Capitulo 1:
Electrostatica y Magnetostatica

Los primeros experimentos interesantes en electrostatica fueron hechos en por Cavendish (~ 1770) y
Coulomb (~ 1780), y en el caso magnetostatico por Biot y Savart (1820) y Ampere (~ 1820). Maxwell
puso todo esto en las leyes del electromagnetismo. En un sentido estas leyes definen unas “cantidades
extranas ” llamadas cargas y corriente que regulan la magnitud de las respectivas fuerzas. En orden a
relacionar estos dos conceptos es necesario tener una teoria microscépica para las particulas elementales,
en particular del electrén como una entidad discreta.

-

Una descarga electrostatica fractal
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1. Electrostatica

Cavendish (~ 1770) y Coulomb (~ 1780) propusieron que la fuerza en un “paquete” de carga 1 debido a
un “paquete” de carga 2 satisface la fuerza vectorial central

q1492 , (1“1 B r2>

FIQN—
[Ty —15 |3

Esta dependencia fue descubierta por los cuidadosos experimentos de Cavendish (~ 1770) y Coulomb
(~ 1780), pero requiere unos comentarios (ver mas adelante). En un sentido esto define estas “extranas
cantidades” denominadas cargas, que pueden tener dos signos (positivo o negativo). En el sistema CGS la
constante de proporcionalidad es k = 1, mientras que en MKS es

k=9-10° kgm3C 2572

Como en general estamos interesados en describir distribuciones macroscopicas de cargas, se acostumbra a
definir una funciéon continua, la densidad de carga p, para escribir la dependencia espacial de las cargas.
Esta funcién continua es un promedio espacial de la densidad de carga

N

PNV

en una escala intermedia (entro lo microscépico y lo macroscopico) particular, si estd escala existe. Esto
asume que hay una escala espacial (y temporal) donde tal promedio es significativo, i.e. donde las desvia-
ciones son pequenas en todo tiempo.

Intermedia

Micro Macra

AT

Figura 1: (a) Escalas espaciales y temporales

Esto permite re-escribir la fuerza entre densidades de carga como

Flgw/d:cl/d3 P1(X1)pa(x2) (%1 — xs)

| %1 — X3 |3

2. Campo eléctrico y potencial eléctrico

El campo eléctrico esta definido como una fuerza por unidad de carga, independiente de la carga de prueba,
que se puede expresar como



donde, hemos asumido la idea de superposicién.

Aqui es importante notar que esta definicién se aplica al campo eléctrico producido fuera de un paquete de
carga descrito en el continuo por p(x), osea no podemos tomar el limite y — x porque la integral diverge
a menos que p(y) — 0 también, o que hayan ciertas situaciones de simetria. Notemos que en el limite
discreto esto no es relevante ya que en general estamos interesados en calcular el campo eléctrico lejos de las
cargas puntuales. Esto sera importante cuanto calculemos la energia de una distribucién de carga, donde
la descripcién continua tiene ciertas falencias. En el plasma este problema del paso al continuo se resuelve
asumiendo que las fluctuaciones se hacen pequenas, como veremos después (descripcion tipo Vlasov)

Podemos definir facilmente el potencial escalar

E(x) = —Vy / %d:”y = -Vo

donde
c1>:/ p(y) By

| x—y|
Por lo tanto

VxE=0

El inverso también es cierto. De hecho, es posible escribir cualquier campo vectorial como una suma de dos
componentes

A:A1+A2—)
VxA = VxA,

Entonces, qué es V - E? Hay muchas formas de proceder, pero tomaremos una ruta simple. Tomemos una
carga ¢ y una unidad de superficie dS como en la figura 2.

n E

dS

@)

Figura 2: Superficie orientada infinitesimal.



El campo eléctrico satisface

cos

E-ndS=gq dS = qdf)

2
,
independiente de la forma de la superficie S. Si integramos sobre la superficie, tenemos

%E-ndS:Zlﬂ/pd?’a:
S \4

para la carga contenida. Este resultado puede ser usado para calcular campos eléctricos para casos altamente
simétricos. Usando el teorema de calculo vectorial obtenemos

/(V'E—47rp)d3x:0
.

y por lo tanto obtenemos las ecuaciones de Maxwell para la electrostatica,

V-E = 4mp
VXE = 0

Dado que V x E = 0 existe un potencial E = — VW, que satisface

V20U = —47p

que es la ecuacién de Poisson. Esta ecuacion es usada para resolver casos més generales, ya sea utilizando
el campo eléctrico o la forma potencial escalar. Representa un problema con condiciones de borde para el
potencial o campo eléctrico, definido en una superficie.

Notemos que es claro que si ponemos una carga unitaria en una posicién con condiciones de borde naturales
en infinito, obtenemos (mirar el apéndice B)

1
— = 4xé® (x—y)
| x—y|
este es un ejemplo especifico de una funcién de Green como veremos mas adelante. Con este resultado, el
cual es derivado en el apéndice, podemos calcular directamente

v?

y
V-E = —Vif%d?’y

1
_ 3 2
= — [dy’ ply) Vx—|x_y|

= dr [dy® p(y) 0¥ (x —y)

= dmp(x)



3. Comentarios sobre la ley de la fuerza

En un sentido la ley de fuerza define esta “cantidad extrana” denominada carga, que puede tener dos signos.
En el sistema CGS la constante de proporcionalidad es k = 1, mientras en MKS es k = 9 - 10°.

3.1. Variacién para una ley de fuerza cuadratica

Notemos que gracias a la exactitud de los instrumentos originales, fue postulado que la fuerza puede ser
escrita también en su forma generalizada

1
~ —
702—|-25

Con esta forma, podemos calcular el campo eléctrico, o la fuerza que sentiria una carga, dentro de una
esfera como

<1 8) (1 8)
/Tr sin 0 (1 —-2242%) 22 (1+ 22+ 2?%) 22
o (14224 2zcosf)+e)/2 z(—1+¢) z(—1+e¢)

lo cual implica que E(e = 0) = 0 dentro de la esfera, y da una forma de encontrar |¢| < 107!% en forma
experimental.

3.2. Masa del foton

En mecanica cuantica una fuerza que usa una particula virtual para actuar a una distancia satisface una
ecuacion de potencial escalar, la ecuacién de Yukawa, dada por

m~C12 4
o2 - T
c
M~ C e Hr
h r

Esta ecuacién aparece en muchos contextos, desde mecanica cuantica, fisica de plasmas, astrofisica, etc.
Nos dice que si la masa del fotén tiende a cero, recuperaremos nuestro potencial 1/r. Se encuentra que la
masa del fotén, usando medidas satelitales, es a lo menos m., < 10~*gm.

4. Condiciones de Borde

Hasta ahora hemos discutido la situacién de un volumen infinito, y para ese caso podemos utilizar la integral
sobre la densidad de carga dada anteriormente. En muchos casos estamos interesados en situaciones en un
espacio restringidos y con condiciones de borde. Por ejemplo con conductores en los bordes se inducen
cargas en las superficies las cuales en principio no las conocemos. En este caso es mucho mas facil tratar de
resolver la ecuacion de Poisson como un problema con condiciones de borde



V2 = —4np

directamente.

Hay dos tipos de condiciones de borde que apareceran naturalmente en la construccion de la solucién general
de la ecuacion de Poisson, estas son las cargas de la superficie, y las capas del dipolo. Ellos corresponden a
diferentes condiciones de borde.

Tomemos la ecuacion de Poisson cerca de un borde y tratemos de deducir la carga inducida o en la superficie.
Usando la ecuacién de Poisson
V -E = -V = 47p

y una caja infinitesimal de tapa y fondo dS, y lado dl — 0 (ver Fig. 3). Usando el teorema de Gauss para
la integral de volumen obtenemos

fQV-E-de = 47Tprd3I
$oE-ndS = Am [, pd’x
(E2 — E]_) -ndS =~ dS h/mdh*)o f pdh

con lo cual obtenemos una condicién de borde para los campos

(Ez —El) -n = 4no

en el limite dh — 0, con

o= Jim, f ot

Por lo tanto, la carga de la superficie genera una discontinuidad en el campo eléctrico normal debido a una
carga de la superficie. Si asumimos un borde conductor (las cargas son libres de moverse en respuesta a un
campo eléctrico), podemos obtener la carga superficial desde el potencial en la superficie

—VVU.n
o=—
47
Debemos tener cuidado en definir el normal n. El problema de condiciones con conductores, por ejemplo,
es que en general no conocemos o de antemano, y debe encontrase a partir de la soluciéon completa.

Para el caso de campo tangencial, tomemos un rectangulo perpendicular, como se muestra en la Fig. 3b.
Integrando sobre esta superficie que atraviesa la interfase tenemos

$(VxE)-ndS = 0
FE-de -0
(EQ—El)xndé ~ 0

8



A El E1 7141
n dS7L dh / /A\dh\
T \e =\

Figura 3: Condicién de borde en la superficie.

con lo cual obtenemos la segunda condicién de borde

(EQ—E1>XHIO

En muchas situaciones esta condiciéon de borde es equivalente a que el potencial eléctrico es continuo en
interfases, aunque esto no es correcto en todas las situaciones.



5. Ecuacién de Laplace y funciones ortogonales
Estamos interesados en resolver la ecuacion de Laplace

V3V(z)=0 z€0

sujeta a la condicién de borde

V()50

Este problema generalmente se resuelve utilizando una base ortonormal

flz) = Z a; V()

/ \P:\I’] dr = (57;7]'
Q
D i) (y) =09 (x —y)
2%
En el limite infinito las sumatorias convergen a integrales. Tal base ortonormal es muy 1til si las bases de

funciones son también soluciones normales de la ecuacién de interés. Luego, la expansién es una expansion
natural, pero esto no es requerido.

La forma natural de construir bases ortonormales es utilizando una separacién de variables.

5.1. Bases rectangulares
En una base rectangular los operadores diferenciales para un campo escalar ¥ son

P 9*W 9PV

2\11 —
v 0x? * 0y? * 022

ov . oV oV

Para un campo vectorial A la divergencia es

ov  ov ov
A= 2 2
v Ox + oy + 0z’
el rotor es
T g Z
o 0 0
VXA=| — — —
. oz Oy 02
A, A, A,

10



y el Laplaciano es
V2A|, = V24,
V2A|y = VZ?4,
VZA|, = V?A4,

La ecuacion de Laplace se puede resolver por separacion de variables.

0* N 0 N 0
or?  Jy*> 022

=0 —U~Ul(z)Us(y)Us(2)

para lo cual obtenemos

d*U | .
L= —q?U; = Up = A 4 B

dx?

d*U. . .
2= 0Uy,  —  Up =A™ + Bye ™

dy?

d*U. , .
= Uy = Us= Al + Be

dz?

con la restriccién

c+a’+b0"=0
Por lo tanto tenemos una sumatoria en a y b (con c restringido por la relacién ¢® + a® +b? = 0). En generar
la restriccion en a y b dependen de las condiciones de borde de interés.

Aparte de las soluciones exponenciales podemos utilizar soluciones oscilatorias en el intervalo [0, L] (esto
implica condiciones de borde periddicas en z = L y = = 0. Las condiciones de ortonormalidad son

1=+ 5 (e () s (2

con

En el limite infinito L — oo (aqui es mejor mover el intervalo a L/2 <z < L/2 y después tomar el limite),
con

11



— =k
L
tenemos
f(z) = Ej_m A(k)e™ dx “ A(k) = E o f(x)e™ du
1 oo i(k—kK')x / 1 o ik(z—=x') /
o =tV
Problema: Calcule el potencial dentro de o =
una caja cubica de tamano L, que tiene to-
das sus caras a potencial 0, excepto la cara
de arriba que esta a potencial V y la de abajo
a potencial -V.
0 =V
5.2. Bases polares
En base polares tenemos
1 v 1 0?0
pOp \" Op p? 0¢
10V 10V .
VU = —p+-——¢
pop~  p0o

La ecuacion de Laplace se puede resolver por separacion de variables. Estos son problemas en los cuales la
solucion o las fuentes no dependen en una de las variables, e.g z

12 a_\ll + ia2_\11 =0
pop\"op) " o
Para el caso m # 0 tenemos
d aUu
i (P e =
d*U.
d¢22 = —m2U2 — U2

y para el caso m = 0 tenemos

12

U~ Ui(p)U2(9)

= C), cosmo + D, sinmeo



d dU
(p—l):() — U1:A0+Bolnp
dp
d*U,
d¢?
La sumatoria es para todos lo m reales, pero generalmente la restriccion en m depende en las condiciones
de borde de interés. Por ejemplo, m es entero si el problema incluye ¢ € [0, 27].

=0 =  Uy=Cy+ Dy

Problema: Calcule el potencial dentro de un
cilindro infinito que tiene un potencial ¥ =
V' cos ¢ sobre su superficie.

5.3. Bases esféricas

En una base rectangular los operadores diferenciales para un campo escalar ¥ son

ViU =

182(7"\1’) N 10 sm@aqj N 1 62_\11
r o or? r2sin § 00 00 r2 sin® ) O¢?
ov 10V ~ 1 oV

Vi = Er+;%0+ rsin @ 8¢¢

Notemos que también tenemos

162(7"\11) 12 oA
r Or? r2 Or "

Para un campo vectorial A la divergencia es

1 .0 0 0A,
VA= e sm@a ( 2A ) —1—7‘% (sin 9 Ap) +ra—¢}
el rotor es
7 1 rsin (9(13

1 o 0 0
A=—— | = — =
VXA= i o 96 99

A, 1Ay rsinfA,

y el Laplaciano es

13



VzA\ _ VQAT—EAT—F 22 2 cosf 2 0 A
r 7,2 2 ¢

1200 r2sind _7“2Sin98_¢
1 2 0A 2cosf 0A
2A — 2A - “ ro 103
VAl Vi r2sing "’ 200 r2sin?6 0¢
1 2 0A, 2cosf 0Ay

VA, = VA, — A -
ls Vids r2sin® 0 ¢+r2sin9 dp  r2sin®f O¢

La ecuacion de Laplace se puede resolver por separacion de variables.

10*(r) 1 9 ov 1 9% Ui(r)
r Or? Y 00 (sm 06 ) 72 sin?  O¢p? 0 r
con
2
1
CO WDy S U= Ag" 4 Byt

dr? 72

sin 6 df

d*Us
d¢?

donde P*(z) y Q}*(x) son las funciones de Legendre asociadas.

+m?Us; =0 — Uy = etimo

5.3.1. Funciones de Legendre

La ecuacion de Legendre regular, usando x = cos 6, es

Us(0)Us(9)

1 2
d (sin 9@) + [ﬁ(f +1) — m2 91 Uy=0 — Uy = CJ'Pj*(cos 0) + Dy Q' (cos 6)

d N B N dpP, B
Si hacemos una expansion en series
fz) = Z apz"F
n=0

obtenemos

o

por lo que la ecuacién indicial es
k(k—1)=0,

14

Z(k +n)(k+n— 1)a,z* ™2 + i[ﬁ(f +1)=2k+n)— (k+n)(k+n—1Da,z*™™ =0



que tiene solucion k =0y k=1. Con k =0, ag =1y a; = 0 tenemos
(+n+1)¢—n)
Qn
(n+1)(n+2)

la cual no converge para x* = =+1, por lo tanto exigimos que ¢ sea un entero par y truncamos la serie
generando el polinomio p,(x). Con k =1, ag = 1 y a; = 0 tenemos

Apyo = —

l+n+2)({—n—1)
(n+2)(n+3) n

la cual no converge para x = %1, por lo tanto exigimos que ¢ sea un entero impar y truncamos la serie
generando el polinomio ¢,(z). Estas dos soluciones producen Py(x) para valores pares e impares. Para el
caso de py(x) con ¢ impar y g,(x) con ¢ construimos la segunda solucién de Legendre Qy(z). En este caso
no podemos truncar la serie, con lo cual diverge para r = +1.

La funcién de Legendre Py(z) se puede escribir como

Qpy2 = —

la cual satisface la relacién de ortogonalidad

1
2
/1 PZ(I‘)P[(ZL‘) dl’ = 26——{—15577[

Los primeros polinomios de Legendre son

Py = 1
P1 = T
1
PQ = 5(3"172—1)

Ademads tenemos la relacién

(20 + 1)Py(a) = Leril®) _ dPir(a)

dx dx
5.3.2. Funciones de Legendre asociadas
La ecuacion asociada de Legendre
SIS L Y VS SR Lol g
dx? dx 1—a2|""

Es facil darse cuenta que

m 2\m/2 dr 1 2\m/2 e 2 14
B (x) = (1= 27)" ———Py(w) = opn (1 —27)™ g (2 = 1),

15



satisface la ecuacion asociada de Legendre, y por lo tanto corresponden a las soluciones regulares. Estas
soluciones satisfacen la relaciéon de ortogonalidad

v . 2 l4+m

Es importante notar que es un polinomio, con una expansion finita en x.

Para construir una soluciéon completa, debemos tomar la sumatoria sobre todos los m y ¢. La restricciéon en
m y ¢ dependen de las condiciones de borde de interés. Por ejemplo, m es entero si ¢ € [0, 27|. Ademads, si
nos restringimos al rango —1 < cos@ < 1, entonces nos quedamos con los P;" donde ¢, m son enteros que
satisfacen

(>0
< m</

Para esta situacién podemos definir los arménicos esféricos

, 20410 —m)! ,
ezmqb:(_l)m\/ + ( m) PzrrL(COSe)emw

Yom(0,6) = CJ" P (cos )

2 47 (6 + m)‘

que satisfacen

1 171 9 v 1 92U 00 +1)
(Lot Lo)Yem = 55 [ 590 (Sm%) * n—ew] Yom = ==Yt

con las condiciones de ortogonalidad

/ dgb/ sin€ doY; (0, 9)Yem (0, ¢) = 670m,m

Z Z WY} (0',6")Yen(0,0) = 6(¢ — ¢')d(cos 0 — cos ')

£=0 m=—¢

Los primeros armoénicos esféricos son

1 /15
Yoo=— Y9 = 1/ —— sin? e
0,0 \/E 272 327r SlIl (&
3 < /15 .
Yii= — sin fe™® Ys1 = —4/ — sin @ cos fe™®
’ 8 ’ 8

3 5
YI,OZ\/ECOSQ Yoo = 16_7r(300829_1)

Notemos que esto tiene sentido solo si —¢ < m < £ si £ es entero, ya que P(z) es un polinomio de orden /.
Es muy util derivar

16



por lo tanto

(cosf)e —ime

- CZ m
20 1 ! )
= \/ + ) P[m (cos §)e~ime

At (0 —m) (4 +m)!
20+ 1 e +m)! -,
= ym ‘Pem(cos 49)6””‘71

= (=D)"Y;,.(0,9)

o lo que es equivalente

Com Py (cosb) = (—1)"Cy_,,, P, ™ (cos 6)

La solucion general al potencial se puede escribir

U = Z Z (AW + Bz;ﬁ))ygm(e,@

{=0 m=—/¢

En el caso especial de la simetria azimutal tenemos sélo el caso m = 0, lo cual significa que la solucion
general es

U= Z(Agre + Byr~ ) Py(cos 0)
=0

ya que

20+1
Vio(6,0) = |/ = Pulcos).

Problema: Encuentre el potencial al interior de un casquete esférico donde V(0) =V, para 0 < 6 < ay
cero para a < 6 <.

Por la simetria sabemos que el potencial se puede escribir como

17



Por lo tanto en el casquete tenemos

= Z AyPy(cos )

£=0

Utilizando la ortogonalizacion, multiplicamos por P,,(cosf) e integramos 0 < 6 < 7.

2 1
A, = m+ fo 0) sin 0do

o+ 1 . .
_ VO% [ Pou(6) sin 0d0

2m +1

fclosa P, (z)dx

= % [P—1(cosa) — P 41(cos a)]

y para el caso m = 0 tenemos

V,
Ay = ?(1 — cos )
Por lo tanto la solucién es

g="

5 (1 —cosa) + ; (Pp—1 (cosa) — Ppyq (cosar)) (g)g Py(cos 9)]

De aqui podemos calcular el campo eléctrico en el origen, y obtener

Vo |3
2 |2

E=-"21>(cos’a — 1)] (cos 07 — sin 9@)

y claramente tiende a cero cuando o — .

En general no es dificil de demostrar que

1
o] Z mEs Pi(cosy) — cosy =cosfcost + cos(¢p— ¢')sinfsinb’
=0 >
1 1 Tl< l * / /
| {E—I’/ | = 47TZ 2l+lrl+1 Z )/l,m<07¢)yl,m(0a ¢)
=0 > m=—1

18



+V

Problema: Encuentre el potencial entre dos
esferas de radio a < r < b que estan a poten-
cial U(r=a)==-VyU(r=0b=V

5.4. Bases cilindricas

En bases cilindricas los operadores diferenciales para un campo escalar ¥ son

19 [ 90\ 10°0 &0
2 . _ - -
VIV S Lo (pap)+p28¢2+8z2
oy _ 0¥, 10V oV

app+;8—¢ +§Z

Para un campo vectorial A la divergencia es

10 104, 0A,
A= (pA —Z7e
el rotor es
ppd 2z
UxA_L 0 9 9
p| Op 09 0z
A, pAs A,
y el Laplaciano es
1 2 0A,
V2A|p — V2Ap— ;Ap— ;a—gb
1 2 0A,

VIA|, = V- At o

V2A|, = V24,

La ecuacion de Laplace se puede resolver por separacion de variables:

10 ( 8\1/) 1 0°0  0*W

;a—p pa—p +;W+ﬁ:0 — \I/NU1<,0)UQ(¢)U3(Z)

19



la solucion por separacién de variable es

d? 1d 2
U + Ut + (k2 — m_) U =0 — Uy = A mJm(kp) + Brm N (kp)

dp? " p dp P2
2, .
00 +m*Us =0 — Uy = Cp,cosmep + D,, sinmao
d?U-
y S kU3 =0 —  Uy=Dpet* + Epe ™™
z

Las funciones J,,(z) y Np,(x) son conocidas como las funciones de Bessel y Neumann respectivamente. Para
el caso m = 0 podemos tratar de construir una expansion en series

Jo(x) = Z apattm
n=0

que genera

aolk(k — 1) + k2" + a1 [(k + 1)k + (k + 1)]2"*! + i[an(n +E)(n+k—1)+ (n+k)+a, o)z"™ =0.

n=2

La ecuacién indicial es r(r — 1) +7 = 0 por lo que tenemos una solucién desgenerada r = 0. Usando r = 0,
ap =0y a; = 0, con la ecuacion de recursion

1
N CES Ry

podemos construir la expansion en serie

Jo(.%') = Qo

oo
(—1)”372"]
3 G
2n (112
— 22n(nl)
la cual converge para todo x. De la misma forma podemos construir las funciones J,,(z). Las funciones de
Neumann divergen para x — 0 y no son consideradas para problemas en que involucren el origen. Es 1til
en problemas de borde resolver el nimero infinito de raices z,,, de
In(Tmpn) =0 n=1,23,...

con lo cual se puede demostrar que

2

[ oot ) () = o

y el sistema de raices z,,, forman un sistema completo en el intervalo [0, a]. De hecho esto restringe los
valores de k para sistemas discretos (pero infinitos)

xm,n
b == =123,
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para cada m. Si el rango de p se hace infinito, entonces requerimos de una representacion continua, similar
a las series infinitas de Fourier, donde la suma discreta en k se convierte en una integral

/000 dk % (Co (k) Jon(kp) + Dyp(k) N (kp)) (A (k) sinme + By, (k) cos ma)
/ " du T (k) o (K') = %5(/4 — k)

donde el + depende de la restriccion de z.

Problema: Encuentre el potencial dentro de
un cilindro de largo L, donde la tapa superior
esta a un potencial V, la tapa inferior esta a
un potencial -V y el resto a potencial cero.

\4/

N
En muchas situaciones es util tomar una conjuncién mas apropiada para ciertas condiciones de borde en el

infinito en termino de funciones de Hankel

Hfﬁ)(x) = J(x) + iNp(2) H,(f) (x) = () — iNy ()

que son ttiles para tener condiciones de salida (radiacién) en el infinito. En otras situaciones estamos
interesados en que la dependencia de z sea oscilatoria, lo que implica que tenemos que hacer la transformacion

k — ik

y por lo tanto definimos las funciones de Bessel modificadas

—m . T 0 )
L(kp) =i Ju(ikp) Ko (kp) = ™ HL) (ikp)

La eleccién de la normalizacién es para que estas funciones sean reales para p real.

La expansiones asintéticas
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, x™
lim, 0 Jm(2) S
— 1) /2\™
T, o Ny () — =2 (—)
T e

h/mxﬁo Jo(x) —1

2
lim, ,o No(z) = —(Inz + v —1In2)
7r

son utiles cuando tenemos que forzar ciertas condiciones de borde en el infinito.

Veremos mas adelante la importancia del Wronskiano, que en ecuaciones diferenciales determinan si dos
funciones son linealmente independientes

Yyr Yo
W (1, =
(192 ‘ vl v

Para el caso de ecuaciones diferenciales del tipo

Y+ pu(x)y + pa(x)y(x) =0

Dado que y; e y- satisfacen esta ecuacion, se puede probar que

W/ = —p1W

y por lo tanto
W(y1,y2) = Cexp {—/ pl(t)dt]
Para el caso de

y(") + pl(a:)y(”*l) + ..+ pa(x)y =0

tenemos que

Wi o |- [ ]

Las expresiones asintoticas se puede usar para evaluar la constante c, tal que
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Jm N' — J Ny,

I, K —TI K,
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6. La Ecuacion de Poisson y la funciéon de Green

Estamos interesados en resolver la ecuacién de Poisson
V2U(x) = —4np(x) x €0
sujeta a la condicién de borde

V(x)]50

La funcién de green en un dominio €2 corresponde al potencial producido por una carga puntual en la
posicién y,

ply) =d(x-y) xy€Q
La funcién de Green G(x,y) satisface
VEG(x,y) = —4mdP(x —y) x,y € (1)
con lo cual podemos notar que

G(x,y) = Gy, x)

esta propiedad de simetria sera relevante en futuros estudios.

6.1. Funciéon de Green en el espacio infinito

Ahora construiremos la funcién de Green para el espacio infinito.

6.1.1. En 3D

El Laplaciano es

1 92 1 0 oG 1 9°G
2 _ - - = : 0_ -
Ve r or? (rG) + r2sin 6 06 (Sm 06 ) * r2sin? § 0¢?

y para el problema con simetria esférica G(r) tenemos que

1 d?

y por lo tanto

1
G=-
-

Ya hemos demostrado que efectivamente tenemos

V3G = —476%) (x)

Para el caso arbitrario tenemos
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1
Ix -yl

G(x,y) =

es la funcién de green para el espacio infinito, ya que
VAG(x,y) = —4m6? (x — y)

6.1.2. En 2D

El Laplaciano es

VG =-— | p— ——
pop \"op " p? 0¢?
y para el problema con simetria cilindrica G(p) tenemos que

1d ( dG
——\p7—) =0 p#0
pdp( dp)

18<8G) 1 9*°G

y por lo tanto

G=alnp= %ln(as2+y2)

6 (x) = §(21)0(x2)

por lo tanto integrando en la superficie 21 =0+ € con zo =0+ ey y ¢, — 0
+e€ +e€ dQG d2G
d dry | —5 + ——| = —4
[, an ], ldx% ' d] i

2am = —47

podemos encontrar que

Entonces efectivamente obtenemos que

G=—-2lnp

Para el caso arbitrario tenemos

G(x,y)=—2In|x —y]

es la funcién de green para el espacio infinito, ya que

V2G(x,y) = —4m? (x - y)

Se entiendo que las funciones deltas y las V2 son en 2D.
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6.1.3. En 1D

El Laplaciano es

d*G
VG =—
dx?
Tenemos que
d*G
y por lo tanto
| ax+D x <0
cr+d x>0

Es facil darse cuenta que G(x) deberia ser continua en z = 0, con lo cual b = d = 0. Podemos elegir
esta constante como cero, ya que una constante no cambia el campo eléctrico que el potencial genera. Su
derivada tiene que ser discontinua, ya que si integramos

d*G

de x =04 € con € — 0, tenemos que
a—c=—4r
Vemos que la solucion es
G(z) = —27|z|
Es facil de encontrar que efectivamente tenemos
V3G = —4md(x)

Para el caso arbitrario tenemos

G(a,y) = =2m|z —y|

es la funcién de green para el espacio infinito, ya que

V2G(z,y) = —476(z — y)

Se entiendo que las funciones deltas y las V? son en 1D.
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6.2. Funciéon de Green para un volumen arbitrario

De ahora en adelante nos concentraremos en la funciéon de Green para regiones () arbitrarias en 3D y
dejaremos los problemas en otras dimensiones para la tarea. Dado que
5 1
x—yl

podemos notar que la funciéon de Green para un volumen arbitrario se puede escribir como

—4m0¥ (x —y)

G(x,y) = + F(x,y) — V2F(x,y) =0

x —yl
siempre y cuando V2F(x,y) = 0. Esto significa que F(x,y) puede ser cualquier funcién que satisfaga la
ecuacion de Laplace. Por lo tanto para tener una solucién unica dentro de x, ye€2, vamos a tener que forzar
condiciones de borde sobre G, de la misma forma que forzamos condiciones de borde sobre la ecuacion de
Laplace para tener soluciones tnicas.

Es mas o menos intuitivo, dado que el problema a resolver es lineal, que una vez que tenemos el potencial
para la carga puntual, es factible obtener el potencial por superposicién de una distribucién continua de
cargas. Veremos que primero tenemos que tener cuidado con las condiciones de borde tanto para W como
para G. Comenzaremos con el teorema de Green. Estamos interesados en resolver el problema

V2V (x) = —47p(x) Uloq

en xef) con alguna condicién de borde para ¥|,,. Dado que

V. (IVGE) = VG +VU.-VE
V- (GVY¥) = GV*V 4 VVU.VQE

podemos obtener

G 0w
2 _ 2 3. — e
/Q(\I/VG GV20) dx ]{ (\D@n Gﬁn) ds

donde la normal apunta hacia afuera del volumen (2 de interés. Ahora elegimos G como la funcién de Green
que satisface

V2G(x,y) = —4m® (x - y)

con condiciones de borde que especificaremos mas abajo. Obtenemos

v = [ ) 6y Py - f (Gxy) ) - 0 G| s,

Ty Ony
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donde los dos términos de superficie en la ecuacién representan la carga superficial y la capa de un dipolo
en la superficie. El potencial y el campo afuera del volumen es cero debido a las discontinuidades. Las
condiciones de borde de Dirichlet se usan cuando ¥ esta definido en el borde, y las condiciones borde de
Neumann cuando 0¥ /0n esta definido en el borde.

Todavia no hemos forzado las condiciones de borde sobre G (es una libertad dada por F'), las cuales
tendremos que forzar para obtener una solucién tnica a la ecuacién de Poisson. Asumamos dos soluciones
U == \IJQ - \Ifl

que satisfacen la ecuacién de Poisson con la misma densidad de carta y las mismas condiciones de borde.
Usando las igualdades dadas mas arriba tenemos

/(UV2U+ | VU ) d%:j{ (Ua—U) ds
Q 50 on

por lo tanto existe una sola solucion, esto es U = 0, si requerimos que

f (0 as—o
59 on

lo que implica poner condiciones de borde sobre la superficie 9€2. Por lo tanto las dos condiciones naturales
son

» especificar el potencial en el borde, V|,

8_\11
on

= especificar la carga en el borde,

o

Vemos inmediatamente que especificar los dos tipos de condiciones seria redundante, y generaria soluciones
no reales. Esto significa que dada un tipo de condicién de borde para ¥, tenemos que hacer cero una de las
integrales de superficie de arriba, y para eso utilizamos la flexibilidad en la condiciono de borde de G que
aun nos queda.

1. En el caso de condiciones de borde tipo Dirichlet, donde el potencial ¥(x) =|, s, 0 esta definido en
el borde, forzamos G(x,y) :|y€5Q 0 para y en el borde tal que

1 0

_ 3. __
U(x) = /Qp(y) G(x,y) d°x pp m\I/anyG(x, y) dSy

Esto es equivalente a encontrar la carga en la superficie.

2. En el caso de condiciones borde de Neumann, donde la densidad de carga 0W(x)/0nx =|,c4q 0 esta
definida en el borde, forzamos 0G(x,y)/ 8ny|yE sq = 4m/S para y en el borde tal que

ov

1
ply) G(x,y) &’y + 4—]{ G(x,y)=— dS,
T Jsa

U(x) =<V >g —l—/ on
y

Q
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La razén para esta ultima condicion de borde es para satisfacer

j{ mdgy:_@r?go
59

ony

La solucién general para ¥ se construye con el uso de funciones de Green, las cuales construiremos a partir

de

Método de las imégenes.

= Expansion ortonormal de la funcién de Green.

Expansion de los valores propios del problema relacionado.

Solucién numérica (ver apéndice)

Problema: Cual es el teorema de Green equivalente en 2D

Problema: Cual es el teorema de Green equivalente en 1D

6.3. Meétodo de las imagenes

En particular, si situamos cualquier set de cargas fuera de €2, entonces al superposicién de los potenciales
satisfacen la condiciéon ya nombrada

VG (x,y) = —4mdP(x —y) x,y €9 (2)

dentro de €2, esto quiere decir que la contribucién de las cargas exteriores a la densidad de carga interior es
cero. Si logramos con este set de cargas exteriores, aparte de la carga interior, satisfacer las condiciones de
borde, entonces tendremos una solucién dentro de €2. Pronto veremos que esta solucion es la tinica solucion
al problema de borde. Por lo tanto, en orden a resolver la ecuacion de Poisson, dentro €2, tenemos la libertad
de usar cualquier distribucion de carga exterior al borde para satisfacer las condiciones de borde requeridas.
Este es el método llamado de las imagenes.

Problema: Una carga frente a un plano conductor (a tierra).

Es facil hallar la carga imagen. Podemos entonces calcular la carga superficial y la fuerza en la carga real
q. Es interesante notar que la fuerza esta también relacionada con
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F:/27r(72 ds

lo cual es una declaracion general.
Problema: tiene ese signo?

Problema: Una carga dentro de una esfera conductora (a tierra).

El borde se fija en ¥ = 0. Ponemos otra carga exterior, en diferentes ¢» y ds, pero en la misma linea. Esta
carga ¢o estd en la realidad inducida sobre la superficie.

q1 X q2
|X — d1k| |X — d2k|
En Mathematica podemos escribir este problema como:

v = \Ilm + \I/out -

1
\I][x—7y—7z—] - d - d

Ve —d?2+y2+22  (z—dl)? +y?+ 22

Podemos buscar la solucion
s = Simplify[Solve[{V]R,0,0] == 0, ¥[-R,0,0] == 0}, {ql,d1}],d < R&&d > 0]

que, dado los pardmetros y las condiciones de borde, obtenemos

2
{q1 — %,dl — %}

El potencial es
Uiz ,y,z|=VYzy,z]/s

lo que da

q qR

V(—d+z)? +y? + 22 d\/( R2

2
- 2 2
P +.r) +y +z

Podemos graficar los contornos como se muestran en Fig. 4, donde también se muestra las lineas de campo.
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CountourPlot[¥[z,0,z]/{R — 1,d — 08,q — 1}, {x,—1,1},{z,—1,1}, CountourShading— False,
AxesLabel—{“x”,“z” }, PlotPoints—50)]

Fi el dYLi nes Fi el dYLi nes

0.25 0.5 75

Figura 4: (a) Equipotencial, (b) Campo eléctrico dentro de una esfera conductora a tierra.

Podemos calcular la carga superficial inducida en la superficie de la esfera

10V

7= Am Or —a

y la fuerza que siente la carga real.
Problem: El origen es un punto estable, o inestable?

Las lineas de campo se definen como las lineas que su tangente es paralela al campo electrico, esto es
dr E
ds |E|

las cuales se pueden ver en la Fig 4, y claramente son ortogonales a la superficie, como deberia ser. Resul-
tados similares pueden ser obtenidos para una carga puntual fuera de una esfera conductora.

Problema: Esferas conductoras con hemisferios a diferente potencial. Hemos construido la funcién de Green
por el método de las imagenes para el potencial fuera de las esferas conductoras con ¥ = 0 en el borde de
la esfera. Necesitamos integrar con las condiciones de borde de Dirichlet. Note que esto es equivalente a la
densidad de carga en la superficie.

Problema: Una carga g fuera de una esfera aislada con carga Q, pero conductora. Una esfera a tierra
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(equipotencial) tiene una carga ¢;. Sumando @) — ¢o, distribuido uniformemente sobre la superficie, alcan-
zamos una carga total (). Esto significa, que es el equivalente a una carga puntual de magnitud ) — ¢, en
el origen. El potencial y la fuerza pueden ser construidos por superposicién

41 i q2 +Q—Q2
|x —dik | |x—dk| | x |

Lo mismo se puede hacer con una esfera conductora en la tierra en un potencial V especifico.

U= qjin+\pout =

Problema: Una esfera conductora (a tierra) en un campo eléctrico uniforme asintético. Es construido en
una forma similar, con 2 cargas de distinto signo a una distancia R >> a, y sus dos imagenes dentro de la
esfera. El limite tiene sentido cuando 2¢/R* — FE,,.

Problema: Construya por imagenes la funciéon de Green para un plano conductor en 1D

6.4. Expansion de la funcién de Green en bases ortonormales

Hemos visto en que en general, todo lo que necesitamos hacer es resolver la ecuacion de Laplace, y esta es
la solucion generada para construir la funciéon de Green. Supongamos que queremos solucionar la ecuacion
de Laplace dada una condicion de borde. El apéndice explica la expansion de la solucién en términos de las
bases ortonormales de la ecuacién de Laplace en distintos sistemas de coordenadas (Ver apéndice C):

Rectangulares.

Polares.

Esféricas.

Cilindricas.

De las cuales podemos solucionar problemas de valor de borde en diferentes geometrias.

Para encontrar la funciéon de Green en una geometria dada, expandamos la funciéon de Green en términos
de los modos normales de la ecuacion de Laplace para esa geometria, y resolvemos directamente para los
coeficientes desde

ViG(x,y) = -4m6®(x —y) x,y €

con la condicion de borde Dirichlet

G(Xv Y)|8Q =0
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6.4.1. G en coordenadas esféricas para espacio infinito por método directo

Podemos expandir la funcién de Green en términos de los modos normales de la ecuacién de Laplace en
coordenadas esféricas

) Y4

- Z Z Aé,m (Tv Tlv 9/7 qb,) nvm(97 ¢)

=0 m=—¢

donde

59 — ) = 2= ZZYM@/ ) Y (6, 0)

=0 m=—¢

Dado que el problema es lineal y la funcién delta ya tiene el coeficiente para Y%, (0',¢'), por simetria
podemos expandir G como

00 l
=2 3 alr (0, 6)Yin(6,0)

(=0 m=—¢
Usando la ortogonalidad de los armonicos esféricos, podemos encontrar
1d? (041 4
LEg) D) dwe

2

r dr? r
de donde obtenemos la solucion

, Art + Br=) <y
QE(T>T) = Alrt + By~ 4 > r!

Ahora necesitamos involucrar las condiciones de borde. Como estamos hablando del espacio infinito, tenemos

A(r')rt r<r rt
/
= 1 = _—
ge(r,7") B(T’)—ZJr1 r > Ti—H
r

donde en la dltima expresién hemos hecho cumplir la continuidad en 7/, y la simetria G(z,2") = G(2/, x).

El valor de C' es obtenido integrando desde r = r’ — ¢ hasta r = r’ 4+ ¢ la ecuacién de arriba para g

. Ld*(rg;) ((£+1) 4
e |2 - A g — i
d rerite 47 47
e R T
y la funcién de Green es
/ /
Glx,x) = =57 X,| ZZ %H 751 Yin(0'.0) Yin(0.9)

=0 m=—{
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donde

r~ = maxr,r'] r< = min[r,r|

En el caso de simetria azimutal tenemos

1 1 s
—_— = — N (A 4 B p
[ x=x'| Va2 + 22 — 2z’ cos vy gz_;( SR ) Pe(cos)
1

|z —a'|

o
= Z % Py(cos~y) = cosy = cosf cos§ + cos(¢p — ¢') sin O sin ¢’
=0 '~

La tltima expresion puede también ser encontrada evaluando x y x’ en el eje z (donde v = 0), y expandiendo
1/]x — x/|. En esta notacién r- es el més largo entre x y x’, y 7~ el opuesto. Es interesante notar que
somos capaces de encontrar toda la solucién sélo evaluando la expresion anterior donde cosvy = 1 y luego
multiplicando cada término por Py(cos?y).

6.4.2. G en coordenadas esféricas entre dos esferas conductoras por método directo

Podemos expandir la funcién de Green en términos de los modos normales de la ecuacién de Laplace en
coordenadas esféricas. Nuevamente escribimos

o) l

G(X, X/) = Z Z AE,m(ﬁ 7,/’ 9/7 ¢/) }/f,m(e’ ¢)

{=0 m=—/¢

donde

N 00 l
53 (x — x') = o(r —r') Z Z Y/ (0',¢) Yim(0,0)

T2
=0 m=-I

Notemos ya que el problema es lineal y la funcién delta ya tiene el coeficiente Yfm(G’ ,@'). Por lo tanto
podemos expandir G' como

oo V4
Gx,xX) = D) alr )V (0,6) Ym0, 9)
=0 m=—¢
donde obtenemos
Ld*(rg))  1(1+1) 4 ,
rodrr 2 gl——r—25(r—7‘)

La solucién es

, Art 4+ Br=U+D oy
gl(T’,T) = Alrt + B/rf(l+1) r> 7
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donde hemos usado la ortogononalidad de los armodnicos esféricos. Ahora necesitamos involucrar las condi-
ciones de borde. Tomamos el espacio vacio entre dos esferas conductoras de radios a < b y recordando que
r’ estd en el medio, tenemos

A(r') (rl — —ajl:f) r<r 21 1 o
r l
/ T

AN
gl(T,T) = / 1 rl 7nz<+1 >+1 2+l
B(r") S T r>r

donde en la dltima expresién hemos hecho cumplir la continuidad en 7/, y la simetria G(x,x’) = G(x/,x).
El valor de C' es obtenido integrando desde r = 1’ — ¢ hasta r = r’ 4+ ¢ la ecuacién de arriba para g

r=r'4¢ 1 d2<7agl> l(l + 1) 4
J_ T [; e e —ﬁé(r —7)
r=r'+e
d(rg;) o 4r . A 1
dr

y la funcién de Green es

00 ¢ ¢

, 47 1 ., a*ttt 1 rt .
G(X’X) - Z Z 20+ 1 (1 (a)2e+1> <™ ré<+1 7n£>+1 o p2e+1 Yém(e ¢ )Yfm(e’ ¢)

£=0 m=—¢

b

6.4.3. G en coordenadas esféricas fuera de una esfera conductora por método indirecto

Supongamos que sabemos la solucién de G en una geometria simple. Podemos usar esta solucion

ViG(x,y) = =476 (x — y)

para construir GG para geometrias mas complicadas

G(xy) = G(x,y) + F(x,y)

con

V2F(x,y) =0 Flso=0

Por ejemplo, tomemos la funciéon de Green para el espacio infinito

A

[eS) ¢
1 Ar 7t
Gry)=—— =33 T V(0,6 Vim0,
(X7Y) |-T_y| Ezom:7g2€+17“£>+l K,m( agb) l, ( Qb)

luego el potencial G puede ser escrito como
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A > 47 TZ B * AN

Donde F' puede ser escrita en la forma mas general, y hemos incluido la linealidad del problema en los
coeficientes A y B. Notemos que las condiciones de salto en x = y esta incluida en la expresién de G. Por lo
tanto s6lo nos tenemos que preocupar de las condiciones de borde en x = a (note que a < y), y la condicién
en r — 00, la cual es A = 0. La solucion luego

12 2041

[e%9) l
4 r a .
Clew =Y 3 5 (e = grsmyes ) Yo @ 6)Ven(6:0)
=0 m=—¢

las cuales son la mismas soluciones como arriba con b = 0.

Problema: Encuentre el potencial produci-
do por un anillo de carga de densidad A
(concéntrico con la esfera) fuera de una es-
fera conductora a potencial V, cos 8 sin ¢.

Problema: Encuentre el potencial produci-

do por un anillo de carga de densidad A\ de 1
radio R < a dentro de un cilindro de radio a ~_ >
y largo L. El anillo esta puesto perpendicular )\

al eje de simetria del cilindro en L/2.

36



Problema: Encuentre el potencial externo
producido por una esfera de radio a que tiene
un potencial ¥ = e~ sobre su superficie.

(gh}

Problema: Encuentre el potencial producido por un anillo de carga entre dos esferas, asumiendo G(r,0) y

G(r,0,9).

6.4.4. Expansién en bases de un problema relacionado

Otro método para obtener las funciones de Green es expandiendo en un sistema completo de los valores
propios de un problema relacionado. El problema relacionado es

VAU + (f(x) + )W =0

el cual es satisfecho para ciertos valores {\,, ¥, }

V2, 4+ (f(x) + X)W, = 0 — /@%wmfx:&m

Otros valores dan las soluciones no convergentes o las singulares. La funcion de Green puede, entonces, ser
encontrada por

V2G(x,X) + (f(x) + M)G(x, %) = —476®) (x — x)

G(x,x') =3, an(x)Uu(x) =47 >, W

Notemos que la ecuacion para las funciones propias pueden en principio ser diferentes desde la ecuacién
satisfecha por la funcién de Green.

Problema: Funciones propias en el espacio infinito.

Asumamos la ecuacién de ondas

1

1 1 eik'(x—x’) 5
A=0 — ’X_X,|_27T2/ o &k
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7. Magnetostatica

Biot, Savart (~ 1820) y Ampere (~ 1820) propusieron que la fuerza inducida por un cable que lleva una
corriente I; con un elemento de longitud dl; en un cable que también lleva una corriente I, con un elemento
de longitud dl; es

[1[2 dﬁg X [del X (X2 - Xl)}

2,1 ~ C2

|1 — X

Esta dependencia fue descubierta por cuidadosos experimentos. En un sentido esto define la “extrana
cantidad” denominada corriente. En el sistema CGS la constante de proporcionalidad es & = 1. Las corrientes
son medidas en statamperes (107%/3 Amperes).

Las corrientes fueron una entidad misteriosa hasta que fueron descubiertas la conexion entre las cargas y
las corrientes. Si definimos

p(x,t) = Z 0™ (x — x,(t))
J(x,t) = Z givi(£)0® (x — x;(t))

claramente tenemos la ecuacién de continuidad macroscépica

dp
Liv.J=0
o+

Para casos magnetostaticos, la dependencia del tiempo no esta incluida.

Si la corriente no esta concentrada en un cable conductor infinitesimal, definimos la densidad de corriente
como la corriente por el area representativa

J=ne<v>, —- Jd&zr=1I1de

Veremos mas adelante que esta funcién continua es un promedio espacial de la velocidad de la carga < v >,
en alguna escala particular intermedia, si estd existe. Esto asume que hay tanto una escala espacial (y
temporal) donde tal promedio es significativo, i.e., donde las desviaciones son pequenas en todo tiempo,
mirar Fig. 1 y andlisis mas adelante.

8. Campo magnético y potencial magnético

Un campo magnético puede ser definido en una forma similar como en el caso de la electrostatica, pero se
requiere que

F:£7{d£y><B(y) — B(X):£j§

C C

e, x (x —y)
[ x =y
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y pasando a una formulaciéon macroscopica

le/J(x)xB(x) Br - B(x)zl/J(y) Xx=¥) s,

¢ ¢ [ x=y[?
Esta definicién implica la bien conocida “regla de la mano derecha”. Debemos siempre ser cuidadosos sobre
esta definicién, ya que incluye una “fuerza propia”, similar a una “energia propia”, efecto que se produce
cuando x = y. Por lo tanto, solo tiene sentido la fuerza de un “grupo de cargas” sobre otro “grupo de
cargas’ .

Hemos asumido la idea de superposicion, lo cual esta bien siempre y cuando no vayamos al régimen de
mecanica cuantica, éptica no lineal, etc.

Podemos facilmente definir el potencial vectorial

- (122, 0)

con lo cual tenemos la ecuacién de Maxwell

Como habiamos visto en el caso electrostatico

V- -E=4nmp
VxE=0

fue 1til tener el rotor y la divergencia del campo. Entonces, qué es V x B? Tomemos

V x B(x) — VxVxE[%dgy}

S Ef 10 (2y7) ] - [o07 (555)
- 47TJ { f|x Yi }
- 4”3( )_lﬁv{“(yﬂ}

y por lo tanto

10E
c ot
Obtenemos el resultado integrando por partes los términos de la forma V-(fA). Para el caso magnetostatico

el ultimo término es cero, este tltimo término fue propuesto por Maxwell completando las llamadas ecua-
ciones de Maxwell.

4
V xB=""J(x)+
C
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Podemos definir el potencial vectorial como
1 J
A(x):—/ﬂd3y+vw - B=VxA
c) [x=y]
La eleccién de ¥ depende del gauge que elijamos. Es ttil utilizar el gauge V - A = 0, ya que nos da que

V2A=-—"-J
C

lo cual es lo mismo que la ecuacién de Poisson, pero en forma vectorial. En el caso de la electrostatica, en
general, no conocemos las corrientes inducidas en los bordes.

Supongamos que tenemos un campo vectorial que

V-A#0

entonces podemos elegir otro campo vectorial

A=A+VVU
que da

V- A=V -A+VV

Por lo tanto es factible encontrar un ¥ tal que

VW =-V-A

y por lo tanto podemos asumir

V-A=0

9. Método de soluciéon

En el caso de la electrostéatica el borde contribuyd al potencial via la generacién de cargas superficiales.
Estamos interesados en los problemas de valor de borde donde el potencial fue definido en la superficie. En
el caso presente

V-B =0
VxB = 4—7TJ

Cc

la construccién de la funcién de Green es un poco mas complicada en relacién con los conceptos equivalentes a
los conductores de la electrostatica. Lo que requiere entender el comportamiento del medio bajo la presencia
del campo magnético, lo cual genera corrientes microscopicas, lo que depende del tiempo y es en general un
problema tiempo dependiente. 7cudl es el campo magnético dentro de un conductor?
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Tomemos estas ecuaciones cerca de una interfase y tratemos de deducir como cambia el campo al cruzar
la interfase. Tomemos una caja infinitesimal de tapa y fondo dS, y lado dh — 0 (ver Fig. 3a). Usando el
teorema de Gauss para la integral de volumen obtenemos

$,V-Bd* = 0
$.,B-AdS = 0
(Bz — By) - dS

con lo cual obtenemos una condicién de borde para los campos

Q
o

(BQ—Bl)ﬁZO

Para el caso de campo tangencial, tomemos un rectangulo perpendicular, como se muestra en la Fig. 3b.
Integrando sobre esta superficie que atraviesa la interfase tenemos

$§(VxB)-0dS = 4n§J-0dS
§B-de — 047 §J-hdS
(By —Ey) x i dl ~ 4r [ Jydhdl

en el limite dh — 0, con

K = lim / J.idh
dh—0
Por lo tanto, la carga de la superficie genera una discontinuidad en el campo magnético tangencial debido
a una corriente superficial. Con lo cual obtenemos la segunda condicién de borde

(BQ—B1> x n = 47K

donde K es la corriente superficial que se induce por la discontinuidad en el campo magnético tangencial.

En algunas situaciones es posible construir una corriente de imagen para situaciones de condiciones de borde
simples. Estudiaremos tales casos en el proximo capitulo. Por ahora, nos concentraremos en la situacion del
espacio infinito.

Problema: El campo magnético producido por un loop de corriente de radio R.
Este problema puede ser solucionado por integracion directa,

Bzzfdﬁx(x—y)

c Ix —yl?
con
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y = R[cos ¢, sin ¢, 0]

e d1d¢ [~ Rsin ¢, R cos ¢, 0]do

Pero ahora estudiaremos usando la funcién de Green en el espacio infinito. La densidad de corriente en
coordenadas esféricas es

0 =9 509 — = /2)[— sin by, cos 6, 0]

a

J=1

con lo que podemos integrar usando Yy, (0, @) = Cy., Py (cos 0)e™?,

A & Yom (0,0 rt
A(Ta07¢) = ?Z%/dng(Y)ﬁn,m(anst)
£m

dmla rt e Yim(0,9) . 2 _imiy e~ity _ ity piby 4 p—idy
- Z Z Z+1 2£_|_ 1 C[7mpz (O> 0 d¢ye 27/ I 2 70

872l a ~— 5o S S 5o
— m imao m,—1 m,1 YUm,1 m,—1
Z Z €+1 20 1|C@m‘ Py (cos8) P (0)e { 2% ; 5 ,0}

Dado que
Yv@,*m(a ¢) = <_1)mYZm(67 ¢)

o lo que es equivalente

Com Py (cosb) = (—=1)"Cy_,,, P, ™ (cos 8)

Para el caso m = +1, tenemos finalmente

drla 1 1 )
A= c Z 20+ 17 €+1|C€1| Pe (0)P; (cos )¢
donde ahora > = Maz[r,a] y r< = M m[r, a]. Dado que

(=17 n_%+nl+1
o[

De esta expresion podemos calcular el campo magnético lejos del loop r >> a como

¢ impar

¢ par
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o0

rla®\ [2cosd —1)"(2n+1)! a*"
B, = ( ) 3 -1-2;( ( ) P21n+1(COS‘9)]

c 2nn| ,,a2n+2

By =

<7rla2) _sind +§:(—1)”(2n+1)! a®"

c 73 2n(n+ 1)1 r2nt3

P;n+1<cose>]

n=1

El término en los paréntesis redondos es el momento del dipolo magnético para el loop plano (4rea por la
corriente). Este resultado serd ttil cuando discutamos el medio magnético en el préximo capitulo.

10. Fuerza de Lorenz

Ahora podemos calcular la fuerza que siente un carga q en la presencia de un campo magnético y un campo
eléctrico

p(x) = q0% (x —x(t))  I(x) = qv()0?(x - x(t))

utilizando las definiciones de arriba, tenemos

dv 1
mos = /p(y)E(Y)d3y+ E/J(Y) x B(y)d*y
que nos da
dv
mE = ¢E(x) + ¢g— x B(x)
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11. Soluciéon numérica

Estamos interesados en resolver numéricamente la ecuacién de Laplace y la de Poisson

V -E = -V = 47p

En general muchos de estos problemas quedan explicitos como problemas con condiciones de borde, no
como un problema inicial que se puede integrar con métodos estandar.

11.1. Problemas en 1D

Para el caso de una dimension tenemos que resolver

d>v

i —dmp(z)

que en principio se puede encontrar como

U(z) =U(0)+ ¥'(0)x — 4r /090 dz /OZ p(y)dy

Podemos notar que para integrar esta ecuacion necesitamos ser capaces de hacer la integral y ademas tener
dos condiciones de borde en x = 0.

Muchas veces la integral no se puede resolver en forma analitica y en otras no tenemos las condiciones en
el mismo punto, sino mas bien tenemos condiciones de borde ¥(0) y W(L).

11.1.1. “Shooting Method”

Para esto debemos formular un “shooting method”.

Problema: Supongamos que tenemos que resolver

>
i —4mp(z)

que en principio se puede encontrar como

U(z) =W(0)+ ¥ (0)r — 4r /Ow dz /OZ p(y)dy

Podemos notar que para integrar esta ecuacion necesitamos ser capaces de hacer la integral y ademas tener
las condiciones de borde en z = 0.

Muchas veces la integral no se puede resolver en forma analitica y en otras no tenemos las condiciones en el

mismo punto, sino mas bien tenemos condiciones de borde ¥(0) y W(L). Para estos casos, podemos utilizar
un “método de disparo” para encontrar la solucién en forma numeérica.
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Por ejemplo, si queremos resolver el problema de

p(x) = sin(cos[z]) v(0) =1 U(l) =4
Para eso definimos una funcion en MATHEMATICA

fun[zo] := (plz]/.NDSolve[{p"[x] == —4Pip[z], p[0] == 1,p'[0] == xo},p[z],{z,0,1}])/.x— > 1

con lo cual podemos encontrar el valor de W(1) dado un valor inicial z, = ¥'(0). Ahora tenemos que
encontrar el cero de la funcién

g(xo) = fun[zo] — ¥(1)
Para encontrar el valor de ¥'(0) que de W(1) = 4. Esto se puede hacer con el método de la secante dados
dos valores iniciales so = 1, s; = 3,
Sp = Sn—1
9(sn) — 9(8n-1)
el cual converge rapidamente a s — 7,2, y la solucion se muestra en la Fig. 5.

Snt1 = Sn — 9(Sn)

5
4
3
2

1

Figura 5: Solucién al problema en una dimension

En MATHEMATICA podemos hacer uso de un método mas eficiente que esta dado por FindRoot.

11.1.2. Elementos finitos

También es posible construir directamente una aproximacién numérica del funcional

sm:/gm

discretizando la funcién f(z) en termino de funciones localizadas
fl) =Y fihi(x)

donde h;(x) es el elemento finito alrededor del punto de la grilla (z;). Por ejemplo,
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|z — a4
hi(z) = Ax
0 |z — ;| > Az

|z —z;| < Ax

con x; = tAx. Pero hay otras posibilidades como una cuadratica centrada en z; o una Gaussiana centrada
en x;. Podemos calcular la integral de arriba en funcion de f;. Luego de optimizar esta expresion sobre los
valores desconocidos de f;, obtenemos la solucién esperada. En MATHEMATICA podemos utilizar NSolve
si el problema es polinomial, o FindMinimum si el problema es no-lineal en f;. Para discretizaciones mas
avanzadas, es posible que tengamos que usar un método mas global como algoritmos genéticos o CSA, ya
que pueden existir multiples minimos.

Ejemplo: Supongamos que queremos resolver el mismo problema de arriba

d>v

i —dmp(z)

con

p(x) = sin(cos[z]) v(0)=1 U(l) =4

En este caso sabemos que este problema se puede escribir como un funcional

1
g = 5\11/2 — 47I'p‘11

Por lo tanto re-escribmos la accion como

SH¥;} = Z AP / dahi(x)h(z) — 47rz \I/i/o dzhi(z)p(x)

Con la definicién

Ay = /0 deh (@) (2)

b; = 47r/0 dzhl(z)p(x)

donde ¢ =0,...,Nyj=0,...,N. Entonces se puede escribir como una matriz actuando sobre el vector
\Il: (\If(],...,\I’N),

S[¥] — %\IJTA\I/ — 97

Notemos que las condiciones de borde tienen que ser satisfechas por
= W;hi(0) U(1) =) Wihy(1)
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que se usan para despejar dos ¥;. Para nuestros elementos finitos triangulares tenemos

Uyg=1 Uy =4

Con estos elementos finitos podemos calcular inmediatamente

por lo tanto

1 N N
S=3 > VAV — ;) b,

n,m=0

Si ahora buscamos el éptimo

dsS
v, T
obtenemos
N
> AU, —b; =0 i=1,..,N—1
n=0

porque la matriz A es simétrica. Notemos que las condiciones de borde estan incluidas aqui ya que la
sumatoria va de n = 0 hasta m = N. Separemos los términos correspondientes a condiciones de borde

N-1
ZAi,n\Ijn:bi_Ai,Oqjo_Ai,N\DN Z:1,7N—1
n=1

Podemos re-escribir entonces esto como
AV =p
y la soluciéon es entonces
U =A%

Problemas mas complicados también se pueden enfrentar.

11.2. Problema en 2-D y 3-D

Para el caso de una dimensién tenemos que resolver

>V v

2t W —4mp(x,y) ¥l

en el borde.
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Figura 6: Soluciéon al problema en una dimension con elementos finitos

11.2.1. Solucién por relajacién

Es posible probar que el teorema del valor medio para el potencial, en el cual el potencial en el centro de
una esfera, sin ninguna carga, es igual al potencial promedio en la superficie de la esfera. Si asumimos una
discretizacion esto puede ser usado por iteracion para obtener el valor convergente para el potencial en una
region sin ninguna carga, y donde las condiciones limite para el potencial es conocida

gy _ L [\I,m)
6

n n n n 471'
ik i1k T \Ijz('—)l,j,k + \115 Lt \Ijz(,j)—l,k + \D(j?k-',-l + 0 ?k—l + FA»TQAQQAZ?PLJ}IC

n
J+LE i, (2
asumiendo una condicion de borde conocida, la soluciéon converge a la actual solucién de la ecuacion de
Poisson. En otros sistemas de coordenadas es necesario discretizar apropiadamente. La extensién a 1D o

2D es trivial.

Problema: Descargas fractales

Asumamos que definimos una descarga fractal como un sistema de puntos adyacentes que estan en un
potencial fijo ¥ = 1, y el infinito (en este caso, un circulo de radio R) en ¥ = 0. Dada esta configuracién
de potencial, podemos usar el método de relajaciéon para calcular el potencial el cualquier lado. En dos
dimensiones el método de relajacién es

(1) _ L (o) (n) (n) (n)
Vi, = 4 [\I{H—l,j TVt Vit \Ili,j—l]

Por lo tanto conocemos el campo eléctrico en cualquier lado, y especialmente en los puntos adyacentes a la
descarga. La descarga se desarrollara agregando en los puntos adyacentes a la descarga. Un punto tiene la
probabilidad de ser agregado a la descarga proporcional a un poder 7 en el campo eléctrico local

» n
Pm ~ Ei,j

Una vez que el punto es agregado, recalculamos el potencial y repetimos la operacién, Usamos el codigo de
potencial escrito en C++4 para calcular el fractal siguiente. El resultado estd dado para n = 1,0

El potencial es mostrado como los contornos de color. Obviamente si n = 0 tenemos una estructura en dos
dimensiones, en cambio si 77 va hacia infinito tenemos una linea de una dimensién.
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Figura 7: Descarga Fractal

11.2.2. Solucién directa

También es posible construir una solucién numérica resolviendo la ecuacién de Laplace en forma directa
desde su discretizacion. En forma implicita podemos escribir en la aproximacién a primer orden de las
derivadas
Wigrj +Winy; = 2% Wi + Vi1 — 20,
2 + 2 = —dmpi;
Az Ay

Tenemos que resolver este set implicito de relaciones, pero donde estdan mezclados condiciones de borde
con valores que desconocemos. La idea se separar los valores que conocemos de los valores desconocidos en
forma explicita

A\I}:B — \I]:AilB

Asi se puede resolver el problema. De hecho la subrutina “Solve” de MATHEMATICA puede ser muy
util en estas situaciones. Notemos que otras discretizaciones son también posibles. Lo interesante, es que
en principio una vez que resolvemos un problema, todos los otros problemas (con condiciones de borde
similares) estan resueltos.

Problema: Lente electrostatico. Pretendemos resolver el problema

U(r<1l,y=2405)=V(xr>4,y=205)=—-1 U(2<x<3,y==£05)=0

en [0,5] x [—0,5,0,5] con una interpolacién lineal entre los electrodos en el borde. Utilizaremos la funcién
de MATHEMATICA NDSolve para encontrar una solucién numérica.
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ny = 20; nx = 50; pl = -1; pr = -1;

stp = {pL, pl, 0, 0, pr, pr};
stx = {0, nx/5, 2*nx/5, 3*nx/5, 4*nx/5, nx + 1};
f= Interpolation[Transpose[stx, stp], InterpolationOrder — 1];

eqna — Table[-4*afi jl+afi+1,j]--ali-Lj]-afi,j+1]-+afij-1]==0,{i.2,nx} {j.2ny}
eqnl = Table[a[i, 1] == {[i], {i, 1, nx + 1}];

-
[ali

eqn2 = Table[a[i, ny + 1] == {]i], {i, 1, nx + 1}];

eqn3 = Table[a[l, j| == pl, {j, 2, ny};

eqnd = Tablelanx + 1, j] == pr, {j, 2, ny}};

eq = Flatten[{eqna, eqnl, eqn2, eqn3, eqn4}|;
var = Flatten[Table[al[i, j], {i, 1, nx + 1}, {j, 1, ny + 1}]];

sol = Flatten[NSolveleq, var|[;
Dada la solucién, ahora podemos reconstruir el potencial como

Az = 0,1; zmax = nzAx; ymax = nyAx/2;
U = Interpolation|Flatten[Table[{iAz, jAx — ymazx,ali + 1, j + 1]/.sol}, {i,0,nz}, {7,0,ny}], 1]];

gl = ContourPlot[V]z,yl, {z, 0, xmazx}, {y, —ymaz, ymazx}];

el cual se muestra en la Fig. 8. Ahora podemos calcular el campo eléctrico

tmax = §;

efzrlz_,y-] = D[¥[z,y], z;

efy[flj ,y-] = D[¥[z,y], y;
ex[z_,y_] = I flz >= 0&&r <= zmax&&y >= —ymazr&&y <= ymaz,efz|z,y],0];
eylr_, y | = If[z >= 0&&z <= zmaz&&y >= —ymax&&y <= ymaz, efyz,yl,0];

y programar el calculo de la trayectoria de electrones

trafzo_,yo_,eo_,0_]:= (

solu =NDSolve[{x” [t|==ex[x[t],y[t]],y” [t|==ey[x][t],¥[t]],
x[0]==x0,y[0]==y0,x’[0]==e0*Cos[f],y’[0]==eo0*Sin[]}, {x[t], y[t]}, {t, O, tmax}];
x1[t_] = x[t] /. Flatten[solul;

ylt_] = y[t] /. Flatten[solu];

Return[ParametricPlot[{x1[t], y1[t]}, {t, 0, tmax},PlotStyle — {RGBColor[1, 0, 0]}]];
)

s = Table[tral0.1, yv, 0.01, 0], {yv, -0.5, 0.5, 0.1}];
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Finalmente, podemos grafical todo junto como se muestra en la Fig. 8, que muestra que el lente electrostético
es convergente.

gra = Showlgl, s, DisplayFunction — $DisplayFunction, PlotRange — > {{0, xmax}, {-ymax, ymax}},

I M) NN 7777}],
Y

Frame — > True, FrameLabel — > {*x”"y” )77,

=

=

Figura 8: Solucién al problema en dos dimensiones con las trayectorias de electrones superpuestos. La
trayectoria de los electrones en un lente electrostatico definen la distancia focal del lente. Esto es un lente
convergente.

Las trayectorias en rojo se calcularon numéricamente utilizando

d*r q
— =——VVU
dt? m
Notemos que podemos normalizar
- v
U = v Y= % T = Upt

con lo cual todo el problema queda determinado en termino de un parametro adimensional. Es factible
entonces graficar la distancia focal y la magnificacién del lente electrostatico como funcion de este parametro.

11.2.3. Solucién por elementos finitos

En realidad el método de elementos finitos tiene que ver con un procedimiento mas general para resolver
problemas de este tipo. Notemos que la ecuacion de Laplace viene de un principio de optimizacion

L[V] = / (VO)? — 4mp¥) da® — L =0— V2V = —47p

Por lo tanto uno puede asumir una forma de interpolacion
\I/(LU, y) = Z \I,Z,jh'(xa Y, Zq, y])
2
donde h(z,y,z;,y;) es el elemento finito alrededor del punto de la grilla (x;,y;). Usando una aproximacién
lineal
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h(l‘7 Y, Z;, yz) = h({lf, wz)h(ya yz)
donde

|lv — x| < Ax

0 |z — x| > Az

con x; = iAx, se puede calcular la integral de arriba. Luego optimizamos esta expresién sobre los valores
desconocidos de V¥, ;. Aqui lo importante es ordenar apropiadamente los indices para poder escribir este
problema como

AU =b
y la soluciéon es entonces
U=A"

donde b contiene informacién sobre las condiciones de borde, y A es una matriz conocida.

Si tenemos condiciones de borde donde otro sistema de coordenadas es razonable, tenemos que evaluar el
funcional en forma apropiada.

Cuando las condiciones de borde no son regulares o rectangulares, es conveniente usar una grilla no rectan-
gular. Para estos casos es muy comun utilizar una grilla triangular (la mayoria de las veces se utiliza una
grilla variable con en la Fig. 9

Figura 9: Grilla triangular variable
Para estos casos, conviene utilizar una interpolacién lineal dentro de cada triangulo

U,(x,y) = a;o+ a1 + a; 2y

donde los coeficientes van variando en cada triangulo de area A; y dependen de la posicion de los tres
puntos que definen cada triangulo. Es posible hacer una transformacién de una interpolacién dentro de
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los triangulos a una descripcion en termino de elementos finitos sobre cada punto de la grilla, pero estos
claramente dependen de la posicién de los otros puntos del triangulo. El caso de una grilla regular es mas
facil. Notemos que el Lagrangiano en dos dimensiones es

/ (VU)’da® = Ay(a}, + al,y)

donde la suma es sobre los tridngulos. Notemos que puede ser mas facil organizar computacionalmente los
triangulos en termino de un método de refinamiento de la grilla, en lo que se llama un método adaptivo.
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Appendix

A. Convencion de las sumatorias de Einstein

Desde ahora, usaremos la convencion de las sumatorias de Einstein. Esto significa que dos indices en una
expresion implican una doble sumatoria explicita. Definamos

(A X B)k = 5i,j,kAiBj
~ {P(i,m i#jAk
Eigk =

0 otro caso

con P(i,j, k) = (—1)", con n el nimero de permutaciones de elementos adyacentes que necesitamos operar
sobre (i, j, k) para producir (1,2, 3), el cual vale 1. Por ejemplo,

P(2,3,1) = P(2,1,3) = P(1,2,3) = 1

P(3,2,1) = —P(3,1,2) = P(1,3,2) = —P(1,2,3) = —1

Esto es equivalente a ver si la rotacion ciclica de (4, j, k) da (1,2, 3) que tiene valer +1 o (2,1, 3) que tiene
valor -1. Por ejemplo,

P(2,3,1) = P(1,2,3) — P(2,3,1) =1

P(3,2,1) = P(2,1,3) — P(3,2,1) = —1

Con estas definiciones no es dificil darse cuenta que

EijkELmk = 0i105m — 0im0jy

con ¢;; = 0si¢=j,y cero en otro caso. Esta relacién fundamental ya que permite calcular productos como

(A X 3)2 = 5i’j’kAiBj5l,m,kAle
= (0i10jm — 0imd;1)AiB; A B,
= A’B*—(A-B)?
Ax(AxB) = A’B— A(A-B)
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B. Funciones Delta

Una funcion delta puede ser construida de muchas maneras

s Como un limite de una Gaussiana con ¢ — 0.

= Como un limite de d; ; en un espacio de dimensiéon N — oo.

La definiciéon que nos interesa es

dz—a)=0 z+#a
/5($—a)f(x) de = f(a) a€l

1

Es en realidad una distribucién. Para definir distribuciones apropiadamente es necesario definir medidas
(por ejemplo Lebesgue) Notemos que la integral de Riemman no tiene mucho sentido acé (excepto como
limité de algo mas continuo).

Entonces es claro que

fla) == [ 8- a)f@) da

I
y haciendo un cambio de variable tenemos

do(e)) = Y erpile =)

Notemos que aqui asumimos que las funciones son bastante suaves con ceros simples.

Otro resultado importante es

1
Vi—— = 4nd¥(x — y)
| x—y|
Primero es facil darse cuenta que en coordenadas esféricas tenemos
102 1 0 ov 1 0%
VW =-— (r¥) + ———— ( sinf— _—
ror? () + r2sin 0 00 (sm 00 > r2sin? 0 O¢?

con lo cual
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pero por el teorema de Gauss tenemos que

/ V2 Py = VU - ndS
Q o0

y usando
ov 10V . 1 0V .
UV=—7+—— _—
v 6TT+T89 +Tsin98gb
con lo cual
1 1
o[-
r r

y por lo tanto si integramos una esfera de radio R, obtenemos

/VZ( 1 )dgy: 0 x ¢ Q
Q |x—y| —A4r x€N

para cualquier R. Esto implica la expresion de arriba desde la definicién de la funcién delta.

Es también posible probar esto usando un procedimiento de limites con un potencial de la forma

B p(y)
W, (x) = /Q iy

Esto tiene que ver con el concepto de distribucion, la cual es un funcional lineal tal que

i 9 ) = 8 (fim v2)

n—0o0

para una secuencia convergente 1,,. También se puede utilizar el concepto de medida (por ejemplo Lebesgue),
tal que

/ T f()S[da) = £(0)

o

o en forma mas “suave” como

[ s@slan = [ st

[e.9] o0

donde
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1 x>0
H@)_{o z < 00

Asi, podemos definir la derivada de la distribucién

5[] = — / () H () = / () H (2)da = / T W(w)dH(z) = W(0)

[e.e] o0 (e}

En d dimensiones, tenemos

5@ [ex] = ]c[’"(S(d) (x)

y en el caso de la composicion

[ 5600 gtate ~ [ 15 150x)
Q

o0 V4|
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