procedure in the scaling region. Of course, the discontinuous
nature of the map complicates this calculation, where for example, both
trajectories can reach the same state in one step, yielding λ = −∞.

But a final Lyapunov exponent can still be constructed by averaging
many initial conditions over the attractor, as shown in Fig. 3(b).

3.2. Resonance and control

Intuitively, and from Fig. 2, at Ω̄ = 1 the car motion is in resonance with
the traffic lights and the traveling time between two given traffic signals
is minimized. For Ω̄ > 1 (increasing ω), there are a number of resonances,
separated by ∆ω = 2π/Tc. Figure 4 displays the average normalized speed
〈v〉/vmax (total distance traveled divided by total time elapsed) as a func-
tion of frequency. Successive resonant points are found at Ω̄ = �, where
� is a positive integer. We will see below that these resonances display
critical behavior. On the other hand for Ω̄ < 1 there are situations in
which the car covers a distance qL, with q a positive integer, with cruising
speed for half the period of the traffic lights, and then is stopped for the
other half of the period. In these cases Ω̄ = 1/q and the average normal-
ized speed is 〈v〉/vmax = 1/2 as shown in Fig. 4. Since for a reasonable
city L ≈ 200 m and vmax ≈ 50 km/h, the traffic light period of the first
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Fig. 4. Resonant tongues showing the average speed (total distance traveled divided by
total time elapsed) as a function of the forcing frequency Ω̄. The thin line corresponds
to the scaling relation Eq. (23). A transient of 500 time steps has been removed.
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Fig. 5. Speed versus distance for the period-1 attractor below resonance (Ω̄ < 1). The
car starts at the first traffic light with velocity v0, accelerates until reaching velocity
vmax, and arrives at the decision point L − xd when the next traffic light is red, so it
brakes. When the velocity is a certain minimum value vmin, the sign turns green, and
the car accelerates again, passing the traffic light with the initial speed v0.

resonance P = 2π/ω ≈ 14 s is a little unreasonable, an attempt to control
the system using this parameter alone seems impractical, however, explor-
ing this dynamics could allow us to derive more practical control schemes.

In the vicinity of the resonance Ω̄ ≈ 1, two different dynamics arise
depending on the sign of Ω̄−1. For simplicity, let us consider a car starting
at the first traffic light when it changes from red to green, i.e., when the
green window begins. If Ω̄ < 1, the car will be delayed with respect to the
traffic lights, and will reach the second one when it is red, so it will be
forced to brake. However, if the delay is small, the traffic light will turn
green before the car gets to a full stop, so the car will accelerate again (see
Fig. 5), reaching the next traffic light with non-zero velocity. This causes
the period-1 orbit below the resonance Ω̄ = 1 of Fig. 2.
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The situation for Ω̄ > 1 is very different. The car reaches the second
light a time δt after it has turned green, and this delay increases with each
traffic light until it is eventually forced to stop. Thus, for Ω̄ > 1, the car
moves at maximum speed almost always, except for a stop every p traffic
lights, leading to the attractor seen above the resonance in Fig. 2.

To estimate p, we note that the driver arrives at the next signal a small
time δt = Tc − 2π/ω > 0 after the signal turns green, then with a delay
2δt at the third light, and so on. The journey will continue until the green
window is exhausted. The total number of signals, p, that the driver will
cross without stopping is given by p δt ≈ π/ω, which leads to

p ≈ 1
2

1
Ω̄ − 1

. (4)

Equation (4) is very interesting, because it also suggests that there is a
critical behavior of traffic variables around resonance. However, resonance
itself is not a robust feature for φn = 0, as it is not independent of the
geometry of the road, which is important, because in real situations the
distance between traffic lights is not constant, being impossible to maintain
resonance while traveling at constant speed.

Fortunately, the opposite is true for another kind of traffic light syn-
chronization strategy, the “green wave”, which we now consider.

4. Green Wave Control Strategy

A common strategy for traffic light synchronization is the “green wave”,
where a green color signal is moved with a speed vwave, so that the color
at the nth traffic light, located at a position xn along the road, is given
by sin ω(t − xn/vwave), where ω is the frequency of the traffic light. This
implies that φn = −∑n

m=1 Lmω/vwave. The case φn = 0 analyzed in Sec. 3
is equivalent to the green wave case with vwave → ∞.

In Fig. 6 we plot the bifurcation diagram with α = vmax/vwave of a
car starting from rest for a road with constant distance between traffic
signals Ln = L = 200 m, constant frequency ω = 2π/60 s−1, accelerations
a+ = 2 m/s2 and a− = 6 m/s2, and vwave = 14 m/s. These parameters are
reasonable for an actual road, corresponding to a change of lights every 30 s,
and a green wave synchronized with cars moving at 50 km/h. The car will
follow a complex path unless the velocity of the car coincides with the wave
velocity, i.e., a resonance. Under this condition, the driver will never be
stopped. However, resonance is rather fragile, as observed in Fig. 6, hence
the dynamics must be observed near the resonant condition α ∼ 1.
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Fig. 6. Bifurcation diagram for (a) normalized speed and (b) normalized time travel
between traffic lights, versus α, for a+ = 2 m/s2, a− = 6 m/s2, vwave = 14 m/s,
ω = 2π/60 s−1, L = 200 m. The transient has been removed.

The bifurcation diagram in Fig. 6 is very similar to Fig. 2, but reflected
horizontally. Thus, it is above resonance, α > 1, that a period-1 solution
exists, where the car follows a trajectory like Fig. 5, and below resonance
the car crosses a certain number p of lights before being stopped. An ap-
proximate expression for p can be obtained for the green wave, using similar
arguments to those used to derive Eq. (4).

Let us consider the number of traffic lights the car can pass without
braking. In the green wave case, close to resonance, we consider a small
perturbation δv = vwave − vmax > 0. In the optimal case, the driver starts
at one extreme of the green semi-period just when the signal changes from
green to red, so that at the next signal the driver arrives a time δt =
L/vmax − L/vwave before the signal turns red. The journey will continue
until the green window is exhausted. The total number of signals, p, that
the driver will cross without stopping is given by p δt = π/ω, or

p ≈ λ/L

2
α

1 − α
, (5)

where λ = vwave · 2π/ω. Criticality is, once more, explicit. However, unlike
the case φn = 0, resonance for the green wave holds even if the distance be-
tween traffic lights is not constant, in which case φn = −∑n

m=1 Lmω/vwave.
Regarding the quantity p we can do even a little more. If we take advan-
tage of the periodic nature of the solution in the asymptotic regime we can
derive the following expression, exact to second order for α ∈ (0.67, 1),

p =

⌈
(π − ξ)

√
6

15 − 16 cos
(

2πL
λα

)
+ cos

(
4πL
λα

)
⌉

, (6)
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Fig. 7. (a) Resonant tongue showing the average speed (total distance traveled after
crossing n signals, divided by time elapsed) as a function of the parameter α. The thin line
corresponds to random street length, the thick line corresponds to the Alameda Avenue,
the dashed line corresponds to constant street length, and the dotted line corresponds
to the scaling laws derived in the text, (b) The corresponding average fuel consumption,
normalized to the free consumption Cfree = nFrL.

where

ξ =
2πvmax

λα

[
L

vmax
+

vmax

2

(
1

a+
− 1

a−

)]
mod 2π,

and the function 	x
 is the ceiling function, the function that returns the
the closest upper integer of x.

An interesting example of this independence of geometry for the be-
havior near resonance is shown in Fig. 7(a) for the average speed after
traveling a large number of traffic lights as a function of α = vmax/vwave.
Three cases are compared: (i) a street where distance between traffic lights
Ln = L = 200 m is constant; (ii) a street with a random distribution of
distances Ln = L + ∆Ln, where ∆Ln/L is a uniform random number in
the interval [−0.5, 0.5]; and (iii) a real street, namely, the longest city street
in Chile (the Avenida del Libertador Bernardo O’Higgins, also known as
Alameda Avenue; its precise geometry can be obtained from the Chilean
Military Geographic Institute at http://www.igm.cl/ ). All curves are iden-
tical at resonance. The same is true for the average time between traffic
lights. This suggests that behavior near resonance for the green wave, at
α = 1, is indeed universal, regardless of the detailed geometry of the road.
Moreover, it will be shown that near resonance, traffic variables behave ac-
cording to scaling laws. Thus, Fig. 7 shows the universality of this critical
behavior. The figure also shows how the efficiency of the strategy degrades
as the effective speed of the cars gets away from vwave.

Based on Eq. (5), it is now easy to obtain scaling laws for the traffic
variables (time, velocity, fuel consumption). At α = 1, the system is at
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resonance, so that the average travel time 〈t〉 is equal to the time of “free”
travel, when no red lights are found, Tfree ≡ nL/vmax, where n is the num-
ber of passed traffic lights. Average velocity is equal to the corresponding
maximum or free velocity 〈v〉 = Vfree ≡ vmax. Below resonance these re-
lations change because, if α < 1, the car is forced to stop at some point.
Since π/ω is the time the red light window lasts, the car is at rest a time
≈ kπ/ω with k as the number of times the driver brakes. Then the average
travel time is

〈t〉 = Tfree +
kπ

ω
. (7)

The average velocity in the same run is

〈v〉 ∼ nL

〈t〉 . (8)

Fuel consumption at resonance, on the other hand, is 〈C〉 = Cfree ≡
nFrL. Below resonance fuel consumption can be estimated by observing
that the car stops k times when it covers a distance nL at cruising speed,
hence 〈C〉 ∼ FrnL + kmV 2

free/2, which is the total work done by Fr plus
the energy wasted in each stop, thus

〈C〉 ∼ Cfree

(
1 +

mkV 2
free/2

nFrL

)
. (9)

Equations (7) to (9) can be written as

〈t〉 − Tfree

Tfree
∼ λ

2L

k

n
α ,

〈v〉 − Vfree

Vfree
∼ − λ

2L

k

n
α ,

〈C〉 − Cfree

Cfree
∼ 1 +

1
fr

k

n
.

Since after p traffic signals there is one stop, we can estimate k/n ∼ 1/p.
Then, using (5), yields the following scaling laws:

〈t〉
Tfree

∼ 1 + (1 − α) , (10)

〈v〉
Vfree

∼ 1 − (1 − α) , (11)

〈C〉
Cfree

∼ 1 +
2L/λ

fr

(1 − α)
α

. (12)
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Above resonance (α > 1), the period-1 solution is possible if the average
time to move between two traffic lights is

〈t〉 =
L

vwave
= Tfree α ≈ Tfree

[
1 + (α − 1) + O(α − 1)2

]
, (13)

and the average velocity is

〈v〉 = vwave =
vmax

α
≈ vmax

[
1 − (α − 1) + O(α − 1)2

]
. (14)

Equations for 〈t〉, (10) and (13), and for 〈v〉, (11) and (14), can be
combined as

〈t〉
Tfree

= 1 + |1 − α| , (15)

〈v〉
Vfree

= 1 − |1 − α| , (16)

being symmetrical around resonance.
Symmetric expressions like these cannot be obtained for fuel consump-

tion. In order to estimate fuel consumption above resonance, let us first
notice that the trajectory is analogous to Fig. 5. The distance in which
rolling friction acts against the engine is

xr = L − v2
max − v2

min

2a−
, (17)

and the energy lost when breaking is

Wa =
m

2
(
v2
max − v2

min

)
. (18)

Thus, total work between two traffic lights is

W = Fr xr+
m

2
(
v2
max − v2

min

)
= Fr L+

1
2
(
v2
max − v2

min

)(
m − Fr

a−

)
. (19)

Note that this is equivalent to Eq. (3). In order to obtain vmin, we solve the
following set of equations:

v0 = vmin

√
1 +

a+

a−
, (20)

T =
(vmax

2
− vmin

)( 1
a+

+
1

a−

)
+

v2
0

2vmaxa+
+

L

vmax

. (21)

These equations follow from Fig. 5. Equation (21) simply states that the
time to travel from one light to the next one is equal to T = L/vwave. Thus,

〈C〉 ∼ Cfree

(
1 +

2
fr

[
1 − Fr

ma−

]√
2a+a−

a+ + a−

L

v2
wave

(α − 1)
1
2

α

)
+ O(α − 1) .

(22)
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Fuel consumption behavior is not symmetrical near resonance. This
asymmetry is related to the fact that below resonance the car fully stops
only once every p signals, whereas above resonance the car never stops, but
brakes at every signal. Since C depends strongly on the detailed pattern
of acceleration in the trajectory, scalings are different at each side of the
resonance. In Fig. 7(b) numerical results, obtained by iterating the map,
are plotted, showing good agreement with the approximated expressions
Eqs. (12) and (22) (dotted lines). Let us note that fr is a function of α if
we assume that vwave is constant and we vary vmax. For α > 1 the scal-
ing law we derived above breaks at the period doubling bifurcation, i.e.,
α ≈ 1.1 as seen in Fig. 7(b). The strong asymmetry in this figure also sug-
gests that on average, fuel consumption is higher for “impatient” drivers
traveling with velocity above the green wave velocity.

The universality of Eq. (16) is also clearly suggested in Fig. 7(a) for the
averaged velocity. This is interesting, as the scaling laws have been obtained
for equidistant traffic lights, but also hold for varying street length.

Although this critical behavior has been derived for a single car model,
we expect it to have an effect when multiple cars (not too many, other-
wise they will form a jam) are in the road as well. Indeed, for a single car,
it corresponds to traveling a large number of traffic lights without stop-
ping. Since it would keep its maximum velocity during most of the travel,
it would not interact with other cars also in the same situation. Then,
the critical behavior, in general, would occur when a bundle of cars passes
p lights before being stopped, with p � 1. This is analogous to a sys-
tem near a phase transition, when the correlation length goes to infinity.
We have obtained analytical results for the critical behavior in our simple
model, which could then be compared with more complex simulations and
measurements.

It is interesting to notice that the scaling relations for velocity and
time traveled derived for the green wave strategy can be mapped to the
equivalent scaling laws for the φn = 0 strategy by rewriting α −→ 1/Ω̄.
The actual derivation follows along similar arguments as the ones used for
the green wave strategy. For instance the velocity scaling is

〈v〉
Vmax

= 1 − |1 − Ω̄|
Ω̄

, (23)

displayed as the thin line in Fig. 4. In the case of fuel consumption for α > 1
(and Ω̄ < 1), this mapping is even more evident, since we need to carry the
same analysis as above, but with T = L/vwave −→ 2π/ω, i.e., α −→ 1/Ω̄.
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Fig. 8. Bifurcation diagram for the normalized speed vn/vmax as the control parameter
α = vmax/vwave is varied. Each figure corresponds to a different initial condition: (a) t0 =
0, v0 = 0, and (b) t0 = π/ω, v0 = 0. They contain the transient.

5. Transient Behavior

The results stated in the previous sections regarding resonance and critical
behavior for the green wave are valid in the asymptotic regime of the car
dynamics. They are valid regardless of the detailed geometry of the system
(characterized by the distance Ln between traffic lights). However, trips in
cities are typically short, and transient dynamics cannot be neglected in
general. In the following sections we intend to describe some features of the
transient behavior which may be of interest for city traffic.

Let us consider the green wave strategy. Figure 8 is analogous to
Fig. 6(a), but the transient is also shown. In Fig. 8(b) the car starts later.
The change in start time is relevant only in the transient part, and of course,
both trajectories converge to the same attractor of Fig. 6(a).

Figure 8 shows that, depending on the initial conditions, the evolution
can be quite complex, which as mentioned above, may be relevant for city
traffic. In particular, strategies for optimizing fuel consumption turn out not
to be very obvious even in our simple model. For instance, let us consider
the condition α = 1.3. The asymptotic solution is a period two orbit with
vn = 0 and vn+1 = vmax (see Fig. 8). This situation represents a simple case
with an interesting asymptotic behavior that may be quite annoying for the
drivers. The left panel in Fig. 9 shows vn/vmax at traffic lights n = 3 and
n = 20 [Figs. 9(a) and 9(b), respectively] for a range of initial conditions
in time and velocity. For the same traffic lights we also compute fuel con-
sumption with Eq. (3). This is plotted in the right panel in Fig. 9. Darker
(lighter) color represents lower (higher) fuel consumption. Note that these
zones are fairly wide and inhomogeneous. Also, there are points associated
to high consumption very near to points of low consumption. This result
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Fig. 9. Transient behavior for α = 1.3 according to the initial conditions in the v0/vmax-
ωt0/2π plane. Lighter tones correspond to higher speeds and higher fuel consumption
when crossing the traffic light. In Figs. 9(a) and 9(b), we show the distribution of speed
for the third and the twentieth traffic light respectively. In the second column, Figs. 9(c)
and 9(d), we show the associated fuel consumption. Fuel consumption is normalized by
the maximum fuel consumption among all trajectories analyzed.

points to the difficulty in designing strategies to save fuel or time in city
traffic, as optimizations in time traveled may conflict with fuel consumption
considerations.

An interesting feature is shown in Fig. 10, for the green wave case, with
α = 1.3. For two trajectories, the difference in travel time after n = 20 traffic
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Fig. 10. The comparison of the (a) time traveled (normalized to Tc) and (b) fuel con-
sumption (normalized to ∆Cfree = FrL), for α = 1.3, for two particular initial conditions,
v0 = 18.02 m/s and v0 = 4.55 m/s, respectively. The rest of the parameters are those
for Fig. 6.
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Fig. 11. Transient distributions as measured at different traffic lights for α = 1.3,

produced by different initial conditions distributed uniformly in the v0/vmax-ωt0/2π
plane. In Figs. 11(a) and 11(b), we show the distributions of time traveled for the third
and the twentieth traffic light respectively. The time has been normalized by Tc. In
the second column, Figs. 11(c) and 11(d), we show the associated distribution of fuel
consumption. Fuel consumption has been normalized by ∆Cfree = FrL. The vertical
arrows are the predictions by the asymptotic formulation given by Eqs. (16) and (22). As
expected from Fig. 7(b), the prediction for fuel consumption is not very good for α = 1.3.

lights is negligible, whereas they vary by ∼ 20∆Cfree in fuel consumption.
These results show that fuel consumption can be a more sensible index to
characterize the efficiency of the road system, as compared to travel time,
and point out again the difficulty in devising general strategies for traffic
control.

Another way to state this is to consider a set of initial conditions dis-
tributed uniformly in the v-t plane, and let the trajectories evolve. After
n = 3 and n = 20 traffic lights, the distributions of time and fuel consump-
tion are reconstructed and displayed in Fig. 11 with the same arrangement
as in Fig. 9. We note that the distributions are highly asymmetrical and
tend to be centered around a certain point that is related to the corre-
sponding asymptotic expression for α = 1.3, shown in Fig. 7(a). The width
of the distribution for fuel consumption is larger than the width of the dis-
tribution for elapsed time, which is consistent with Fig. 10. This shows the
high sensitivity of this variable and suggests its relevance in city traffic. On
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Fig. 12. Orbit collapsing due to the phase change φ : 0 → π at the 10th traffic light. In
both figures, the period-4 orbit is represented by dots, and the chaotic orbit by a line.
(a) Period-4 to free motion and chaos to free motion collapsing, (b) Fuel consumption
between lights, ∆Cn, normalized by its minimum value ∆Cfree = FrL.

the other hand, let us remember that in this figure we are representing a
statistical distribution, at a given time, of a big number of initial condi-
tions randomly chosen over the whole phase space. The variations that we
are seeing here characterize the nontrivial transient part of the trajectories.
For the period-2 situation we are considering here, there exist a maximum
asymptotic spread in time because of those cars that are caught by a red
light during the transient part of the trajectory (remember that the aver-
age waiting time at the traffic light is ∼ 2Tc). Therefore, we can see the
convergence of the time distribution to two well defined peaks, whereas for
the fuel distribution the two hills shown in Fig. 9(c) will merge into the one
observed in Fig. 9(d).

If we are interested in short trips, we may devise strategies that can
minimize certain variables by inducing certain transients. For instance let us
take α = 1.19 where we have a period-4 orbit, and α = 1.2 where the orbit
is chaotic. However, if at the 10th traffic light the phase is changed from 0 to
π, a transition to free resonant motion is observed. This motion eventually
collapses back to the period-4 or chaotic orbits respectively [see Fig. 12(a)],
but only after going through a nice transient of p traffic lights, which is in
close agreement with Eq. (4). As displayed in Fig. 12(b), the phase induced
green corridor proposed above reduces fuel consumption because rolling
friction is the only source of dissipation. This analysis may suggest another
control strategy to improve traffic flow by adaptively changing traffic lights
phases. It also gives further insight into the origin of complex solutions when
the resonance condition is approached. As time progresses, a periodic or
chaotic solution suddenly may spot a green corridor that changes completely
its observed trajectory.
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Fig. 13. Realization of a Parrondo game.

6. Parrondo-like Games for Controlling

The phase control of transients, as suggested above, bring us to the concept
of treating traffic control as a game. In a game we have a number of agents
bounded by a set of rules pursuing a definite goal. In our case, for simplic-
ity, we consider the goal of maximizing the mean velocity, although others
goals, such as minimizing fuel consumption, can be considered. Particular
attention will be given to the two directional flow, through the same se-
quence of traffic cars. This problem is interesting, for if we apply the green-
wave strategy in a given direction, we may be able to bring the traffic to
resonate. But for the cars travelling in the opposite direction, the average
speed will be reduced considerably, even compared with the φn = 0 (or
random) situation (see Fig. 15).

An interesting starting point could be found in the Parrondo’ para-
dox [8], in which two different games are defined so that the player always
lose in both of them. But when combined, even in a random sequence, the
player wins.

Let’s consider the capital gained by a player. Figure 13 shows the de-
cision tree of the standard Parrondo game consisting of only three biased
coins, where p1, p2 and p3 are the winning probabilities for the individual
coins. We can define losing games as follow, let us take ε = 0.005, then we
have p1 = 1/2 − ε such that the game A is losing in the long run. We play
game A by generating a random number 0 ≤ r ≤ 1. If r < p1 then we
increase our capital by one. Otherwise, we decrease our capital by one. If
we play game A continuously, we obtain the curve showing in Fig. 14. For
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Fig. 14. Five simulations of a 100-game run, with 10,000 trials of each. The two losing
games are just A (yellow) and B (cyan). The two moderately winning games are AABB
(blue) and R (red). The big winner is BBABA (green).

the game B, we set p2 = 1/10 − ε, p3 = 3/4 − ε and M = 3. Game B is
played by computing if our capital is divisible by M or not. If it is, then we
play a game similar to A but with p2. If our capital is not divisible by M,
then we play a game similar to A but with p3. Since the frequency of the
coin 3 is higher than the coin 2, game B is also a loosing game as shown in
Fig. 14.

It is interesting to note that if we now choose a random sequence of
game A and B, then we can obtain a winning game, even though A and
B are loosing games. Furthermore, we can show that certain particular
deterministic sequences of games A and B can also produce winning games,
as shown in Fig. 14. In particular, the sequence BBABA is a very profitable
game.

For the traffic problem, we can visualize the car going through the line
of randomly distributed traffic lights, as a player flipping a coin to stop or
to go through at a give traffic light. Although, is not clear how to perform
the original Parrondo’ game in this situation, it is possible to take the basic
idea and combine it with a green-wave, which would be our winning game
for the traffic going in a particular direction. For the traffic in the opposite
direction, the “anti-green-wave” would be the winning strategy. As we now
show in Fig. 15, our simulations show interesting results.

In the Fig. 15, we assume a forward “green-wave” strategy which we
will perturb in the following way. Let’s take the sequence,

{0, 0, 0, 0}, 1, {0, 0, 0}, 1, {0, 0, 0, 0}, 1, {0, 0, 0, 0, 0}, 1, {0, 0, 0}, 1, {0, 0, 0, 0}, 1,

{0, 0, 0, 0}, 1, {0, 0, 0, 0}, 1, {0, 0, 0, 0}, 1, {0, 0}, 1, {0, 0, 0, 0, 0, 0}, 1, {0, 0, 0}, 1,

{0, 0}, 1, {0, 0, 0, 0}, 1, {0, 0, 0, 0, 0, 0}, 1, {0, 0, 0}, 1, {0, 0}, 1, {0, 0, 0, 0}, 1,

{0, 0}, 1, {0, 0, 0, 0}, 1, {0, 0}, 1, {0, 0, 0, 0},
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Fig. 15. Normalized average velocity for the cases φn = 0 (black), φn = −ωxn/vwave

(blue) and φn :=game (red). With the game we obtain approximately an 8% of im-
provement in the backward direction and almost no change in the forward direction (the
reference is the green wave strategy at α = 1).

where a zero appears when the game is not played, namely we apply the
regular forward “green-wave” strategy. If a one appears, then we apply the
corresponding forward “green-wave” phase and we add ∆φ = −ω( 2L

vmax
−

vmax

a−
). This phase shift, is in favor of the backward direction, by increasing

the range of initial conditions that can pass through the traffic light. This is
an example of a successful game in this context, as shown in Fig. 15, since
it improves on the average velocity for the backward direction, without a
considerable reduction in the forward direction.

7. Conclusion

As a complex system, a traffic network has many interesting features. We
have developed a minimal model, that consist of a single car going through a
sequence of traffic lights, that displays some of the basic features present in
city traffic. Even under these simple conditions, we observe a range of com-
plicated behaviors that, for some critical parameters, display non-chaotic
motion, chaos and intermittency (not considered here). Hence, certain per-
turbations may drive the system to a region where the average speed is
reduced considerably. We have investigated control procedure through the
manipulation of the phase in the traffic light system. We can perform this
manipulation deterministically, which can be useful for few cars under very
constrained conditions, or statistically, in the spirit of a game, if we maxi-
mize the probability of winning most of the time (maximizing the average
velocity). This last approach seems to be fruitful given changing conditions
in a city. Therefore, the best game (which maximizes the average velocity
or minimizes the traveled time) will be dependent on the city conditions
and hence spatial and time dependent. This a work in progress.
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Appendix: The M(t, v) Map

It is convenient to construct an exact map that relates successive crossing
of the traffic lights. Let L be the distance between origin O and next traffic
light. After crossing the nth light, the car reaches vmax at

xc =
v2
max − v2

n

2a+
,

tc = tn +
vmax − vn

a+
,

vc = vmax ,

and continues to move at constant velocity until the decision point

xd = Ln − v2
max

2a−
,

td = tc +
xd − xc

vmax
,

vd = vmax .

At this point we have two choices depending on the sign of sin(ωntd+φn).
If sin(ωntd + φn) > 0, the car reaches the traffic light with a state

xn+1 = Ln ,

tn+1 = td +
Ln − xd

vmax
,

vn+1 = vmax .

If sin(ωntd + φn) < 0, the car must start slowing down with a−, and it
will take an extra time ∆t = vmax/a−, to reach the (n + 1)th traffic light
and stop. This time must be compared with the next time the light turns
green tg, at which point the car can accelerate again. Defining the phase
ξd = ωntd + φn, we can compute

ξg = ωntg + φn = 2π

(
Int
[

ξd

2π

]
+ 1
)

,

where Int[x] is the integer part of x. Therefore, if td + ∆t < tg, the car will
cross the (n + 1)th traffic light with

xn+1 = Ln

tn+1 = tg ,

vn+1 = 0 .
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In the other case, td + ∆t > tg, the car starts accelerating at the state

xg = xd + vd(tg − td) − a−(tg − td)2/2 ,

tg = tg ,

vg = vd − a−(tg − td) ,

and again we have two cases before it reaches L. We need to determine if
the car reaches vmax before the light. We compute the distance at which the
car reaches vmax, namely xm = xg +(v2

max−v2
g)/2a+. Therefore, if xm > L,

then the car reaches the traffic light with

xn+1 = Ln,

tn+1 = tg +
vn+1 − vg

a+
,

vn+1 =
√

v2
g + 2a+(Ln − xg),

otherwise, it reaches vmax at

xm = xm ,

tm = tg +
vmax − vg

a+
,

vm = vmax ,

and the light at

xn+1 = Ln ,

tn+1 = tm +
Ln − xm

vmax
,

vn+1 = vmax .
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