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An effective photon mass and equivalent photon charge are calculated for plasmas with finite temperature,
by using a second covariant quantization of the electromagnetic field, which is based on a nonlinear magnetof-
luid unification field formalism. Relativistic effects are considered both in the fluid bulk motion and in the
thermal motion. The effective relativistic photon mass is found for transverse and longitudinal photons, while
the equivalent relativistic photon charge is obtained for purely transverse photons. Both quantum quantities are
the relativistic generalization, at finite temperature, of previous results �Mendonça et al., Phys. Rev. E 62, 2989
�2000��. The dependence with temperature is studied in both cases.
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For nonrelativistic cold plasmas, the equation for electro-
magnetic wave propagation is analogous to the Klein-
Gordon equation for massive vector fields, which allows us
to calculate an effective photon mass. This effective mass is
proportional to the plasma frequency and it is thus a linear
effect. Similarly, a photon mass can be obtained in a quan-
tum field scheme by considering a symmetry breaking
mechanism �1�. In addition to the effective photon mass, it is
possible to associate an electric charge to the photon in cold
nonrelativistic plasmas. This equivalent charge is, in fact, a
nonlinear effect related to the ponderomotive force. Further-
more, the concept of effective mass and charge have been
extended to neutrinos in plasmas �2–5�.

More recently, Mendonça et al. �6� showed that it is pos-
sible to find an effective photon mass and an equivalent pho-
ton charge when the canonical formalism of second quanti-
zation is applied to cold nonrelativistic plasmas. Even though
it is not applied to a quantum system, the second field quan-
tization formalism provides a standard methodology to ana-
lyze the complete solution, including the nonlinear terms,
and allows us to interpret these effects as “quantizations” of
the photons of the plasma wave modes, providing a deeper
meaning than in the classical interpretation. In this paper,
following the procedure in Ref. �6�, we apply the second
quantization formalism to obtain the effective mass and the
equivalent charge of photons in a relativistic plasma with
temperature. In order to include thermal effects, the mag-
netofluid unification field formalism proposed in Ref. �7� is
used. In this formalism, the electromagnetic field and a
charged fluid are unified in a single field, which has its own
equation of motion. Thus, the plasma can be described by
only one field variable, which is specially suitable for a sec-
ond quantization approach since it considers the relativistic
thermal fluid and the electromagnetic fields in the same foot-
ing. This fluid theory is fully relativistic, both for the plasma
bulk and thermal motion.

Following Ref. �7�, we start with the set of equations that
describe the high frequency behavior of a thermal relativistic
plasma. The electromagnetic field dynamics is described by
Maxwell equations

F,�
�� = − 4�J�, �1�

where F��=��A�−��A� are the components of the electro-
magnetic tensor, A�→ �� ,A� is the four-vector potential,
� is the scalar potential, and A is the vector potential. If
� labels particle species �electrons and ions�, the total
four-current is J�=��J���

� , where J���
� =q���n���U���

� , n is
the electron density in the rest frame, U���

� → ����� ,U����
= ����� ,����v���� is the four velocity of the fluid, v��� is
the velocity, and ����= �1− �v����2�−1/2. �In this paper, we
have taken the speed of light c=1, and Boltzmann constant
kB=1.� Besides, Eq. �1� gives the continuity equation for
each species

��J���
� = 0. �2�

Dropping the species index, the equation of motion for elec-
trons �q=−e� with mass m is

��T�� = F��J�, �3�

where the energy-momentum tensor for a relativistic fluid is
given by �8�

T�� = p	�� + hU�U�. �4�

Here p is the electron scalar pressure, 	��→diag�−1,
1 ,1 ,1� is the signature, and h is the enthalpy density. For a
noninteracting relativistic electron gas, h=mnf�T�, where f is
a function depending only on the temperature T, namely �7�

f�T� =

K3�m

T
�

K2�m

T
� . �5�

Here, K3 and K2 are the modified Bessel functions of order 3
and 2, respectively. A derivation of this enthalpy can be
found in the Appendix.

It was noticed in Ref. �7� that it is possible to rewrite Eq.
�3� for the motion of electrons as*fasenjo@levlan.ciencias.uchile.cl
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U�M�� = 0, �6�

where M�� is a new tensor that couples the electromagnetic
field A� and the fluid field U� in the form M��=F��

+ �m /q�����fU��−���fU���. Thus, Eq. �6� describes a nonde-
generate charged thermal relativistic plasma, where all ther-
mal information is contained in the function f�T�.

The spacelike components of Eq. �6� for electrons can be
written as

� �

�t
+ v · ���f�v� =

q

m
�E + v 
 B� −

1

mn�
� p , �7�

where E=−��−�tA is the electric field and B=�
A is the
magnetic field. It is possible to show that Eq. �7� is equiva-
lent to the well-known relativistic fluid equation of charged
particles �9�. Furthermore, in the homentropic regime and in
the low-temperature nonrelativistic limit, Eq. �6� reduces to
the standard nonrelativistic charged fluid equation �7�.

I. EFFECTIVE RELATIVISTIC PHOTON MASS

We now show that when the second quantization formal-
ism is used to quantize the electromagnetic field in a plasma
under the previous scheme, it is possible to associate a mas-
sive vector field to the photon field.

First, we will linearize the equation of motion for the
electromagnetic and charged fluid fields with respect to an
equilibrium state consisting of a plasma moving with a con-
stant longitudinal velocity v0=v0ẑ and null electromagnetic
fields. The ions will be a fixed background. For the sake of
simplicity, we will assume that every perturbed quantity has
a space and time dependence given by exp�ikz− i�t�. In this
case, the perturbed scalar electrostatic potential � is longitu-
dinal, i.e., its gradient has only components in the longitudi-
nal direction ẑ. We can write the density as n=n0+n1, where
n0 is the equilibrium electron density in the rest frame �same
for ions�, and n1 is a first order electron density perturbation.

In the Lorentz gauge, Eq. �1� yields the wave equation

����A� = 4�J�. �8�

The linearization of this equation and Eq. �7� yields the lon-
gitudinal �electrostatic� and the transverse �electromagnetic�
modes.

First, we focus on the longitudinal modes. For these
modes, the velocity of the electrons is v=v0+v1, where v1
=v1ẑ is the longitudinal velocity perturbation in response to
the potential �. The relativistic factor will be �=�0+�1,
where �0= �1−v0

2�−1/2 is constant, and �1=�0
3v0v1 is the first

order perturbation.
In this case, Eq. �8� can be written for the scalar potential

� as

����� = 4�qnL, �9�

where nL=�0n1+�1n0 is the electron density perturbation in
the laboratory frame.

The continuity equation �2�, at first order in the perturba-
tion quantities, is

�nL

�t
+ � · ��0n0v1 + nLv0� = 0, �10�

whereas the first order longitudinal perturbation for Eq. �7�
yields

� �

�t
+ v0

�

�z
���0v1 + �1v0�

=
qE1

mf
−

1

mn0�0f
� p −

1

f
� � f

�t
+ v0

� f

�z
���1v0 + �0v1�

−
v1

f

� f

�z
�0v0. �11�

E1 is the electric field at first order perturbation produced by
the longitudinal perturbed quantities. The pressure p, accord-
ing to Eq. �A7�, is p= �n0+n1�T �10�, so that the pressure
fluctuations can be written as �p= �p

�n1
�n1=mve

2�n1, where
ve=	T /m is the electron thermal velocity.

Deriving Eq. �10�, and using Eq. �11� we have

1

n0
� �

�t
+ v0

�

�z
�2

nL + � · �qE1

mf
−

ve
2

n0�0
2f

� nL +
ve

2

f�0
2 � �1�

− � �

�t
+ v0

�

�z
�v0

��1

�z
−

�

�z

�0v0v1

f
�1 + �0

2�
� f

�z
�

−
�

�z

1

f

� f

�t
��0v1 + �1v0�� = 0. �12�

Now, we will focus on a constant temperature plasma, where
the f function does not depend on time nor space. Thus, all
first order perturbations are due to the electromagnetic fields.
We also assume that plasma oscillations are isothermal.

In the Lorenz gauge � ·E1=�����=4�qnL. Using this
and solving Eq. �10� for v1 to find �1, it is possible to show
that Eq. �12� yields the wave equation for electrostatic modes


� �

�t
+ v0

�

�z
�2

−
ve

2

f�0
4

�2

�z2��

= −
�p

2

f�0
2� +

v0ve
2

f�0
2

�

�z
� �

�t
+ v0

�

�z
�� , �13�

where �p=	4�e2n0 /m is the background electron plasma
frequency.

Now, we turn our analysis to transverse modes. Here, the
velocity is v=v0+v�, where v� is a transverse velocity per-
turbation such that v� ·v0=0. Then, the relativistic factor is
the constant �0 to first order. The corresponding Eq. �8� for
the transverse part of the vector potential A� is

����A� = 4�qn0U�, �14�

where U�=�0v�. Furthermore, the transverse part of the
equation of motion �7� can be written

d

dt
�fU�� = −

q

m

d

dt
�A�� . �15�

Hence, we have
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fU� = −
q

m
A�, �16�

and then, using Eq. �16� in Eq. �14�, we obtain the wave
equation for transverse modes

� �2

�t2 − �2�A� = −
�p

2

f
A�. �17�

Now that we have wave equations for � �Eq. �13�� and A�

�Eq. �17��, we can use covariant second quantization for the
electromagnetic field through the Gupta-Bleuler formalism
in the Lorentz gauge �11�. The A� potential can be expanded
as a Fourier decomposition of creation and annihilation op-
erators as follows:

A��z,t� = A�+�z,t� + A�−�z,t� , �18�

where

A�+�z,t� = �
k

�
r=0

3 	 �

2�
r

��k�ar�k�e−i�kz−�t�, �19�

and

A�−�z,t� = �
k

�
r=0

3 	 �

2�
r

��k�ar
†�k�ei�kz−�t�, �20�

where k is the wave number, ��k��� is the frequency, and �
is the reduced Planck constant. In covariant quantization,
there exist, for each k, four linearly independent polarization
states for the four-vector A� which are represented in our
case by the polarization vectors 0

��k�→ �1,0 ,0 ,0�, 1
��k�

→ �0,1 ,0 ,0�, 2
��k�→ �0,0 ,1 ,0�, and 3

��k�→ �0,0 ,0 ,1�.
Thus, in Eqs. �19� and �20�, r labels photon polarizations: r
=1,2 for transverse photons, and r=3 for longitudinal pho-
tons �r=0 is called scalar polarization� �11�. Besides, note
that due to the Lorentz gauge, A0 and A3 are not linearly
independent. On the other hand, the operators of creation and
annihilation satisfy the commutator relations �ar�k� ,ap

†�k���
=�r�rp�k,k�, where �r=1 for r=1,2 ,3 and �0=−1. Other com-
mutators vanish.

Considering expansion �18� in Eq. �17� we can write the
dispersion relation for transverse photons as

�r
2 = k2 +

�p
2

f
, �21�

with r=1,2. In the same token, expansion �18� in Eq. �13�
gives the dispersion relation for longitudinal photons, or
plasmons, as �with subindex 3�

��3 − v0k�2 −
ve

2

f�0
4k2 =

�p
2

f�0
2 −

v0ve
2

f�0
2 k��3 − v0k� . �22�

Equation �21� is equivalent to the dispersion relation of a
relativistic free massive scalar field satisfying a quantized
Klein-Gordon equation �11�. In analogy with this theory, we
can define an effective mass for transverse photons as

M1,2�T� =
��p

	f�T�
. �23�

On the other hand, Eq. �22� represents the dispersion relation
for a quantized Klein-Gordon field where the operators are
rotated in �-k space. The effective mass for longitudinal
photons is given by

M3�T� =
��p

c3
2�0

	f�T�
, �24�

where the velocity c3 is defined as the phase velocity when k
is large, i.e., c3=limk→� �3 /k. Then,

c3 = v0 +
ve

2f�0
2 �	v0

2ve
2 + 4f − v0ve� . �25�

Let us note that the methodology we use to compute the
phase velocity c3 is also consistent with the transverse phase
velocities used in Eq. �21� since in this case limk→� �1,2 /k
=1, as it should be.

The effective photon mass found for transverse and lon-
gitudinal modes is fully relativistic, and it arises as a re-
sponse to the interaction of the electromagnetic wave modes
and the collective behavior of the thermal plasma. Its depen-
dence on temperature is through the f�T� function given by
Eq. �5�, and the thermal velocity ve. These masses can be
thought of as the oscillations of the quantized electromag-
netic wave equations.

Let us examine the temperature dependence of the effec-
tive mass. For low temperatures f�T�m�1+5T / �2m�, and
hence, the effective transverse photon mass is

M1,2�T � m� = ��p�1 −
5T

4m
� , �26�

whereas the effective longitudinal photon mass is

M3�T � m� =
��p

�0

�1 −
5T

4m
�

�v0 +
ve

�0
2

1 −

5T

4m
+

v0
2T

8m
−

v0ve

2
��2

.

�27�

In the non-relativistic limit �v0→0,�0→1� and low tem-
perature regime �T→0�, the effective mass for transverse
photons is M1,2=��p, and the effective mass for plasmons
becomes M3=m��p /T, in agreement with Ref. �6�. On the
other hand, in the high temperature limit, f�T�m�4T /m,
the effective transverse photon mass is

M1,2�T � m� =
��p

2
	m

T
, �28�

and the effective longitudinal photon mass is
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M3�T � m� =
��p

	m/T

2�0�v0 + �	v0
2 + 16 − v0�/�8�0

2��2
. �29�

Figure 1 shows the temperature dependence of the relativis-
tic photon mass for transverse photon modes �Eq. �23�� �full
line� and for longitudinal photon modes �Eq. �24�� �dashed
lines� as a function of m /T. Notice how the mass of the
longitudinal photons decreases when the relativistic factor
increases.

Eventually, this approximation will break down, though.
For an ultrarelativistic plasma, where electrons and photons
are in thermodynamical equilibrium, n�T3 �12�, affecting
the plasma frequency. This leads to an increasing photon
mass at very large temperatures, M ��p /	T�	n /T�T, in
agreement with previous results �13,14�.

II. EQUIVALENT RELATIVISTIC PHOTON CHARGE

We can also associate an equivalent charge to the photon
through the second quantization formalism, as shown for a
nonrelativistic cold plasma in Ref. �6�. Let us first notice that
a transverse electromagnetic field will induce a nonlinear
relativistic ponderomotive force �15�. In the context of a sec-
ond quantization approach, the ponderomotive force can be
reinterpreted as due to a charged photon repelling the elec-
trons. Thus, when nonlinear density perturbations are consid-
ered, the photon acquires an effective negative charge.

On the same initial equilibrium as in Sec. I, we introduce
for the purpose of illustration a nonlinear, second order, den-
sity perturbation n2, and a corresponding second order veloc-
ity perturbation v2 so that n=n0+n1+n2 and v=v0+v1+v2.
Here v0=v0ẑ is the constant longitudinal bulk velocity, v1 is
the transverse velocity perturbation �v0 ·v1=0�, and v2=v2ẑ
is a longitudinal velocity perturbation. In this way, the rela-
tivistic factor is �=�0+�2, where the second order correction
to the relativistic factor is

�2 = �0
3�v0v2 +

v1
2

2
� , �30�

with v1= �v1�.
The electric field can be written as E=E1+E2, where E1

is the first order electric field, and E2 is the second order
nonlinear field �4� ��E1�� �E2��. We make the same assump-
tions on temperature as before, namely, f is constant in time
and space. We then seek solutions of the dynamical variables
with only z and t dependence.

Now, at second order, the continuity equation �2� yields
the equation for n2

�n2
L

�t
+ � · ��0n0v2 + n2

Lv0� = 0, �31�

where n2
L=�0n2+�2n0 is the second-order density perturba-

tion in the laboratory frame. To first order, Eq. �7� yields

� �

�t
+ v0

�

�z
��f�0v1� =

q

m
�E1 + v0 
 B1� , �32�

as there is no background magnetic field. An expression
similar to Eq. �16� can also be obtained,

f�0v1 = −
q

m
A�. �33�

Similarly, given that the term v0
B2 does not have longitu-
dinal components, the relevant second order equation of mo-
tion can be written as

� �

�t
+ v0

�

�z
���0v2 + �2v0� =

q

mf
�E2 + v1 
 B1� . �34�

Just as before, we restrict ourselves to isothermal systems
. In the above equation we do not consider nonlinear pertur-
bations in the pressure because we are only focusing on
the ponderomotive force due to the electromagnetic fields.
Thus, we neglect the second order pressure terms
ve

2n1�n1 / ��0n0
2�+ve

2��2 /�0
2−ve

2�n2
L / �n0�0

2�. This allows us
to obtain a result that can be compared with a previous de-
scription of photon charge �6� in the cold nonrelativistic
limit.

Using Eq. �33�, Eq. �34� can be rewritten as

� �

�t
+ v0

�

�z
���0v2 + �2v0� =

q

mf
E2 −

q2

2m2f2�0
� �A��2.

�35�

Combining Eqs. �31� and �35�, and using � ·E2=4�qn2
L, we

have

� �

�t
+ v0

�

�z
�2

n2
L +

�p
2

f
n2

L

=
n0q2

2m2f2�0

�2

�z2 �A��2 + n0v0
�

�z
� �

�t
+ v0

�

�z
��2. �36�

Solving Eq. �35� for �0v2, and then calculating �2 from Eq.
�30�, we obtain an evolution equation for the density pertur-
bation n2

L as a response to the relativistic ponderomotive
force �15�, namely,

2 4 6 8 10

m
�������
T

1

2

3

4

5

Mr �T�
��������������������
�Ωp

FIG. 1. Temperature dependence of the photon mass �23� and
�24�, with respect to m /T. The full line represents the mass of
transverse photons �r=1,2�. The other dashed lines correspond to
the mass of longitudinal photons �r=3�. The large-dashed line is for
�=1.8, the dot-dashed line is for �=1.2, and the dashed line is for
�=1.01.
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� �

�t
+ v0

�

�z
�2

n2
L +

�p
2

f�0
2n2

L

=
n0q2

2m2f2�0

�2

�z2 �A��2 +
n0v0q2

2m2f2�0

�

�t

�

�z
�A��2. �37�

The nonlinear perturbation n2
L is dominated by the pondero-

motive force effect, which pushes the electrons away from
the transverse field. We now consider a transverse wave
packet which moves with no significant deformation through
the plasma with group velocity vr, in which case �z�A��2
�1 /vr��t�A��2 �6�. Here, vr=��r /�k,where �r is the fre-
quency of the transverse electromagnetic wave �r=1,2� as
given by Eq. �21�. Then, Eq. �37� becomes

� �

�t
+ v0

�

�z
�2

n2
L +

�p
2

f�0
2n2

L =
�p

2�1 + v0vr�
8�mvr

2f2�0

�2

�t2 �A��2. �38�

We now assume that the perturbed quantities have the space
and time dependence eikz−i�t as in Sec. I. Thus, we obtain the
approximate expression

n2
L =

�p
2

8�mvr
2f2�0

�1 + v0vr�� �2

��2 − �p
2/�f�0

2���A��2,

�39�

where ��=�−v0k.
In the Gupta-Bleuler theory, the transverse photons are

the only degrees of freedom involved in the radiation field.
Thus, the longitudinal and scalar photons are not observed
as free particles �11�. We can calculate the total photon
charge associated to the transverse electromagnetic field as
Q�=−en2

L. First, we note that we need to replace �A��2
→A�

�+�z , t�A�
�−�z , t�, where A�

� �z , t� represents the transverse
part of the photon field of Eq. �18� �r=1,2�. In this sense, for
a quantum state ���, the mean value of the total photon
charge Q�=−e���n2

L���=−e�n2
L� can be written as

Q� = �
r=1,2

� − e��p
2�1 + v0vr��r�ar

†�k�ar�k��
16�mvr

2f2�0��r�
2 − �p

2/�f�0
2��

dk

�2��3 .

�40�

Defining the photon occupation number nr�k�= �ar
†�k�ar�k��

for r=1,2, the total charge is

Q� = �
r=1,2

� qr�k,T�nr�k�
dk

�2��3 , �41�

where it follows that we can associate to each transverse
photon in the plasma a relativistic effective photon charge

qr�k,T� =
− e��p

2�r�1 + v0vr�
16�mvr

2f2�0��r�
2 − �p

2/�f�0
2��

=
− e��p

2�k2 + �p
2/f��	k2 + �p

2/f + kv0�

16�mk2f2�0��	k2 + �p
2/f − kv0�2 − �p

2/�f�0
2��

.

�42�

Notice that this effective charge is negative. Then, photons
push electrons away from the space occupied by the electro-

magnetic wave packet. The nonlinear repulsion force effect
produced by this equivalent charge corresponds to the radia-
tion pressure of the transverse electromagnetic fields due to
the relativistic ponderomotive force �15�.

In the cold, nonrelativistic limit regime v0=0 and T=0.
Besides, we focus only on a time scale faster than the elec-
tron plasma oscillation time scale ���p. Since �0�1 and
f �1 for any temperature, we have ���p / �	f�0�. Then the
density plasma oscillation term in the first line of Eq. �42�
can be neglected. Thus, the equivalent photon charge be-
comes qr�k ,0�=−e��p

2 / �16�mvr
2�r�k��, recovering the result

obtained in Ref. �6�.
On the other hand, if T�m then f�T�4T /m. Hence, the

photon charge is

qr�k,T � m� =
− e�m�p

2�k2 + m�p
2/�4T��

256�k2T2�0



�	k2 + m�p

2/�4T� + kv0�

�	k2 + m�p
2/�4T� − kv0�2 − m�p

2/�4T�0
2�

,

�43�

which vanishes when the temperature increases.
As discussed in Sec. I, for an ultrarelativistic plasma,

where electrons and photons are in thermodynamical equilib-
rium, n�T3, and the temperature dependence of the density
must be considered in Eq. �43�. However, as long as our
isothermal approximation is valid, density and temperature
will be decoupled. In any case, we see that the photon charge
vanishes for any temperature in the limit 1 /�0→0.

In Fig. 2, we plot the dependence with temperature T and
wave number k of the relativistic photon charge �42� in the
regime ���p / �	f�0�, where k /�p�1. The relativistic fac-
tor is �0=2.5.

In order to roughly estimate how relevant are these rela-
tivistic calculations in actual physical scenarios, we take the
case of an intense laser propagating through a plasma. Tak-
ing, for instance, a plasma, at rest, with a number density
n0�1020 cm−3 �16�, at a temperature kBT�100 eV �17�,
then the effective relativistic photon mass for transverse pho-

4 6 8 10
k
����������
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FIG. 2. �Color online� Dependence of the photon charge �42�
using q��16�mqr�k ,T� / �−e��p� with respect to m /T and k /�p. A
Lorentz factor �0=2.5 was chosen.
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tons is M1,2�7
10−7me, and for longitudinal photons is
M3�4
10−3me, where me is the electron mass. Notice that
these results essentially correspond to the nonrelativistic one
�since f �1� �6�. The effective mass for transverse photons,
in fact, is not very sensitive to relativistic effects. For f
=1.2 �corresponding to kBT�40 KeV�, M1,2 is of the same
order of magnitude. For longitudinal photons, instead, M3
�10−5me. Much larger effective masses should be obtained
for temperatures such that electrons and photons are in ther-
mal equilibrium, in which case the effective mass will in-
crease linearly with temperature as mentioned at the end of
Sec. I. We propose to pursuit this idea elsewhere.

Regarding the equivalent photon charge, for a photon fre-
quency �r�10�p �6�, and f �1.2, and all other parameters
as in the previous paragraph, then the photon charge is qr
�−10−9e, again about the same order of magnitude as the
nonrelativistic result �6�. This charge can be much larger for
frequencies near the effective plasma frequency, where the
group velocity is small �see Eq. �42��. For instance, for the
same parameters as above, but for �r=1.001�p /	f , then the
group velocity is vr�4
10−2c, and the equivalent photon
charge is qr�3
10−3e.

III. SUMMARY

We have calculated, by applying second covariant quanti-
zation of the electromagnetic field to relativistic thermal
plasmas, a relativistic effective mass for transverse and lon-
gitudinal photons, and a relativistic equivalent charge for
transverse photons. Thermal effects are introduced by means
of the magnetofluid unification approach proposed in Ref.
�7�, which unifies the electromagnetic field and the charged
thermal fluid field of the electrons in a single classical field.
The relativistic photon mass is a linear result derived from
the quantum dispersion relations in analogy with Klein-
Gordon fields, whereas the effect of the relativistic photon
charge on electrons is analogous to the ponderomotive force
due to the transverse electromagnetic field. Both results ob-
tained in this work are the relativistic generalizations to high-
energy plasmas of the photon mass and charge obtained in
Ref. �6�.
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APPENDIX

In this appendix, we derive Eq. �5� for the enthalpy of a
relativistic ideal gas. The Hamiltonian of an ideal gas of N

identical noninteracting and nondegenerate relativistic par-
ticles with mass m, each one with momentum pi, is

H = �
i=1

N

m	1 + � pi

m
�2

. �A1�

The partition function is ZN�T ,V�= �Z1�T ,V��N /N!, where

Z1�T,V� =
4�V

�2���3�
0

�

dpp2 exp�− �m	1 + � p

m
�2� .

�A.2�

Here V is the volume, �=T−1, T is the temperature and � is
the reduced Planck constant.

Setting p=m sinh x and u=m� in Eq. �A2�, we obtain

Z1�T,V� =
4�Vm3

�2���3�
0

�

dx cosh x sinh2 x exp�− u cosh x� ,

�A3�

which can be written in terms of the modified Bessel func-
tion of order n, Kn, as

Z1�T,V� = 4�V� m

2��
�3K2�u�

u
. �A4�

For N�1, the free energy F�T ,V ,N�=−T ln ZN�T ,V� is

F�T,V,N� = − NT�ln
4�V

N
� m

2��
�3K2�u�

u
� + 1� .

�A5�

Using the relation �d /du�Kn�u�=−Kn−1�u�−nKn�u� /u, the
entropy S=−��F /�T� �N,V can be written as

S = N ln
4�V

N
� m

2��
�3K2�u�

u
� + 4N +

Nm

T

K1�u�
K2�u�

.

�A6�

On the other hand, pressure is given by

p = − ��F/�V��T,N = nT , �A.7�

where n=N /V is the density. Using Eq. �A5�, Eq. �A6� and
the recursion relation Kn−1�u�=Kn+1�u�−2nKn�u� /u, the in-
ternal energy U and the enthalpy H of this relativistic system
are

U = F + TS = Nm
K3�u�
K2�u�

− NT , �A8�

and

H = U + pV = Nm
K3�u�
K2�u�

. �A9�

respectively.
Thus the enthalpy density h=H /V can be written as

h=nmf�T�, where the f�T� function is given by Eq. �5�.
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