
Caṕıtulo 1:
Electrostática y Magnetostática

Los primeros experimentos interesantes en electrostática fueron hechos en por Cavendish (∼ 1770) y
Coulomb (∼ 1780), y en el caso magnetostático por Biot y Savart (1820) y Ampere (∼ 1820). Maxwell
puso todo esto en las leyes del electromagnetismo. En un sentido estas leyes definen unas “cantidades
extrañas ” llamadas cargas y corriente que regulan la magnitud de las respectivas fuerzas. En orden a
relacionar estos dos conceptos es necesario tener una teoŕıa microscópica para las part́ıculas elementales,
en particular del electrón como una entidad discreta.

Una descarga electrostática fractal
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1. Electrostática

Cavendish (∼ 1770) y Coulomb (∼ 1780) propusieron que la fuerza en un “paquete” de carga 1 debido a
un “paquete” de carga 2 satisface la fuerza vectorial central

F1,2 ∼
q1q2

| r1 − r2 |3
(r1 − r2)

Esta dependencia fue descubierta por los cuidadosos experimentos de Cavendish (∼ 1770) y Coulomb
(∼ 1780), pero requiere unos comentarios (ver más adelante). En un sentido esto define estas “extrañas
cantidades” denominadas cargas, que pueden tener dos signos (positivo o negativo). En el sistema CGS la
constante de proporcionalidad es k = 1, mientras que en MKS es

k = 9 · 109 kgm3C−2s−2

Como en general estamos interesados en describir distribuciones macroscópicas de cargas, se acostumbra a
definir una función continua, la densidad de carga ρ, para escribir la dependencia espacial de las cargas.
Esta función continua es un promedio espacial de la densidad de carga

ρ ∼ N

V

en una escala intermedia (entro lo microscópico y lo macroscópico) particular, si está escala existe. Esto
asume que hay una escala espacial (y temporal) donde tal promedio es significativo, i.e. donde las desvia-
ciones son pequeñas en todo tiempo.

MacroMicro

Intermedia

Tλ

Figura 1: (a) Escalas espaciales y temporales

Esto permite re-escribir la fuerza entre densidades de carga como

F1,2 ∼
∫
dx3

1

∫
dx3

2

ρ1(x1)ρ2(x2)

| x1 − x2 |3
(x1 − x2)

2. Campo eléctrico y potencial eléctrico

El campo eléctrico está definido como una fuerza por unidad de carga, independiente de la carga de prueba,
que se puede expresar como
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E(x) =

∫
ρ(y)

x− y

| x− y |3
d3y

donde, hemos asumido la idea de superposición.

Aqúı es importante notar que esta definición se aplica al campo eléctrico producido fuera de un paquete de
carga descrito en el continuo por ρ(x), osea no podemos tomar el limite y → x porque la integral diverge
a menos que ρ(y) → 0 también, o que hayan ciertas situaciones de simetŕıa. Notemos que en el limite
discreto esto no es relevante ya que en general estamos interesados en calcular el campo eléctrico lejos de las
cargas puntuales. Esto sera importante cuanto calculemos la enerǵıa de una distribución de carga, donde
la descripción continua tiene ciertas falencias. En el plasma este problema del paso al continuo se resuelve
asumiendo que las fluctuaciones se hacen pequeñas, como veremos después (descripción tipo Vlasov)

Podemos definir fácilmente el potencial escalar

E(x) = −∇x

∫
ρ(y)

| x− y |
d3y = −∇Φ

donde

Φ =

∫
ρ(y)

| x− y |
d3y

Por lo tanto

∇× E = 0

El inverso también es cierto. De hecho, es posible escribir cualquier campo vectorial como una suma de dos
componentes

A = A1 + A2 →

[
∇ ·A = ∇ ·A1

∇×A = ∇×A2

Entonces, qué es ∇ · E? Hay muchas formas de proceder, pero tomaremos una ruta simple. Tomemos una
carga q y una unidad de superficie dS como en la figura 2.

Q

dS

n E

δΩ

Figura 2: Superficie orientada infinitesimal.
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El campo eléctrico satisface

E · ndS = q
cos θ

r2
dS = qdΩ

independiente de la forma de la superficie S. Si integramos sobre la superficie, tenemos∮
S

E · n dS = 4π

∫
V

ρ d3x

para la carga contenida. Este resultado puede ser usado para calcular campos eléctricos para casos altamente
simétricos. Usando el teorema de calculo vectorial obtenemos∫

V

(∇ · E− 4πρ) d3x = 0

y por lo tanto obtenemos las ecuaciones de Maxwell para la electrostática,

∇ · E = 4πρ

∇× E = 0

Dado que ∇× E = 0 existe un potencial E = −∇Ψ, que satisface

∇2Ψ = −4πρ

que es la ecuación de Poisson. Esta ecuación es usada para resolver casos más generales, ya sea utilizando
el campo eléctrico o la forma potencial escalar. Representa un problema con condiciones de borde para el
potencial o campo eléctrico, definido en una superficie.

Notemos que es claro que si ponemos una carga unitaria en una posición con condiciones de borde naturales
en infinito, obtenemos (mirar el apéndice B)

∇2 1

| x− y |
= −4πδ(3)(x− y)

este es un ejemplo espećıfico de una función de Green como veremos más adelante. Con este resultado, el
cual es derivado en el apéndice, podemos calcular directamente

∇ · E = −∇2
x

∫ ρ(y)

| x− y |
d3y

= −
∫
dy3 ρ(y) ∇2

x

1

| x− y |

= 4π
∫
dy3 ρ(y) δ(3)(x− y)

= 4πρ(x)
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3. Comentarios sobre la ley de la fuerza

En un sentido la ley de fuerza define esta “cantidad extraña” denominada carga, que puede tener dos signos.
En el sistema CGS la constante de proporcionalidad es k = 1, mientras en MKS es k = 9 · 109.

3.1. Variación para una ley de fuerza cuadrática

Notemos que gracias a la exactitud de los instrumentos originales, fue postulado que la fuerza puede ser
escrita también en su forma generalizada

E ∼ 1

r2+2ε

Con esta forma, podemos calcular el campo eléctrico, o la fuerza que sentiŕıa una carga, dentro de una
esfera como

∫ π

0

sin θ

(1 + z2 + 2z cos θ)(1+ε)/2
=

(1− 2z + z2)

1

2
−
ε

2


z(−1 + ε)

− (1 + 2z + z2)

1

2
−
ε

2


z(−1 + ε)

lo cual implica que E(ε = 0) = 0 dentro de la esfera, y da una forma de encontrar |ε| < 10−16 en forma
experimental.

3.2. Masa del fotón

En mecánica cuántica una fuerza que usa una part́ıcula virtual para actuar a una distancia satisface una
ecuación de potencial escalar, la ecuación de Yukawa, dada por

∇2Ψ−
[mγc

h̄

]2

Ψ =
4π

c
ρ

µ =
mγc

h̄
→ Ψ ∼ e−µr

r

Esta ecuación aparece en muchos contextos, desde mecánica cuántica, f́ısica de plasmas, astrof́ısica, etc.
Nos dice que si la masa del fotón tiende a cero, recuperaremos nuestro potencial 1/r. Se encuentra que la
masa del fotón, usando medidas satelitales, es a lo menos mγ < 10−48gm.

4. Condiciones de Borde

Hasta ahora hemos discutido la situación de un volumen infinito, y para ese caso podemos utilizar la integral
sobre la densidad de carga dada anteriormente. En muchos casos estamos interesados en situaciones en un
espacio restringidos y con condiciones de borde. Por ejemplo con conductores en los bordes se inducen
cargas en las superficies las cuales en principio no las conocemos. En este caso es mucho más fácil tratar de
resolver la ecuación de Poisson como un problema con condiciones de borde
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∇2Ψ = −4πρ

directamente.

Hay dos tipos de condiciones de borde que aparecerán naturalmente en la construcción de la solución general
de la ecuación de Poisson, estas son las cargas de la superficie, y las capas del dipolo. Ellos corresponden a
diferentes condiciones de borde.

Tomemos la ecuación de Poisson cerca de un borde y tratemos de deducir la carga inducida σ en la superficie.
Usando la ecuación de Poisson

∇ · E = −∇2Ψ = 4πρ

y una caja infinitesimal de tapa y fondo dS, y lado dl → 0 (ver Fig. 3). Usando el teorema de Gauss para
la integral de volumen obtenemos∮

Ω
∇ · E · dx3 = 4π

∫
Ω
ρ d3x∮

δΩ
E · n dS = 4π

∫
Ω
ρ d3x

(E2 − E1) · n dS ≈ dS ĺımdh→0

∫
ρdh

con lo cual obtenemos una condición de borde para los campos

(E2 − E1) · n = 4πσ

en el limite dh→ 0, con

σ = ĺım
dh→0

∫
ρdh

Por lo tanto, la carga de la superficie genera una discontinuidad en el campo eléctrico normal debido a una
carga de la superficie. Si asumimos un borde conductor (las cargas son libres de moverse en respuesta a un
campo eléctrico), podemos obtener la carga superficial desde el potencial en la superficie

σ =
−∇Ψ · n

4π
Debemos tener cuidado en definir el normal n. El problema de condiciones con conductores, por ejemplo,
es que en general no conocemos σ de antemano, y debe encontrase a partir de la solución completa.

Para el caso de campo tangencial, tomemos un rectángulo perpendicular, como se muestra en la Fig. 3b.
Integrando sobre esta superficie que atraviesa la interfase tenemos∮

(∇× E) · n dS = 0∮
E · d` = 0

(E2 − E1)× nd` ≈ 0
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n

E2

E1

dS dh

E2

E1

dh

dl

Figura 3: Condición de borde en la superficie.

con lo cual obtenemos la segunda condición de borde

(E2 − E1)× n = 0

En muchas situaciones esta condición de borde es equivalente a que el potencial eléctrico es continuo en
interfases, aunque esto no es correcto en todas las situaciones.
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5. Ecuación de Laplace y funciones ortogonales

Estamos interesados en resolver la ecuación de Laplace

∇2Ψ(x) = 0 x ∈ Ω

sujeta a la condición de borde

Ψ(x)|δΩ
Este problema generalmente se resuelve utilizando una base ortonormal

f(x) =
∑
i

aiΨi(x)∫
Ω

Ψ∗iΨj dx = δi,j∑
i,j

Ψi(x)∗Ψj(y) = δ(3)(x− y)

En el ĺımite infinito las sumatorias convergen a integrales. Tal base ortonormal es muy útil si las bases de
funciones son también soluciones normales de la ecuación de interés. Luego, la expansión es una expansión
natural, pero esto no es requerido.

La forma natural de construir bases ortonormales es utilizando una separación de variables.

5.1. Bases rectangulares

En una base rectangular los operadores diferenciales para un campo escalar Ψ son

∇2Ψ =
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2

∇Ψ =
∂Ψ

∂x
x̂+

∂Ψ

∂y
ŷ +

∂Ψ

∂z
ẑ

Para un campo vectorial A la divergencia es

∇ ·A =
∂Ψ

∂x
+
∂Ψ

∂y
+
∂Ψ

∂z
,

el rotor es

∇×A =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣∣
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y el Laplaciano es

∇2A|x = ∇2Ax

∇2A|y = ∇2Ay

∇2A|z = ∇2Az

La ecuación de Laplace se puede resolver por separación de variables.

∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2
= 0 → Ψ ∼ U1(x)U2(y)U3(z)

para lo cual obtenemos

d2U1

dx2
= −a2U1 → U1 = Aae

iax +Bae
−iax

d2U2

dy2
= −b2U2 → U2 = Abe

iby +Bbe
−iby

d2U3

dz2
= −c2U3 → U3 = Ace

icz +Bce
−icz

con la restricción

c2 + a2 + b2 = 0

Por lo tanto tenemos una sumatoria en a y b (con c restringido por la relación c2 + a2 + b2 = 0). En generar
la restricción en a y b dependen de las condiciones de borde de interés.

Aparte de las soluciones exponenciales podemos utilizar soluciones oscilatorias en el intervalo [0, L] (esto
implica condiciones de borde periódicas en x = L y x = 0. Las condiciones de ortonormalidad son

f(x) =
1

2
Ao +

∞∑
m=1

(
Am sin

(πmx
L

)
+Bm cos

(πmx
L

))
con ∫ L

0

sin
(πmx

L

)
sin
(πnx
L

)
dx =

∫ L

0

cos
(πmx

L

)
cos
(πnx
L

)
dx =

L

2
δn,m

y ∫ L

0

sin

(
2πmx

L

)
cos

(
2πnx

L

)
dx = 0

En el ĺımite infinito L→∞ (aqúı es mejor mover el intervalo a L/2 ≤ x ≤ L/2 y después tomar el ĺımite),
con
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2πm

L
→ k

tenemos

f(x) =
1√
2π

∫∞
−∞A(k)eikx dx ↔ A(k) =

1√
2π

∫∞
−∞ f(x)eikx dx

1√
2π

∫∞
−∞ e

i(k−k′)x dx = δ(k − k′) ↔ 1√
2π

∫∞
−∞ e

ik(x−x′) dk = δ(x− x′)

Problema: Calcule el potencial dentro de
una caja cubica de tamaño L, que tiene to-
das sus caras a potencial 0, excepto la cara
de arriba que esta a potencial V y la de abajo
a potencial -V.

φ =0

φ

φ =−V

=+V

5.2. Bases polares

En base polares tenemos

∇2Ψ =
1

ρ

∂

∂ρ

(
ρ
∂Ψ

∂ρ

)
+

1

ρ2

∂2Ψ

∂φ2

∇Ψ =
1

ρ

∂Ψ

∂ρ
ρ̂+

1

ρ

∂Ψ

∂φ
φ̂

La ecuación de Laplace se puede resolver por separación de variables. Estos son problemas en los cuales la
solución o las fuentes no dependen en una de las variables, e.g z

1

ρ

∂

∂ρ

(
ρ
∂Ψ

∂ρ

)
+

1

ρ2

∂2Ψ

∂φ2
= 0 → Ψ ∼ U1(ρ)U2(φ)

Para el caso m 6= 0 tenemos

ρ
d

dρ

(
ρ
dU1

dρ

)
= m2U1 → U1 = Amρ

m +Bmρ
−m

d2U2

dφ2
= −m2U2 → U2 = Cm cosmφ+Dm sinmφ

y para el caso m = 0 tenemos
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ρ
d

dρ

(
ρ
dU1

dρ

)
= 0 → U1 = A0 +B0 ln ρ

d2U2

dφ2
= 0 → U2 = C0 +D0φ

La sumatoria es para todos lo m reales, pero generalmente la restricción en m depende en las condiciones
de borde de interés. Por ejemplo, m es entero si el problema incluye φ ∈ [0, 2π].

Problema: Calcule el potencial dentro de un
cilindro infinito que tiene un potencial Ψ =
V cosφ sobre su superficie.

ψ

5.3. Bases esféricas

En una base rectangular los operadores diferenciales para un campo escalar Ψ son

∇2Ψ =
1

r

∂2(rΨ)

∂r2
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂φ2

∇Ψ =
∂Ψ

∂r
r̂ +

1

r

∂Ψ

∂θ
θ̂ +

1

r sin θ

∂Ψ

∂φ
φ̂

Notemos que también tenemos

1

r

∂2(rΨ)

∂r2
=

1

r2

∂

∂r

[
r2∂Ψ

∂r

]
Para un campo vectorial A la divergencia es

∇ ·A =
1

r2 sin θ

[
sin θ

∂

∂r

(
r2Ar

)
+ r

∂

∂θ
(sin θAθ) + r

∂Aφ
∂φ

]
,

el rotor es

∇×A =
1

r2 sin θ

∣∣∣∣∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂

∂r

∂

∂θ

∂

∂φ

Ar rAθ r sin θAφ

∣∣∣∣∣∣∣∣∣∣
y el Laplaciano es
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∇2A|r = ∇2Ar −
2

r2
Ar +

[
− 2

r2

∂

∂θ
− 2

r2

cos θ

sin θ

]
Aθ +

[
− 2

r2 sin θ

∂

∂φ

]
Aφ

∇2A|θ = ∇2Aθ −
1

r2 sin θ
Aθ +

2

r2

∂Ar
∂θ
− 2 cos θ

r2 sin2 θ

∂Aφ
∂φ

∇2A|φ = ∇2Aφ −
1

r2 sin2 θ
Aφ +

2

r2 sin θ

∂Ar
∂φ
− 2 cos θ

r2 sin2 θ

∂Aθ
∂φ

La ecuación de Laplace se puede resolver por separación de variables.

1

r

∂2(rΨ)

∂r2
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂φ2
= 0 → Ψ ∼ U1(r)

r
U2(θ)U3(φ)

con

d2U1

dr2
− l(l + 1)

r2
U1 = 0 → U1 = A`r

`+1 +B`r
−`

1

sin θ

d

dθ

(
sin θ

dU2

dθ

)
+

[
`(`+ 1)− m2

sin2 θ

]
U2 = 0 → U2 = Cm

` P
m
` (cos θ) +Dm

` Q
m
` (cos θ)

d2U3

dφ2
+m2U3 = 0 → U3 = e±imφ

donde Pm
` (x) y Qm

` (x) son las funciones de Legendre asociadas.

5.3.1. Funciones de Legendre

La ecuación de Legendre regular, usando x = cos θ, es

d

dx

[
(1− x2)

dP`
dx

]
+ `(`+ 1)P` = (1− x2)

d2P`
dx2
− 2x

dP`
dx

+ `(`+ 1)P` = 0 .

Si hacemos una expansión en series

f(x) =
∞∑
n=0

anx
n+k

obtenemos

∞∑
n=0

(k + n)(k + n− 1)anx
k+n−2 +

∞∑
n=0

[`(`+ 1)− 2(k + n)− (k + n)(k + n− 1)]anx
k+n = 0

por lo que la ecuación indicial es

k(k − 1) = 0 ,
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que tiene solución k = 0 y k = 1. Con k = 0, a0 = 1 y a1 = 0 tenemos

an+2 = −`+ n+ 1)(`− n)

(n+ 1)(n+ 2)
an

la cual no converge para x = ±1, por lo tanto exigimos que ` sea un entero par y truncamos la serie
generando el polinomio p`(x). Con k = 1, a0 = 1 y a1 = 0 tenemos

an+2 = −`+ n+ 2)(`− n− 1)

(n+ 2)(n+ 3)
an

la cual no converge para x = ±1, por lo tanto exigimos que ` sea un entero impar y truncamos la serie
generando el polinomio q`(x). Estas dos soluciones producen P`(x) para valores pares e impares. Para el
caso de p`(x) con ` impar y q`(x) con ` construimos la segunda solución de Legendre Q`(x). En este caso
no podemos truncar la serie, con lo cual diverge para x = ±1.
La función de Legendre P`(x) se puede escribir como

P`(x) =
1

2``!

d`

dx`
(x2 − 1)` ,

la cual satisface la relación de ortogonalidad∫ 1

−1

P¯̀(x)P`(x) dx =
2

2`+ 1
δ¯̀,`.

Los primeros polinomios de Legendre son

P0 = 1
P1 = x

P2 =
1

2
(3x2 − 1)

Además tenemos la relación

(2`+ 1)P`(x) =
dP`+1(x)

dx
− dP`−1(x)

dx

5.3.2. Funciones de Legendre asociadas

La ecuación asociada de Legendre

(1− x2)
d2P`
dx2
− 2x

dP`
dx

+

[
`(`+ 1)− m2

1− x2

]
P` = 0.

Es fácil darse cuenta que

Pm
` (x) = (1− x2)m/2

dm

dxm
P`(x) =

1

2``!
(1− x2)m/2

dm+`

dxm+`
(x2 − 1)` ,

15



satisface la ecuación asociada de Legendre, y por lo tanto corresponden a las soluciones regulares. Estas
soluciones satisfacen la relación de ortogonalidad∫ 1

−1

Pm
¯̀ (x)Pm

` (x) dx =
2

2`+ 1

`+m

`−m
δ¯̀,`.

Es importante notar que es un polinomio, con una expansión finita en x.
Para construir una solución completa, debemos tomar la sumatoria sobre todos los m y `. La restricción en
m y ` dependen de las condiciones de borde de interés. Por ejemplo, m es entero si φ ∈ [0, 2π]. Además, si
nos restringimos al rango −1 ≤ cos θ ≤ 1, entonces nos quedamos con los Pm

` donde `,m son enteros que
satisfacen

` ≥ 0

−` ≤ m ≤ `

Para esta situación podemos definir los armónicos esféricos

Y`,m(θ, φ) = Cm
` P

m
` (cos θ)

1√
2π
eimφ = (−1)m

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm
` (cos θ)eimφ

que satisfacen

1

r2
(Lθ + Lφ)Y`,m =

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

sin2 θ

∂2Ψ

∂φ2

]
Y`,m = −`(`+ 1)

r2
Y`,m

con las condiciones de ortogonalidad

∫ 2π

0

dφ

∫ π

0

sin θ dθY ∗¯̀,m̄(θ, φ)Y`,m(θ, φ) = δ¯̀,`δm̄,m

∞∑
`=0

e∑
m=−`

llY ∗`,m(θ′, φ′)Y`,m(θ, φ) = δ(φ− φ′)δ(cos θ − cos θ′)

Los primeros armónicos esféricos son

Y0,0 =
1√
4π

Y2,2 =

√
15

32π
sin2 θe2iφ

Y1,1 = −
√

3

8π
sin θeiφ Y2,1 = −

√
15

8π
sin θ cos θeiφ

Y1,0 =

√
3

4π
cos θ Y2,0 =

√
5

16π
(3 cos2 θ − 1)

Notemos que esto tiene sentido solo si −` ≤ m ≤ ` si ` es entero, ya que P`(x) es un polinomio de orden `.
Es muy útil derivar
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P−m` (x) = (−1)m
(`−m)!

(`+m)!
Pm
` (x)

por lo tanto

Y`,−m(θ, φ) = C`,mP
−m
` (cos θ)e−imφ

= (−1)m

√
2`+ 1

4π

(`+m)!

(`−m)!
P−m` (cos θ)e−imφ

= (−1)m

√
2`+ 1

4π

(`+m)!

(`−m)!

[
(−1)m

(`−m)!

(`+m)!
Pm
` (cos θ)

] [
eimφ

]∗
= (−1)m

[
(−1)m

√
2`+ 1

4π

(`+m)!

(`−m)!
Pm
` (cos θ)eimφ

]∗
= (−1)mY ∗`,m(θ, φ)

o lo que es equivalente

C`,mP
m
` (cos θ) = (−1)mC`,−mP

−m
` (cos θ)

La solución general al potencial se puede escribir

Ψ =
∞∑
`=0

∑̀
m=−`

(
A`,mr

` +
B`,m

r−(`+1)

)
Y`,m(θ, φ)

En el caso especial de la simetŕıa azimutal tenemos sólo el caso m = 0, lo cual significa que la solución
general es

Ψ =
∞∑
`=0

(A`r
` +B`r

−(`+1))P`(cos θ)

ya que

Y`,0(θ, φ) =

√
2`+ 1

4π
P`(cos θ).

Problema: Encuentre el potencial al interior de un casquete esférico donde V (θ) = Vo para 0 ≤ θ ≤ α y
cero para α ≤ θ ≤ π.

Por la simetŕıa sabemos que el potencial se puede escribir como

17



Ψ =
∞∑
`=0

A`

(r
a

)`
P`(cos θ)

Por lo tanto en el casquete tenemos

V (θ) =
∞∑
`=0

A`P`(cos θ)

Utilizando la ortogonalizacion, multiplicamos por Pm(cos θ) e integramos 0 ≤ θ ≤ π.

Am =
2m+ 1

2

∫ π
0
V (θ)Pm(θ) sin θdθ

= Vo
2m+ 1

2

∫ α
0
Pm(θ) sin θdθ

= Vo
2m+ 1

2

∫ 1

cosα
Pm(x)dx

=
Vo
2

[Pm−1(cosα)− Pm+1(cosα)]

y para el caso m = 0 tenemos

A0 =
Vo
2

(1− cosα)

Por lo tanto la solución es

Ψ =
Vo
2

[
(1− cosα) +

∞∑
`=1

(P`−1 (cosα)− P`+1 (cosα))
(r
a

)`
P`(cos θ)

]
De aqúı podemos calcular el campo eléctrico en el origen, y obtener

E =
Vo
2

[
3

2
(cos2 α− 1)

](
cos θr̂ − sin θθ̂

)
y claramente tiende a cero cuando α→ π.

En general no es dif́ıcil de demostrar que

1

| x− x′ |
=

∞∑
l=0

rl<
rl+1
>

Pl(cos γ) → cos γ = cos θ cos θ′ + cos(φ− φ′) sin θ sin θ′

1

| x− x′ |
= 4π

∞∑
l=0

1

2l + 1

rl<
rl+1
>

l∑
m=−l

Y ∗l,m(θ′, φ′)Yl,m(θ, φ)

18



Problema: Encuentre el potencial entre dos
esferas de radio a < r < b que están a poten-
cial Ψ(r = a) = −V y Ψ(r = b) = V

a

b

+V

−V

5.4. Bases ciĺındricas

En bases ciĺındricas los operadores diferenciales para un campo escalar Ψ son

∇2Ψ =
1

ρ

∂

∂ρ

(
ρ
∂Ψ

∂ρ

)
+

1

ρ2

∂2Ψ

∂φ2
+
∂2Ψ

∂z2

∇Ψ =
∂Ψ

∂ρ
ρ̂+

1

ρ

∂Ψ

∂φ
φ̂+

∂Ψ

∂z
ẑ

Para un campo vectorial A la divergencia es

∇ ·A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ
∂φ

+
∂Az
∂z

,

el rotor es

∇×A =
1

ρ

∣∣∣∣∣∣∣∣∣∣
ρ̂ ρφ̂ ẑ

∂

∂ρ

∂

∂φ

∂

∂z

Aρ ρAφ Az

∣∣∣∣∣∣∣∣∣∣
y el Laplaciano es

∇2A|ρ = ∇2Aρ −
1

ρ2
Aρ −

2

ρ2

∂Aφ
∂φ

∇2A|φ = ∇2Aφ −
1

ρ2
Aφ +

2

ρ2

∂Aρ
∂φ

∇2A|z = ∇2Az

La ecuación de Laplace se puede resolver por separación de variables:

1

ρ

∂

∂ρ

(
ρ
∂Ψ

∂ρ

)
+

1

ρ2

∂2Ψ

∂φ2
+
∂2Ψ

∂z2
= 0 → Ψ ∼ U1(ρ)U2(φ)U3(z)
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la solución por separación de variable es

d2U1

dρ2
+

1

ρ

dU1

dρ
+

(
k2 − m2

ρ2

)
U1 = 0 → U1 = Ak,mJm(kρ) +Bk,mNm(kρ)

d2U2

dφ2
+m2U2 = 0 → U2 = Cm cosmφ+Dm sinmφ

d2U3

dz2
− k2U3 = 0 → U3 = Dke

+kz + Eke
−kz

Las funciones Jm(x) y Nm(x) son conocidas como las funciones de Bessel y Neumann respectivamente. Para
el caso m = 0 podemos tratar de construir una expansión en series

J0(x) =
∞∑
n=0

anx
k+n

que genera

a0[k(k − 1) + k]xk + a1[(k + 1)k + (k + 1)]xk+1 +
∞∑
n=2

[an(n+ k)(n+ k − 1) + (n+ k) + an−2]xk+n = 0.

La ecuación indicial es r(r− 1) + r = 0 por lo que tenemos una solución desgenerada r = 0. Usando r = 0,
a0 = 0 y a1 = 0, con la ecuación de recursión

an+2 = − 1

(n+ 2 + k)2
an ,

podemos construir la expansión en serie

J0(x) = a0

[
1 +

∞∑
n=1

(−1)nx2n

22n(n!)2

]
la cual converge para todo x. De la misma forma podemos construir las funciones Jm(x). Las funciones de
Neumann divergen para x → 0 y no son consideradas para problemas en que involucren el origen. Es útil
en problemas de borde resolver el número infinito de ráıces xm,n de

Jm(xm,n) = 0 n = 1, 2, 3, . . .

con lo cual se puede demostrar que

∫ a

0

ρ dρJm

(
xm,r

ρ

a

)
Jm

(
xm,s

ρ

a

)
=
a2

2
Jm+1(xm,r)δr,s

y el sistema de ráıces xm,n forman un sistema completo en el intervalo [0, a]. De hecho esto restringe los
valores de k para sistemas discretos (pero infinitos)

km,n =
xm,n
a

n = 1, 2, 3, . . .

20



para cada m. Si el rango de ρ se hace infinito, entonces requerimos de una representación continua, similar
a las series infinitas de Fourier, donde la suma discreta en k se convierte en una integral

∫ ∞
0

dk e±kz (Cm(k)Jm(kρ) +Dm(k)Nm(kρ))(Am(k) sinmφ+Bm(k) cosmφ)∫ ∞
0

x dx Jm(kx)Jm(k′x) =
1

k
δ(k′ − k)

donde el ± depende de la restricción de z.

Problema: Encuentre el potencial dentro de
un cilindro de largo L, donde la tapa superior
esta a un potencial V, la tapa inferior esta a
un potencial -V y el resto a potencial cero.

−V

+V

En muchas situaciones es útil tomar una conjunción mas apropiada para ciertas condiciones de borde en el
infinito en termino de funciones de Hankel

H(1)
m (x) = Jm(x) + iNm(x) H(2)

m (x) = Jm(x)− iNm(x)

que son útiles para tener condiciones de salida (radiación) en el infinito. En otras situaciones estamos
interesados en que la dependencia de z sea oscilatoria, lo que implica que tenemos que hacer la transformación

k → ik

y por lo tanto definimos las funciones de Bessel modificadas

Im(kρ) = i−mJm(ikρ) Km(kρ) =
π

2
im+1H(1)

m (ikρ)

La elección de la normalización es para que estas funciones sean reales para ρ real.

La expansiones asintóticas
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ĺımx→∞ Jm(x)→
√

2

πx
cos
(
x− mπ

2
− π

4

)
ĺımx→∞Nm(x)→

√
2

πx
sin
(
x− mπ

2
− π

4

)
ĺımx→0 Jm(x)→ xm

2mm!

ĺımx→0Nm(x)→ (n− 1)!

π

(
2

x

)m
ĺımx→0 J0(x)→ 1

ĺımx→0N0(x)→ 2

π
(lnx+ γ − ln 2)

son útiles cuando tenemos que forzar ciertas condiciones de borde en el infinito.

Veremos mas adelante la importancia del Wronskiano, que en ecuaciones diferenciales determinan si dos
funciones son linealmente independientes

W (y1, y2) =

∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣
Para el caso de ecuaciones diferenciales del tipo

y′′ + p1(x)y′ + p2(x)y(x) = 0

Dado que y1 e y2 satisfacen esta ecuación, se puede probar que

W ′ = −p1W

y por lo tanto

W (y1, y2) = C exp

[
−
∫ x

p1(t)dt

]
Para el caso de

y(n) + p1(x)y(n−1) + ...+ pn(x)y = 0

tenemos que

W (y1, y2, ..., yn) = C exp

[
−
∫ x

p1(t)dt

]
Las expresiones asintóticas se puede usar para evaluar la constante c, tal que

22



Jm N ′m − J ′m Nm =
2

πx

Im K ′m − I ′m Km = −1

x
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6. La Ecuación de Poisson y la función de Green

Estamos interesados en resolver la ecuación de Poisson

∇2Ψ(x) = −4πρ(x) x ∈ Ω

sujeta a la condición de borde

Ψ(x)|δΩ
La función de green en un dominio Ω corresponde al potencial producido por una carga puntual en la
posición y,

ρ(y) = δ(x− y) x,y ∈ Ω

La función de Green G(x,y) satisface

∇2G(x,y) = −4πδ(3)(x− y) x,y ∈ Ω (1)

con lo cual podemos notar que

G(x,y) = G(y,x)

esta propiedad de simetŕıa será relevante en futuros estudios.

6.1. Función de Green en el espacio infinito

Ahora construiremos la función de Green para el espacio infinito.

6.1.1. En 3D

El Laplaciano es

∇2G =
1

r

∂2

∂r2
(rG) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂G

∂θ

)
+

1

r2 sin2 θ

∂2G

∂φ2

y para el problema con simetŕıa esférica G(r) tenemos que

1

r

d2

dr2
(rG) = 0 r 6= 0

y por lo tanto

G =
1

r

Ya hemos demostrado que efectivamente tenemos

∇2G = −4πδ(3)(x)

Para el caso arbitrario tenemos
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G(x,y) =
1

|x− y|
es la función de green para el espacio infinito, ya que

∇2G(x,y) = −4πδ(3)(x− y)

6.1.2. En 2D

El Laplaciano es

∇2G =
1

ρ

∂

∂ρ

(
ρ
∂G

∂ρ

)
+

1

ρ2

∂2G

∂φ2

y para el problema con simetŕıa ciĺındrica G(ρ) tenemos que

1

ρ

d

dρ

(
ρ
dG

dρ

)
= 0 ρ 6= 0

y por lo tanto

G = a ln ρ =
a

2
ln(x2 + y2)

δ(2)(x) = δ(x1)δ(x2)

por lo tanto integrando en la superficie x1 = 0± ε1 con x2 = 0± ε2 y εi → 0∫ +ε

−ε
dx1

∫ +ε

−ε
dx2

[
d2G

dx2
1

+
d2G

dx2
2

]
= −4π

podemos encontrar que

2aπ = −4π

Entonces efectivamente obtenemos que

G = −2 ln ρ

Para el caso arbitrario tenemos

G(x,y) = −2 ln |x− y|

es la función de green para el espacio infinito, ya que

∇2G(x,y) = −4πδ(2)(x− y)

Se entiendo que las funciones deltas y las ∇2 son en 2D.
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6.1.3. En 1D

El Laplaciano es

∇2G =
d2G

dx2

Tenemos que

d2G

dx2
= 0 x 6= 0

y por lo tanto

G =

[
ax+ b x < 0
cx+ d x > 0

Es fácil darse cuenta que G(x) debeŕıa ser continua en x = 0, con lo cual b = d = 0. Podemos elegir
esta constante como cero, ya que una constante no cambia el campo eléctrico que el potencial genera. Su
derivada tiene que ser discontinua, ya que si integramos

d2G

dx2
= −4πδ(x)

de x = 0± ε con ε→ 0, tenemos que

a− c = −4π

Vemos que la solución es

G(x) = −2π|x|

Es fácil de encontrar que efectivamente tenemos

∇2G = −4πδ(x)

Para el caso arbitrario tenemos

G(x, y) = −2π|x− y|

es la función de green para el espacio infinito, ya que

∇2G(x, y) = −4πδ(x− y)

Se entiendo que las funciones deltas y las ∇2 son en 1D.
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6.2. Función de Green para un volumen arbitrario

De ahora en adelante nos concentraremos en la función de Green para regiones Ω arbitrarias en 3D y
dejaremos los problemas en otras dimensiones para la tarea. Dado que

∇2 1

|x− y|
= −4πδ(3)(x− y)

podemos notar que la función de Green para un volumen arbitrario se puede escribir como

G(x,y) =
1

|x− y|
+ F (x,y) → ∇2F (x,y) = 0

siempre y cuando ∇2F (x,y) = 0. Esto significa que F (x,y) puede ser cualquier función que satisfaga la
ecuación de Laplace. Por lo tanto para tener una solución única dentro de x,yεΩ, vamos a tener que forzar
condiciones de borde sobre G, de la misma forma que forzamos condiciones de borde sobre la ecuación de
Laplace para tener soluciones únicas.

Es mas o menos intuitivo, dado que el problema a resolver es lineal, que una vez que tenemos el potencial
para la carga puntual, es factible obtener el potencial por superposición de una distribución continua de
cargas. Veremos que primero tenemos que tener cuidado con las condiciones de borde tanto para Ψ como
para G. Comenzaremos con el teorema de Green. Estamos interesados en resolver el problema

∇2Ψ(x) = −4πρ(x) Ψ|∂Ω

en xεΩ con alguna condición de borde para Ψ|∂Ω. Dado que

∇ · (Ψ∇G) = Ψ∇2G+ ∇Ψ ·∇G

∇ · (G∇Ψ) = G∇2Ψ + ∇Ψ ·∇G

podemos obtener ∫
Ω

(
Ψ∇2G−G∇2Ψ

)
d3x =

∮
δΩ

(
Ψ
∂G

∂n
−G∂Ψ

∂n

)
dS

donde la normal apunta hacia afuera del volumen Ω de interés. Ahora elegimos G como la función de Green
que satisface

∇2G(x,y) = −4πδ(3)(x− y)

con condiciones de borde que especificaremos mas abajo. Obtenemos

Ψ(x) =

∫
Ω

ρ(y) G(x,y) d3y +
1

4π

∮
δΩ

(
G(x,y)

∂

∂ny

Ψ(y)−Ψ(y)
∂

∂ny

G(x,y)

)
dSy
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donde los dos términos de superficie en la ecuación representan la carga superficial y la capa de un dipolo
en la superficie. El potencial y el campo afuera del volumen es cero debido a las discontinuidades. Las
condiciones de borde de Dirichlet se usan cuando Ψ está definido en el borde, y las condiciones borde de
Neumann cuando ∂Ψ/∂n está definido en el borde.

Todav́ıa no hemos forzado las condiciones de borde sobre G (es una libertad dada por F ), las cuales
tendremos que forzar para obtener una solución única a la ecuación de Poisson. Asumamos dos soluciones

U = Ψ2 −Ψ1

que satisfacen la ecuación de Poisson con la misma densidad de carta y las mismas condiciones de borde.
Usando las igualdades dadas más arriba tenemos∫

Ω

(
U∇2U+ |∇U |2

)
d3x =

∮
δΩ

(
U
∂U

∂n

)
dS

por lo tanto existe una sola solución, esto es U = 0, si requerimos que∮
δΩ

(
U
∂U

∂n

)
dS = 0

lo que implica poner condiciones de borde sobre la superficie ∂Ω. Por lo tanto las dos condiciones naturales
son

especificar el potencial en el borde, Ψ|∂Ω

especificar la carga en el borde,
∂Ψ

∂n

∣∣∣∣
∂Ω

Vemos inmediatamente que especificar los dos tipos de condiciones seria redundante, y generaŕıa soluciones
no reales. Esto significa que dada un tipo de condición de borde para Ψ, tenemos que hacer cero una de las
integrales de superficie de arriba, y para eso utilizamos la flexibilidad en la condiciono de borde de G que
aun nos queda.

1. En el caso de condiciones de borde tipo Dirichlet, donde el potencial Ψ(x) =|x∈δΩ 0 esta definido en
el borde, forzamos G(x,y) =|y∈δΩ 0 para y en el borde tal que

Ψ(x) =

∫
Ω

ρ(y) G(x,y) d3x− 1

4π

∮
δΩ

Ψ
∂

∂ny

G(x,y) dSy

Esto es equivalente a encontrar la carga en la superficie.

2. En el caso de condiciones borde de Neumann, donde la densidad de carga ∂Ψ(x)/∂nx =|x∈δΩ 0 esta
definida en el borde, forzamos ∂G(x,y)/∂ny|y∈δΩ = 4π/S para y en el borde tal que

Ψ(x) =< Ψ >S +

∫
Ω

ρ(y) G(x,y) d3y +
1

4π

∮
δΩ

G(x,y)
∂Ψ

∂ny

dSy
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La razón para esta última condición de borde es para satisfacer∮
δΩ

∂G(x,y)

∂ny

dSy = −4π 6= 0

La solución general para Ψ se construye con el uso de funciones de Green, las cuales construiremos a partir
de

Método de las imágenes.

Expansión ortonormal de la función de Green.

Expansión de los valores propios del problema relacionado.

Solución numérica (ver apéndice)

Problema: Cual es el teorema de Green equivalente en 2D

Problema: Cual es el teorema de Green equivalente en 1D

6.3. Método de las imágenes

En particular, si situamos cualquier set de cargas fuera de Ω, entonces al superposición de los potenciales
satisfacen la condición ya nombrada

∇2G(x,y) = −4πδ(3)(x− y) x,y ∈ Ω (2)

dentro de Ω, esto quiere decir que la contribución de las cargas exteriores a la densidad de carga interior es
cero. Si logramos con este set de cargas exteriores, aparte de la carga interior, satisfacer las condiciones de
borde, entonces tendremos una solución dentro de Ω. Pronto veremos que esta solución es la única solución
al problema de borde. Por lo tanto, en orden a resolver la ecuación de Poisson, dentro Ω, tenemos la libertad
de usar cualquier distribución de carga exterior al borde para satisfacer las condiciones de borde requeridas.
Este es el método llamado de las imágenes.

Problema: Una carga frente a un plano conductor (a tierra).

Es fácil hallar la carga imagen. Podemos entonces calcular la carga superficial y la fuerza en la carga real
q. Es interesante notar que la fuerza está también relacionada con
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F =

∫
2πσ2 dS

lo cual es una declaración general.

Problema: tiene ese signo?

Problema: Una carga dentro de una esfera conductora (a tierra).

El borde se fija en Ψ = 0. Ponemos otra carga exterior, en diferentes q2 y d2, pero en la misma linea. Esta
carga q2 está en la realidad inducida sobre la superficie.

Ψ = Ψin + Ψout =
q1

|x− d1k|
+

q2

|x− d2k|
En Mathematica podemos escribir este problema como:

Ψ[x−, y−, z−] =
q√

(x− d)2 + y2 + z2
− q1√

(x− d1)2 + y2 + z2

Podemos buscar la solucion

s = Simplify[Solve[{Ψ[R, 0, 0] == 0,Ψ[−R, 0, 0] == 0}, {q1, d1}], d < R&&d > 0]

que, dado los parámetros y las condiciones de borde, obtenemos

{q1→ qR

d
, d1→ R2

d
}

El potencial es

Ψ[x , y , z ] = Ψ[x, y, z]/.s

lo que da

q√
(−d+ x)2 + y2 + z2

− qR

d

√(
−R

2

d
+ x

)2

+ y2 + z2

Podemos graficar los contornos como se muestran en Fig. 4, donde también se muestra las lineas de campo.
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CountourPlot[Ψ[x, 0, z]/.{R → 1, d → 0,8, q → 1}, {x,−1, 1}, {z,−1, 1}, CountourShading→False,
AxesLabel→{“x”,“z”}, PlotPoints→50]
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Figura 4: (a) Equipotencial, (b) Campo eléctrico dentro de una esfera conductora a tierra.

Podemos calcular la carga superficial inducida en la superficie de la esfera

σ =
1

4π

∂Ψ

∂r

∣∣∣∣
r=a

(3)

y la fuerza que siente la carga real.

Problem: El origen es un punto estable, o inestable?

Las lineas de campo se definen como las lineas que su tangente es paralela al campo electrico, esto es

dr

ds
=

E

|E|
las cuales se pueden ver en la Fig 4, y claramente son ortogonales a la superficie, como deberia ser. Resul-
tados similares pueden ser obtenidos para una carga puntual fuera de una esfera conductora.

Problema: Esferas conductoras con hemisferios a diferente potencial. Hemos construido la función de Green
por el método de las imágenes para el potencial fuera de las esferas conductoras con Ψ = 0 en el borde de
la esfera. Necesitamos integrar con las condiciones de borde de Dirichlet. Note que esto es equivalente a la
densidad de carga en la superficie.

Problema: Una carga q fuera de una esfera aislada con carga Q, pero conductora. Una esfera a tierra
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(equipotencial) tiene una carga q2. Sumando Q − q2, distribuido uniformemente sobre la superficie, alcan-
zamos una carga total Q. Esto significa, que es el equivalente a una carga puntual de magnitud Q− q2 en
el origen. El potencial y la fuerza pueden ser construidos por superposición

Ψ = Ψin + Ψout =
q1

| x− d1k |
+

q2

| x− d2k |
+
Q− q2

| x |
Lo mismo se puede hacer con una esfera conductora en la tierra en un potencial V especifico.

Problema: Una esfera conductora (a tierra) en un campo eléctrico uniforme asintótico. Es construido en
una forma similar, con 2 cargas de distinto signo a una distancia R >> a, y sus dos imágenes dentro de la
esfera. El limite tiene sentido cuando 2q/R2 → Eo.

Problema: Construya por imágenes la función de Green para un plano conductor en 1D

6.4. Expansión de la función de Green en bases ortonormales

Hemos visto en que en general, todo lo que necesitamos hacer es resolver la ecuación de Laplace, y esta es
la solución generada para construir la función de Green. Supongamos que queremos solucionar la ecuación
de Laplace dada una condición de borde. El apéndice explica la expansión de la solución en términos de las
bases ortonormales de la ecuación de Laplace en distintos sistemas de coordenadas (Ver apéndice C):

Rectangulares.

Polares.

Esféricas.

Ciĺındricas.

De las cuales podemos solucionar problemas de valor de borde en diferentes geometŕıas.

Para encontrar la función de Green en una geometŕıa dada, expandamos la función de Green en términos
de los modos normales de la ecuación de Laplace para esa geometŕıa, y resolvemos directamente para los
coeficientes desde

∇2 G(x,y) = −4πδ(3)(x− y) x,y ∈ Ω

con la condición de borde Dirichlet

G(x,y)|∂Ω = 0
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6.4.1. G en coordenadas esféricas para espacio infinito por método directo

Podemos expandir la función de Green en términos de los modos normales de la ecuación de Laplace en
coordenadas esféricas

G(x,x′) =
∞∑
`=0

∑̀
m=−`

A`,m (r, r′, θ′, φ′) Y`,m(θ, φ)

donde

δ(3)(x− x′) =
δ(r − r′)

r2

∞∑
`=0

∑̀
m=−`

Y ∗`,m(θ′, φ′) Y`,m(θ, φ)

Dado que el problema es lineal y la función delta ya tiene el coeficiente para Y ∗`,m(θ′, φ′), por simetŕıa
podemos expandir G como

G(x,x′) =
∞∑
`=0

l∑
m=−`

gl(r, r
′)Y ∗`,m(θ′, φ′)Y`,m(θ, φ)

Usando la ortogonalidad de los armónicos esféricos, podemos encontrar

1

r

d2(rg`)

dr2
− `(`+ 1)

r2
g` = −4π

r2
δ(r − r′)

de donde obtenemos la solución

g`(r, r
′) =

[
Ar` +Br−(`+1) r < r′

A′r` +B′r−(`+1) r > r′

Ahora necesitamos involucrar las condiciones de borde. Como estamos hablando del espacio infinito, tenemos

g`(r, r
′) =

[
A(r′)r` r < r′

B(r′)
1

r`+1
r > r′

]
= C

r`<
r`+1
>

donde en la última expresión hemos hecho cumplir la continuidad en r′, y la simetŕıa G(x, x′) = G(x′, x).
El valor de C es obtenido integrando desde r = r′ − ε hasta r = r′ + ε la ecuación de arriba para g

∫ r=r′+ε
r=r′−ε r ×

[
1

r

d2(rg`)

dr2
− `(`+ 1)

r2
g` = −4π

r2
δ(r − r′)

]
d

dr
(rg`)

∣∣∣∣r=r′+ε
r=r′−ε

= −4π

r′
→ C =

4π

2`+ 1

y la función de Green es

G(x,x′) =
1

| x− x′ |
=
∞∑
`=0

l∑
m=−`

4π

2`+ 1

r`<
r`+1
>

Y ∗`,m(θ′, φ′) Y`,m(θ, φ)
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donde

r> = max[r, r′] r< = min[r, r′]

En el caso de simetŕıa azimutal tenemos

1

| x− x′ |
=

1√
x2 + x′2 − 2xx′ cos γ

=
∞∑
`=0

(
A`r

` +B`r
−(`+1)

)
P`(cos γ)

1

| x− x′ |
=

∞∑
l=0

r`<
r`+1
>

P`(cos γ)→ cos γ = cos θ cos θ′ + cos(φ− φ′) sin θ sin θ′

La última expresión puede también ser encontrada evaluando x y x′ en el eje z (donde γ = 0), y expandiendo
1/|x − x′|. En esta notación r> es el más largo entre x y x′, y r< el opuesto. Es interesante notar que
somos capaces de encontrar toda la solución sólo evaluando la expresión anterior donde cos γ = 1 y luego
multiplicando cada término por P`(cos γ).

6.4.2. G en coordenadas esféricas entre dos esferas conductoras por método directo

Podemos expandir la función de Green en términos de los modos normales de la ecuación de Laplace en
coordenadas esféricas. Nuevamente escribimos

G(x,x′) =
∞∑
`=0

l∑
m=−`

A`,m(r, r′, θ′, φ′) Y`,m(θ, φ)

donde

δ(3)(x− x′) =
δ(r − r′)

r2

∞∑
`=0

l∑
m=−l

Y ∗`,m(θ′, φ′) Y`,m(θ, φ)

Notemos ya que el problema es lineal y la función delta ya tiene el coeficiente Y 8
`,m(θ′, φ′). Por lo tanto

podemos expandir G como

G(x,x′) =
∞∑
`=0

∑̀
m=−`

gl(r, r
′)Y ∗`,m(θ′, φ′)Y`,m(θ, φ)

donde obtenemos

1

r

d2(rgl)

dr2
− l(l + 1)

r2
gl = −4π

r2
δ(r − r′)

La solución es

gl(r, r
′) =

[
Arl +Br−(l+1) r < r′

A′rl +B′r−(l+1) r > r′
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donde hemos usado la ortogononalidad de los armónicos esféricos. Ahora necesitamos involucrar las condi-
ciones de borde. Tomamos el espacio vaćıo entre dos esferas conductoras de radios a < b y recordando que
r′ está en el medio, tenemos

gl(r, r
′) =

 A(r′)

(
rl − a2l+1

rl+1

)
r < r′

B(r′)

(
1

rl+1
− rl

b2l+1

)
r > r′

 = C

(
rl< −

a2l+1

rl+1
<

)(
1

rl+1
>

− rl>
b2l+1

)

donde en la última expresión hemos hecho cumplir la continuidad en r′, y la simetŕıa G(x,x′) = G(x′,x).
El valor de C es obtenido integrando desde r = r′ − ε hasta r = r′ + ε la ecuación de arriba para g

∫ r=r′+ε
r=r′−ε r ×

[
1

r

d2(rgl)

dr2
− l(l + 1)

r2
gl = −4π

r2
δ(r − r′)

]
d(rgl)

dr

∣∣∣∣r=r′+ε
r=r′−ε

= −4π → C =
4π

2l + 1

1(
1−

(a
b

)2l+1
)

y la función de Green es

G(x,x′) =
∞∑
`=0

∑̀
m=−`

4π

2`+ 1

1(
1−

(a
b

)2`+1
) (r`< − a2`+1

r`+1
<

)(
1

r`+1
>

− r`>
b2`+1

)
Y ∗`,m(θ′, φ′)Y`,m(θ, φ)

6.4.3. G en coordenadas esféricas fuera de una esfera conductora por método indirecto

Supongamos que sabemos la solución de G en una geometŕıa simple. Podemos usar esta solución

∇2Ĝ(x,y) = −4πδ(3)(x− y)

para construir G para geometŕıas más complicadas

G(x,y) = Ĝ(x,y) + F (x,y)

con

∇2F (x,y) = 0 F |δΩ = 0

Por ejemplo, tomemos la función de Green para el espacio infinito

Ĝ(x,y) =
1

| x− y |
=
∞∑
`=0

∑̀
m=−`

4π

2`+ 1

r`<
r`+1
>

Y ∗`,m(θ′, φ′)Y`,m(θ, φ)

luego el potencial G puede ser escrito como
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G = Ĝ+ F =
∞∑
`=0

∑̀
m=−`

4π

2`+ 1

(
r`<
r`+1
>

+ A`r
` +

B`

r`+1

)
Y ∗`,m(θ′, φ′)Y`,m(θ, φ)

Donde F puede ser escrita en la forma más general, y hemos incluido la linealidad del problema en los
coeficientes A y B. Notemos que las condiciones de salto en x = y esta incluida en la expresión de Ĝ. Por lo
tanto sólo nos tenemos que preocupar de las condiciones de borde en x = a (note que a < y), y la condición
en r →∞, la cual es A = 0. La solución luego

G|r=a =
∞∑
`=0

∑̀
m=−`

4π

2`+ 1

(
r`<
r`+1
>

− a2`+1

y`+1r`+1

)
Y ∗`,m(θ′, φ′)Y`,m(θ, φ)

las cuales son la mismas soluciones como arriba con b = 0.

Problema: Encuentre el potencial produci-
do por un anillo de carga de densidad λ
(concéntrico con la esfera) fuera de una es-
fera conductora a potencial Vo cos θ sinφ.

λ

Problema: Encuentre el potencial produci-
do por un anillo de carga de densidad λ de
radio R < a dentro de un cilindro de radio a
y largo L. El anillo esta puesto perpendicular
al eje de simetŕıa del cilindro en L/2.

λ
L

a
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Problema: Encuentre el potencial externo
producido por una esfera de radio a que tiene
un potencial Ψ = e−θ

2
sobre su superficie.

a

Problema: Encuentre el potencial producido por un anillo de carga entre dos esferas, asumiendo G(r, θ) y
G(r, θ, φ).

6.4.4. Expansión en bases de un problema relacionado

Otro método para obtener las funciones de Green es expandiendo en un sistema completo de los valores
propios de un problema relacionado. El problema relacionado es

∇2Ψ + (f(x) + λ)Ψ = 0

el cual es satisfecho para ciertos valores {λn,Ψn}

∇2Ψn + (f(x) + λn)Ψn = 0→
∫

ΨnΨm d3x = δnm

Otros valores dan las soluciones no convergentes o las singulares. La función de Green puede, entonces, ser
encontrada por

∇2G(x,x′) + (f(x) + λ)G(x,x′) = −4πδ(3)(x− x′)

G(x,x′) =
∑

n an(x′)Ψn(x) = 4π
∑

n

Ψ∗n(x)Ψn(x)

λn − λ
Notemos que la ecuación para las funciones propias pueden en principio ser diferentes desde la ecuación
satisfecha por la función de Green.

Problema: Funciones propias en el espacio infinito.

Asumamos la ecuación de ondas

(∇2 + k2)Ψk(x) = 0 → Ψk(x) =
1

(2π)3/2
eik·x

λ = 0 → 1

| x− x′ |
=

1

2π2

∫
eik·(x−x

′)

k2
d3k
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7. Magnetostática

Biot, Savart (∼ 1820) y Ampere (∼ 1820) propusieron que la fuerza inducida por un cable que lleva una
corriente I1 con un elemento de longitud dl1 en un cable que también lleva una corriente I2 con un elemento
de longitud dl2 es

F2,1 ∼
I1I2

c2

d`2 × [d`1 × (x2 − x1)]

|x1 − x2|3

Esta dependencia fue descubierta por cuidadosos experimentos. En un sentido esto define la “extraña
cantidad” denominada corriente. En el sistema CGS la constante de proporcionalidad es k = 1. Las corrientes
son medidas en statamperes (10−9/3 Amperes).

Las corrientes fueron una entidad misteriosa hasta que fueron descubiertas la conexión entre las cargas y
las corrientes. Si definimos

ρ(x, t) =
∑
i

qiδ
(3) (x− xi(t))

J(x, t) =
∑
i

qivi(t)δ
(3) (x− xi(t))

claramente tenemos la ecuación de continuidad macroscópica

∂ρ

∂t
+ ∇ · J = 0

Para casos magnetostáticos, la dependencia del tiempo no está incluida.

Si la corriente no está concentrada en un cable conductor infinitesimal, definimos la densidad de corriente
como la corriente por el área representativa

J = ne < v >x → J d3x = I d`

Veremos más adelante que esta función continua es un promedio espacial de la velocidad de la carga < v >x

en alguna escala particular intermedia, si está existe. Esto asume que hay tanto una escala espacial (y
temporal) donde tal promedio es significativo, i.e., donde las desviaciones son pequeñas en todo tiempo,
mirar Fig. 1 y análisis más adelante.

8. Campo magnético y potencial magnético

Un campo magnético puede ser definido en una forma similar como en el caso de la electrostática, pero se
requiere que

F =
I

c

∮
d`y ×B(y) → B(x) =

I

c

∮
d`y × (x− y)

| x− y |3
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y pasando a una formulación macroscópica

F =
1

c

∫
J(x)×B(x) d3x → B(x) =

1

c

∫
J(y)× (x− y)

| x− y |3
d3y

Esta definición implica la bien conocida “regla de la mano derecha”. Debemos siempre ser cuidadosos sobre
esta definición, ya que incluye una “fuerza propia”, similar a una “energia propia”, efecto que se produce
cuando x = y. Por lo tanto, solo tiene sentido la fuerza de un “grupo de cargas” sobre otro “grupo de
cargas”.

Hemos asumido la idea de superposición, lo cual está bien siempre y cuando no vayamos al régimen de
mecánica cuántica, óptica no lineal, etc.

Podemos fácilmente definir el potencial vectorial

B(x) = ∇×
(

1

c

∫
J(y)

| x− y |
d3y

)
con lo cual tenemos la ecuación de Maxwell

∇ ·B = 0

Como hab́ıamos visto en el caso electrostático

∇ · E = 4πρ

∇× E = 0

fue útil tener el rotor y la divergencia del campo. Entonces, qué es ∇×B? Tomemos

∇×B(x) = ∇×∇×
[

1

c

∫ J(y)

| x− y |
d3y

]
= ∇∇ ·

[
1

c

∫
J(y)

(
1

| x− y |

)
d3y

]
−
[

1

c

∫
J(y)∇2

(
1

| x− y |

)
d3y

]
=

4π

c
J(x) + ∇

[
1

c

∫ ∇ · J(y)

| x− y |
d3y

]
=

4π

c
J(x)− 1

c

∂

∂t
∇
[∫ ρ(y)d3y

| x− y |

]
y por lo tanto

∇×B =
4π

c
J(x) +

1

c

∂E

∂t

Obtenemos el resultado integrando por partes los términos de la forma ∇·(fA). Para el caso magnetostático
el último término es cero, este último término fue propuesto por Maxwell completando las llamadas ecua-
ciones de Maxwell.
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Podemos definir el potencial vectorial como

A(x) =
1

c

∫
J(y)

| x− y |
d3y + ∇Ψ → B = ∇×A

La elección de Ψ depende del gauge que elijamos. Es útil utilizar el gauge ∇ ·A = 0, ya que nos da que

∇2A = −4π

c
J

lo cual es lo mismo que la ecuación de Poisson, pero en forma vectorial. En el caso de la electrostática, en
general, no conocemos las corrientes inducidas en los bordes.

Supongamos que tenemos un campo vectorial que

∇ · Ā 6= 0

entonces podemos elegir otro campo vectorial

A = Ā+ ∇Ψ

que da

∇ ·A = ∇ · Ā+∇2Ψ

Por lo tanto es factible encontrar un Ψ tal que

∇2Ψ = −∇ · Ā

y por lo tanto podemos asumir

∇ ·A = 0

9. Método de solución

En el caso de la electrostática el borde contribuyó al potencial v́ıa la generación de cargas superficiales.
Estamos interesados en los problemas de valor de borde donde el potencial fue definido en la superficie. En
el caso presente

∇ ·B = 0

∇×B =
4π

c
J

la construcción de la función de Green es un poco mas complicada en relación con los conceptos equivalentes a
los conductores de la electrostática. Lo que requiere entender el comportamiento del medio bajo la presencia
del campo magnético, lo cual genera corrientes microscópicas, lo que depende del tiempo y es en general un
problema tiempo dependiente. ?cuál es el campo magnético dentro de un conductor?
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Tomemos estas ecuaciones cerca de una interfase y tratemos de deducir como cambia el campo al cruzar
la interfase. Tomemos una caja infinitesimal de tapa y fondo dS, y lado dh → 0 (ver Fig. 3a). Usando el
teorema de Gauss para la integral de volumen obtenemos∮

Ω
∇ ·B dx3 = 0∮

δΩ
B · n̂ dS = 0

(B2 −B1) · n̂ dS ≈ 0

con lo cual obtenemos una condición de borde para los campos

(B2 −B1) · n̂ = 0

Para el caso de campo tangencial, tomemos un rectángulo perpendicular, como se muestra en la Fig. 3b.
Integrando sobre esta superficie que atraviesa la interfase tenemos∮

(∇×B) · n̂ dS = 4π
∮
~J · n̂ dS∮

B · d` = 04π
∮

J · n̂ dS

(E2 − E1)× n̂ d` ≈ 4π
∫
J⊥dh d`

en el limite dh→ 0, con

K = ĺım
dh→0

∫
J⊥dh

Por lo tanto, la carga de la superficie genera una discontinuidad en el campo magnético tangencial debido
a una corriente superficial. Con lo cual obtenemos la segunda condición de borde

(B2 −B1)× n̂ = 4πK

donde K es la corriente superficial que se induce por la discontinuidad en el campo magnético tangencial.

En algunas situaciones es posible construir una corriente de imagen para situaciones de condiciones de borde
simples. Estudiaremos tales casos en el próximo caṕıtulo. Por ahora, nos concentraremos en la situación del
espacio infinito.

Problema: El campo magnético producido por un loop de corriente de radio R.
Este problema puede ser solucionado por integración directa,

B =
I

c

∮
d`× (x− y)

|x− y|3
con

41



y = R[cosφ, sinφ, 0]

y

d` =
dy

dφ
dφ = [−R sinφ,R cosφ, 0]dφ

Pero ahora estudiaremos usando la función de Green en el espacio infinito. La densidad de corriente en
coordenadas esféricas es

J = I
δ(y − a)

a
δ(θy − π/2)[− sinφy, cosφy, 0]

con lo que podemos integrar usando Y`,m(θ, φ) = C`,mP
m
` (cos θ)eimφ,

A(r, θ, φ) =
4π

c

∞∑
`,m

Y`,m(θ, φ)

2`+ 1

∫
dy3J(y)

r`<
r`+1
>

Y ∗`,m(θy, φy)

=
4πIa

c

∞∑
`=0

∑̀
m=−`

r`<
r`+1
>

Y`,m(θ, φ)

2`+ 1
C`,mP

m
` (0)

∫ 2π

0

dφye
−imφy

[
e−iφy − eiφy

2i
,
eiφy + e−iφy

2
, 0

]

=
8π2Ia

c

∞∑
`=0

∑̀
m=−`

r`<
r`+1
>

1

2`+ 1
|C`,m|2Pm

` (cos θ)Pm
` (0)eimφ

[
δm,−1 − δm,1

2i
,
δm,1 + δm,−1

2
, 0

]
Dado que

Y`,−m(θ, φ) = (−1)mY ∗`,m(θ, φ)

o lo que es equivalente

C`,mP
m
` (cos θ) = (−1)mC`,−mP

−m
` (cos θ)

Para el caso m = ±1, tenemos finalmente

A =
4πIa

c

∞∑
`=0

1

2`+ 1

r`<
r`+1
>

|C`,1|2P 1
` (0)P 1

` (cos θ)φ̂

donde ahora r> = Max[r, a] y r< = Min[r, a]. Dado que

P 1
` (0) =

 (−1)(`−1)/2 (`+ 1)!

2`
(
n− 1

2

)
!

(
n+ 1

2

)
!

` impar

0 ` par

De esta expresión podemos calcular el campo magnético lejos del loop r >> a como
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Br =

(
πIa2

c

)[
2 cos θ

r3
+ 2

∞∑
n=1

(−1)n(2n+ 1)!

2nn!

a2n

r2n+2
P 1

2n+1(cos θ)

]

Bθ =

(
πIa2

c

)[
−sin θ

r3
+
∞∑
n=1

(−1)n(2n+ 1)!

2n(n+ 1)!

a2n

r2n+3
P 1

2n+1(cos θ)

]

El término en los paréntesis redondos es el momento del dipolo magnético para el loop plano (área por la
corriente). Este resultado será útil cuando discutamos el medio magnético en el próximo capitulo.

10. Fuerza de Lorenz

Ahora podemos calcular la fuerza que siente un carga q en la presencia de un campo magnético y un campo
eléctrico

ρ(x) = qδ(3)(x− x(t)) J(x) = qv(t)δ(3)(x− x(t))

utilizando las definiciones de arriba, tenemos

m
dv

dt
=

∫
ρ(y)E(y)d3y +

1

c

∫
J(y)×B(y)d3y

que nos da

m
dv

dt
= qE(x) + q

v

c
×B(x)
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11. Solución numérica

Estamos interesados en resolver numéricamente la ecuación de Laplace y la de Poisson

∇ · E = −∇2Ψ = 4πρ

En general muchos de estos problemas quedan expĺıcitos como problemas con condiciones de borde, no
como un problema inicial que se puede integrar con métodos estándar.

11.1. Problemas en 1D

Para el caso de una dimensión tenemos que resolver

d2Ψ

dx2
= −4πρ(x)

que en principio se puede encontrar como

Ψ(x) = Ψ(0) + Ψ′(0)x− 4π

∫ x

0

dz

∫ z

0

ρ(y)dy

Podemos notar que para integrar esta ecuación necesitamos ser capaces de hacer la integral y además tener
dos condiciones de borde en x = 0.

Muchas veces la integral no se puede resolver en forma anaĺıtica y en otras no tenemos las condiciones en
el mismo punto, sino mas bien tenemos condiciones de borde Ψ(0) y Ψ(L).

11.1.1. “Shooting Method”

Para esto debemos formular un “shooting method”.

Problema: Supongamos que tenemos que resolver

d2Ψ

dx2
= −4πρ(x)

que en principio se puede encontrar como

Ψ(x) = Ψ(0) + Ψ′(0)x− 4π

∫ x

0

dz

∫ z

0

ρ(y)dy

Podemos notar que para integrar esta ecuación necesitamos ser capaces de hacer la integral y además tener
las condiciones de borde en x = 0.

Muchas veces la integral no se puede resolver en forma anaĺıtica y en otras no tenemos las condiciones en el
mismo punto, sino mas bien tenemos condiciones de borde Ψ(0) y Ψ(L). Para estos casos, podemos utilizar
un “método de disparo” para encontrar la solución en forma numérica.

44



Por ejemplo, si queremos resolver el problema de

ρ(x) = sin(cos[x]) Ψ(0) = 1 Ψ(1) = 4

Para eso definimos una función en MATHEMATICA

fun[xo ] := (p[x]/.NDSolve[{p′′[x] == −4Piρ[x], p[0] == 1, p′[0] == xo}, p[x], {x, 0, 1}])/.x− > 1

con lo cual podemos encontrar el valor de Ψ(1) dado un valor inicial xo = Ψ′(0). Ahora tenemos que
encontrar el cero de la función

g(xo) = fun[xo]−Ψ(1)

Para encontrar el valor de Ψ′(0) que de Ψ(1) = 4. Esto se puede hacer con el método de la secante dados
dos valores iniciales s0 = 1, s1 = 3,

sn+1 = sn − g(sn)
sn − sn−1

g(sn)− g(sn−1)

el cual converge rápidamente a s→ 7,2, y la solución se muestra en la Fig. 5.

0.2 0.4 0.6 0.8 1

1

2

3

4

5

Figura 5: Solución al problema en una dimensión

En MATHEMATICA podemos hacer uso de un método mas eficiente que esta dado por FindRoot.

11.1.2. Elementos finitos

También es posible construir directamente una aproximación numérica del funcional

S[f ] =

∫
L dx

discretizando la función f(x) en termino de funciones localizadas

f(x) =
∑
i

fihi(x)

donde hi(x) es el elemento finito alrededor del punto de la grilla (xi). Por ejemplo,
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hi(x) =

1− |x− xi|
∆x

|x− xi| ≤ ∆x

0 |x− xi| > ∆x

con xi = i∆x. Pero hay otras posibilidades como una cuadrática centrada en xi o una Gaussiana centrada
en xi. Podemos calcular la integral de arriba en función de fi. Luego de optimizar esta expresión sobre los
valores desconocidos de fi, obtenemos la solución esperada. En MATHEMATICA podemos utilizar NSolve
si el problema es polinomial, o FindMinimum si el problema es no-lineal en fi. Para discretizaciones mas
avanzadas, es posible que tengamos que usar un método mas global como algoritmos genéticos o CSA, ya
que pueden existir múltiples mı́nimos.

Ejemplo: Supongamos que queremos resolver el mismo problema de arriba

d2Ψ

dx2
= −4πρ(x)

con

ρ(x) = sin(cos[x]) Ψ(0) = 1 Ψ(1) = 4

En este caso sabemos que este problema se puede escribir como un funcional

L =
1

2
Ψ′2 − 4πρΨ

Por lo tanto re-escribmos la acción como

S[{Ψi}] =
1

2

N∑
i,j=0

ΨiΨj

∫ 1

0

dxh′i(x)h′j(x)− 4π
N∑
i=0

Ψi

∫ 1

0

dxh′i(x)ρ(x)

Con la definición

Ai,j =

∫ 1

0

dxh′i(x)h′j(x)

y

bi = 4π

∫ 1

0

dxh′i(x)ρ(x)

donde i = 0, . . . , N y j = 0, . . . , N . Entonces se puede escribir como una matriz actuando sobre el vector
Ψ̄ = (Ψ0, . . . ,ΨN),

S[Ψ̄] =
1

2
Ψ̄TAΨ̄− Ψ̄T b

Notemos que las condiciones de borde tienen que ser satisfechas por

Ψ(0) =
∑
i

Ψihi(0) Ψ(1) =
∑
i

Ψihi(1)
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que se usan para despejar dos Ψi. Para nuestros elementos finitos triangulares tenemos

Ψ0 = 1 ΨN = 4

Con estos elementos finitos podemos calcular inmediatamente

A =
1

∆x


1 −1 0 . . . 0
−1 2 −1 . . . 0
. . . . . . . . . . . . . . .
0 0 −1 2 −1
0 0 −1 1


por lo tanto

S =
1

2

N∑
n,m=0

ΨnAn,mΨm −
N∑
n=0

bnΨn

Si ahora buscamos el óptimo

dS

dΨi

= 0 i = 1, .., N − 1

obtenemos

N∑
n=0

Ai,nΨn − bi = 0 i = 1, .., N − 1

porque la matriz A es simétrica. Notemos que las condiciones de borde están incluidas aqúı ya que la
sumatoria va de n = 0 hasta m = N . Separemos los términos correspondientes a condiciones de borde

N−1∑
n=1

Ai,nΨn = bi − Ai,0Ψ0 − Ai,NΨN i = 1, .., N − 1

Podemos re-escribir entonces esto como

ĀΨ = b̄

y la solución es entonces

Ψ̄ = Ā−1b̄

Problemas mas complicados también se pueden enfrentar.

11.2. Problema en 2-D y 3-D

Para el caso de una dimensión tenemos que resolver

d2Ψ

dx2
+
d2Ψ

dy2
= −4πρ(x, y) Ψ|Ω

en el borde.
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Figura 6: Solución al problema en una dimensión con elementos finitos

11.2.1. Solución por relajación

Es posible probar que el teorema del valor medio para el potencial, en el cual el potencial en el centro de
una esfera, sin ninguna carga, es igual al potencial promedio en la superficie de la esfera. Si asumimos una
discretización esto puede ser usado por iteración para obtener el valor convergente para el potencial en una
región sin ninguna carga, y donde las condiciones ĺımite para el potencial es conocida

Ψ
(n+1)
i,j,k =

1

6

[
Ψ

(n)
i+1,j,k + Ψ

(n)
i−1,j,k + Ψ

(n)
i,j+1,k + Ψ

(n)
i,j−1,k + Ψ

(n)
i,j,k+1 + Ψ

(n)
i,j,k−1

]
+

4π

6
∆x2∆y2∆z2ρi,j,k

asumiendo una condición de borde conocida, la solución converge a la actual solución de la ecuación de
Poisson. En otros sistemas de coordenadas es necesario discretizar apropiadamente. La extensión a 1D o
2D es trivial.

Problema: Descargas fractales

Asumamos que definimos una descarga fractal como un sistema de puntos adyacentes que están en un
potencial fijo Ψ = 1, y el infinito (en este caso, un circulo de radio R) en Ψ = 0. Dada esta configuración
de potencial, podemos usar el método de relajación para calcular el potencial el cualquier lado. En dos
dimensiones el método de relajación es

Ψ
(n+1)
i,j =

1

4

[
Ψ

(n)
i+1,j + Ψ

(n)
i−1,j + Ψ

(n)
i,j+1 + Ψ

(n)
i,j−1

]
Por lo tanto conocemos el campo eléctrico en cualquier lado, y especialmente en los puntos adyacentes a la
descarga. La descarga se desarrollará agregando en los puntos adyacentes a la descarga. Un punto tiene la
probabilidad de ser agregado a la descarga proporcional a un poder η en el campo eléctrico local

Pi,j ∼ Eη
i,j

Una vez que el punto es agregado, recalculamos el potencial y repetimos la operación, Usamos el código de
potencial escrito en C++ para calcular el fractal siguiente. El resultado está dado para η = 1,0
El potencial es mostrado como los contornos de color. Obviamente si η = 0 tenemos una estructura en dos
dimensiones, en cambio si η va hacia infinito tenemos una ĺınea de una dimensión.
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Figura 7: Descarga Fractal

11.2.2. Solución directa

También es posible construir una solución numérica resolviendo la ecuación de Laplace en forma directa
desde su discretización. En forma impĺıcita podemos escribir en la aproximación a primer orden de las
derivadas

Ψi+1,j + Ψi−1,j − 2Ψi,j

∆x2
+

Ψi,j+1 + Ψi,j−1 − 2Ψi,j

∆y2
= −4πρi,j

Tenemos que resolver este set impĺıcito de relaciones, pero donde están mezclados condiciones de borde
con valores que desconocemos. La idea se separar los valores que conocemos de los valores desconocidos en
forma explicita

AΨ = B → Ψ = A−1B

Aśı se puede resolver el problema. De hecho la subrutina “Solve” de MATHEMATICA puede ser muy
útil en estas situaciones. Notemos que otras discretizaciones son también posibles. Lo interesante, es que
en principio una vez que resolvemos un problema, todos los otros problemas (con condiciones de borde
similares) están resueltos.

Problema: Lente electrostatico. Pretendemos resolver el problema

Ψ(x < 1, y = ±0,5) = Ψ(x > 4, y = ±0,5) = −1 Ψ(2 < x < 3, y = ±0,5) = 0

en [0, 5] × [−0,5, 0,5] con una interpolación lineal entre los electrodos en el borde. Utilizaremos la función
de MATHEMATICA NDSolve para encontrar una solución numérica.
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ny = 20; nx = 50; pl = -1; pr = -1;
stp = {pl, pl, 0, 0, pr, pr};
stx = {0, nx/5, 2*nx/5, 3*nx/5, 4*nx/5, nx + 1};
f= Interpolation[Transpose[stx, stp], InterpolationOrder → 1];

eqna = Table[-4*a[i,j]+a[i+1,j]+a[i-1,j]+a[i,j+1]+a[i,j-1]==0,{i,2,nx},{j,2,ny}];
eqn1 = Table[a[i, 1] == f[i], {i, 1, nx + 1}];
eqn2 = Table[a[i, ny + 1] == f[i], {i, 1, nx + 1}];
eqn3 = Table[a[1, j] == pl, {j, 2, ny}];
eqn4 = Table[a[nx + 1, j] == pr, {j, 2, ny}];

eq = Flatten[{eqna, eqn1, eqn2, eqn3, eqn4}];
var = Flatten[Table[a[i, j], {i, 1, nx + 1}, {j, 1, ny + 1}]];

sol = Flatten[NSolve[eq, var]];

Dada la solución, ahora podemos reconstruir el potencial como

∆x = 0,1; xmax = nx∆x; ymax = ny∆x/2;
Ψ = Interpolation[Flatten[Table[{i∆x, j∆x− ymax, a[i+ 1, j + 1]/.sol}, {i, 0, nx}, {j, 0, ny}], 1]];

g1 = ContourP lot[Ψ[x, y], {x, 0, xmax}, {y,−ymax, ymax}];

el cual se muestra en la Fig. 8. Ahora podemos calcular el campo eléctrico

tmax = 8;
efx[x−, y−] = D[Ψ[x, y], x];
efy[x−, y−] = D[Ψ[x, y], y];
ex[x−, y−] = If [x >= 0&&x <= xmax&&y >= −ymax&&y <= ymax, efx[x, y], 0];
ey[x−, y−] = If [x >= 0&&x <= xmax&&y >= −ymax&&y <= ymax, efy[x, y], 0];

y programar el calculo de la trayectoria de electrones

tra[xo−, yo−, eo−, θ−]:= (
solu =NDSolve[{x”[t]==ex[x[t],y[t]],y”[t]==ey[x[t],y[t]],
x[0]==xo,y[0]==yo,x’[0]==eo*Cos[θ],y’[0]==eo*Sin[θ]}, {x[t], y[t]}, {t, 0, tmax}];
x1[t−] = x[t] /. Flatten[solu];
y1[t−] = y[t] /. Flatten[solu];
Return[ParametricPlot[{x1[t], y1[t]}, {t, 0, tmax},PlotStyle → {RGBColor[1, 0, 0]}]];
)

s = Table[tra[0.1, yv, 0.01, 0], {yv, -0.5, 0.5, 0.1}];
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Finalmente, podemos grafical todo junto como se muestra en la Fig. 8, que muestra que el lente electrostático
es convergente.

gra = Show[g1, s, DisplayFunction → $DisplayFunction, PlotRange − > {{0, xmax}, {-ymax, ymax}},
Frame − > True, FrameLabel − > {’‘x”,”y”,””,””}];

1 2 3 4 5
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Figura 8: Solución al problema en dos dimensiones con las trayectorias de electrones superpuestos. La
trayectoria de los electrones en un lente electrostático definen la distancia focal del lente. Esto es un lente
convergente.

Las trayectorias en rojo se calcularon numéricamente utilizando

d2r

dt2
= − q

m
∇Ψ

Notemos que podemos normalizar

Ψ̄ =
Ψ

Vo
y =

x

L
τ = vot

con lo cual todo el problema queda determinado en termino de un parámetro adimensional. Es factible
entonces graficar la distancia focal y la magnificación del lente electrostático como función de este parámetro.

11.2.3. Solución por elementos finitos

En realidad el método de elementos finitos tiene que ver con un procedimiento mas general para resolver
problemas de este tipo. Notemos que la ecuación de Laplace viene de un principio de optimización

L[Ψ] =

∫ (
(∇Ψ)2 − 4πρΨ

)
dx3 → δL = 0→ ∇2Ψ = −4πρ

Por lo tanto uno puede asumir una forma de interpolación

Ψ(x, y) =
∑
i,j

Ψi,jh(x, y, xi, yj)

donde h(x, y, xi, yi) es el elemento finito alrededor del punto de la grilla (xi, yj). Usando una aproximación
lineal

51



h(x, y, xi, yi) = h(x, xi)h(y, yi)

donde

h(x, xi) =

1− |x− xi|
∆x

|x− xi| ≤ ∆x

0 |x− xi| > ∆x

con xi = i∆x, se puede calcular la integral de arriba. Luego optimizamos esta expresión sobre los valores
desconocidos de Ψi,j. Aqúı lo importante es ordenar apropiadamente los ı́ndices para poder escribir este
problema como

ĀΨ = b̄

y la solución es entonces

Ψ̄ = Ā−1b̄

donde b contiene información sobre las condiciones de borde, y A es una matriz conocida.

Si tenemos condiciones de borde donde otro sistema de coordenadas es razonable, tenemos que evaluar el
funcional en forma apropiada.

Cuando las condiciones de borde no son regulares o rectangulares, es conveniente usar una grilla no rectan-
gular. Para estos casos es muy común utilizar una grilla triangular (la mayoŕıa de las veces se utiliza una
grilla variable con en la Fig. 9

Figura 9: Grilla triangular variable

Para estos casos, conviene utilizar una interpolación lineal dentro de cada triangulo

Ψi(x, y) ≈ ai,0 + ai,1x+ ai,2y

donde los coeficientes van variando en cada triangulo de area Ai y dependen de la posición de los tres
puntos que definen cada triangulo. Es posible hacer una transformación de una interpolación dentro de
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los triángulos a una descripción en termino de elementos finitos sobre cada punto de la grilla, pero estos
claramente dependen de la posición de los otros puntos del triangulo. El caso de una grilla regular es mas
fácil. Notemos que el Lagrangiano en dos dimensiones es∫

(∇Ψ)2dx2 =
∑

Ai(a
2
i,1 + a2

i,2)

donde la suma es sobre los triángulos. Notemos que puede ser mas fácil organizar computacionalmente los
triángulos en termino de un método de refinamiento de la grilla, en lo que se llama un método adaptivo.
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Appendix

A. Convención de las sumatorias de Einstein

Desde ahora, usaremos la convención de las sumatorias de Einstein. Esto significa que dos ı́ndices en una
expresión implican una doble sumatoria expĺıcita. Definamos

(A×B)k = εi,j,kAiBj

εi,j,k =

{
P (i, j, k) i 6= j 6= k

0 otro caso

con P (i, j, k) = (−1)n, con n el número de permutaciones de elementos adyacentes que necesitamos operar
sobre (i, j, k) para producir (1, 2, 3), el cual vale 1. Por ejemplo,

P (2, 3, 1) = P (2, 1, 3) = P (1, 2, 3) = 1

P (3, 2, 1) = −P (3, 1, 2) = P (1, 3, 2) = −P (1, 2, 3) = −1

Esto es equivalente a ver si la rotación ćıclica de (i, j, k) da (1, 2, 3) que tiene valer +1 o (2, 1, 3) que tiene
valor -1. Por ejemplo,

P (2, 3, 1)→ P (1, 2, 3) → P (2, 3, 1) = 1

P (3, 2, 1)→ P (2, 1, 3) → P (3, 2, 1) = −1

Con estas definiciones no es dif́ıcil darse cuenta que

εi,j,kεl,m,k = δi,lδj,m − δi,mδj,l
con δi,j = 0 si i = j, y cero en otro caso. Esta relación fundamental ya que permite calcular productos como

(A×B)2 = εi,j,kAiBjεl,m,kAlBm

= (δi,lδj,m − δi,mδj,l)AiBjAlBm

= A2B2 − (A ·B)2

A× (A×B) = A2B − A(A ·B)
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B. Funciones Delta

Una función delta puede ser construida de muchas maneras

Como un limite de una Gaussiana con σ → 0.

δ(x) = ĺım
σ→0

1√
2πσ

e
−
x2

2σ2

Como un limite de δi,j en un espacio de dimensión N →∞.

La definición que nos interesa es

δ(x− a) = 0 x 6= a∫
I

δ(x− a)f(x) dx = f(a) a ∈ I

Es en realidad una distribución. Para definir distribuciones apropiadamente es necesario definir medidas
(por ejemplo Lebesgue) Notemos que la integral de Riemman no tiene mucho sentido acá (excepto como
limité de algo mas continuo).

Entonces es claro que

f ′(a) = −
∫
I

δ′(x− a)f(x) dx

y haciendo un cambio de variable tenemos

δ(g(x)) =
∑
i

1

| g′(xi) |
δ(x− xi)

Notemos que aqúı asumimos que las funciones son bastante suaves con ceros simples.

Otro resultado importante es

∇2 1

| x− y |
= −4πδ(3)(x− y)

Primero es fácil darse cuenta que en coordenadas esféricas tenemos

∇2Ψ =
1

r

∂2

∂r2
(rΨ) +

1

r2 sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
+

1

r2 sin2 θ

∂2Ψ

∂φ2

con lo cual

55



∇2

[
1

r

]
= 0 r 6= 0

pero por el teorema de Gauss tenemos que∫
Ω

∇2Ψ d3y =

∫
∂Ω

∇Ψ · ndS

y usando

∇Ψ =
∂Ψ

∂r
r̂ +

1

r

∂Ψ

∂θ
θ̂ +

1

r sin θ

∂Ψ

∂φ
φ̂

con lo cual

∇
[

1

r

]
= − 1

r2
r̂

y por lo tanto si integramos una esfera de radio R, obtenemos

∫
Ω

∇2

(
1

| x− y |

)
d3y =

{
0 x /∈ Ω

−4π x ∈ Ω

para cualquier R. Esto implica la expresión de arriba desde la definición de la función delta.

Es también posible probar esto usando un procedimiento de limites con un potencial de la forma

Ψa(x) =

∫
Ω

ρ(y)√
|x− y|2 + a2

dy

Esto tiene que ver con el concepto de distribución, la cual es un funcional lineal tal que

ĺım
n→∞

S (ψn) = S
(

ĺım
n→∞

ψn

)
para una secuencia convergente ψn. También se puede utilizar el concepto de medida (por ejemplo Lebesgue),
tal que ∫ −∞

∞
f(x)δ [dx] = f(0)

o en forma mas “suave” como ∫ −∞
∞

f(x)δ [dx] =

∫ −∞
∞

f(x)dH(x)

donde
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H(x) =

[
1 x ≥ 0
0 x < 00

Aśı, podemos definir la derivada de la distribución

δ[Ψ] = −
∫ −∞
∞

Ψ′(x)H(x)dx =

∫ −∞
∞

Ψ(x)H ′(x)dx =

∫ −∞
∞

Ψ(x)dH(x) = Ψ(0)

En d dimensiones, tenemos

δ(d)[cx] = |c|−nδ(d)(x)

y en el caso de la composición ∫
Ω

f(x)δ(d)[g(x)]ddx =

∫
∂Ω

f(x)

|∇g|
dS(x)
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