
Capitulo 2:
Expansión multipolar y medios

En este capitulo discutiremos los comportamientos electrostáticos y magnetostáticos de cargas localizadas
y elementos de corriente, como también los efectos que estos producen en el medio.
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1. Multipolos eléctricos

Si asumimos una distribución de carga localizada con

|x− y| =
√
x2 + y2 − 2x · y = |x|

√
1 +

y2

x2
− 2

x · y
x2

podemos calcular el potencial usando la función de Green, para el espacio infinito,lejos de la fuente local
|x| >> |y| expandiendo

1

|x− y|
≈ 1

|x|

[
1 +

x · y
x2
− y2

2x2
+

3(x · y)2

4x4
+ . . .

]
En términos de los coeficientes mas usuales tenemos

p =
∫
ρ(y)y d3y

Qi,j =
∫
ρ(x)(3yiyj − y2δi,j) d

3y

podemos escribir

Φ(x) =

∫
ρ(y)

|x− y|
d3y ≈ q

x
+

p · x
x3

+
xiQi,jxj
x5

+ . . .

Podemos encontrar

n = x− xo → E1(x) =
3n̂(p · n̂)− p

| x− xo |3

En termino de una expansión en multipolos también podemos escribir

Φ(x) =
∞∑
l,m

4π

2l + 1

Yl,m(θ, φ)

xl+1

[∫
ρ(y)ylY ∗l,m(θy, φy) d

3y

]
=
∞∑
l,m

4π

2l + 1

Yl,m(θ, φ)

xl+1
ql,m

donde los coeficientes en los paréntesis cuadrados son los momentos de los dipolos. En general, el valor de los
momentos multipolares dependen de la elección del origen. Por supuesto asumimos que el campo evaluado
esta lejos de las fuentes, por lo que esta aproximación no es valida cerca de las fuentes como podemos ver
en la evaluación

∫
r<R

E(x) d3x =


4π

3
p inside

4π

3
R3E(0) outside

donde la esfera de radio R incluye y excluye las fuentes respectivamente. Por lo tanto, cuando consideramos
el origen debemos incluir
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E1(x) =
3n̂(p · n̂)− p

| x− xo |
− 4π

3
pδ(3)(x− xo)

Suponiendo que tenemos un numero de part́ıculas

ρ(x) =
∑
i

qiδ
(3)(x− xi) → p =

∫
ρ(x)x d3x =

∑
i

qixi

2. Medio eléctrico

Es importante notar que dado que la carga es discreta, aun en un medio macroscópicamente neutral hay
efectos macroscópicos como vimos arriba.

2.1. Derivación rápida

Si un medio esta presente entonces la carga, asumiendo un medio neutral, se re-orienta a si mismo para
producir dipolos, quadrupolos, etc. La contribución al potencial total es

Φ(x) =

∫ [
ρ(y)

| x− y |
+

P(y) · (x− y)

| x− y |3
+

(x− xi)Qi,j(y)(x− xj)

| x− y |5
+ · · ·

]
d3y

=

∫
1

| x− y |
[ρ(y)−∇y ·P(y)] d3y + . . .

donde P(x) =
∑

iNi 〈pi〉 es la densidad dipolar. Hemos usado

∇y ·
(

P(y)

|x− y|

)
=

∇y ·P(y)

|x− y|
+ P(y) ·∇y

1

|x− y|
e integrando por partes ∫

Ω

∇y ·
(

P(y)

|x− y|

)
d3y =

∫
∂Ω

P(y) · n̂y

|x− y|
dSy = 0

asumiendo que P → 0 en infinito. También asumimos que la contribución del dipolo es la mas relevante.
Podemos definir la ecuación para el campo vectorial D = E + 4πP a primer orden como

∇ ·D = ∇ · [E + 4πP] = 4πρ

Esta es la ecuación de la electrostática en materiales.

Problema: Una particular cargada dentro del material siente una fuerza producida por E o D?
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2.2. Derivación “un poco mas” correcta

Aqúı es importante tener en cuenta la escala intermedia λ que se usa para pasar del discreto al continuo, lo
que técnicamente significa promediar sobre un volumen de tamaño λ3 alrededor de la posición x y durante
un tiempo T alrededor del tiempo t, esto es

< F (x, t) >=
1

Tλ3

∫
λ3,T

F (x− y, t− τ)dy3dτ (1)

y tiene sentido si las fluctuaciones espacio-temporales son pequeñas (esto implica algunas restricciones de
densidad, etc.). Notemos que también podemos utilizar un kernel K(y) para suavizar los efectos de borde,
en vez de la función escalón que utilizamos aqúı. Notemos que en muchas situaciones, como materiales
normales, la escala debeŕıa ser λ ∼ 102 A, con lo cual podemos “borrar” las escalas atómicas y moleculares.
Por lo tanto la escala temporal apropiada T ∼ L/c ∼ 10−16 s es tan pequeña que efectivamente no hace
nada. Pero hay muchas situaciones, por ejemplo en plasmas, donde este promedio espacio-temporal tiene que
ser hecho con cuidado, porque T puede ser importante. Por ejemplo, cuando la desviación de la velocidad es
proporcional a la velocidad termal 〈v2〉 ∼ v2

T . Esto tiene particular importancia en plasmas diluidos, el cual
corresponde a la mayoŕıa del universo. En general si tenemos una ecuación que modela la microf́ısica las
fluctuaciones espaciales y temporales, como es el caso del plasma, nos damos cuenta que estas fluctuaciones
están amarradas a través de una función de dispersión ω(k), y por lo tanto el promedio temporal (o espacial)
es redundante. Aunque se puede hacer si es necesario. Es entonces suficiente calcular

< F (x, t) >=
1

λ3

∫
λ3
F (x− y, t)d3y

MacroMicro

Intermedia

Tλ

Figura 1: Escala para promediar

Macroscópicamente, tenemos una ecuación para el campo fluctuante

∇ · e = 4πρ̄ = 4π(ρ̄f + ρ̄m)

donde ρ̄ incluye tanto la carga libre ρf y las distribuciones de carga alrededor de las moléculas y átomos
ρm, que en general son neutrales en la escala λ

< ρ̄m(x, t) >= 0
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Para la enésima molécula, tenemos un set de cargas en las posiciones x
(n)
i que se están moviendo alrededor

del centro de masas xn(t) de la molécula. Dado que λ >> |x(n)
i |, podemos expandir

δ(3) (x− xn − xi) = δ(3) (x− xn)− x
(n)
i ·∇δ(3) (x− xn) +

∑
αβ

(
x

(n)
i,αx

(n)
i,β

2

∂2

∂xα∂xβ
δ(3) (x− xn)

)
+ . . .

de lo que podemos concluir que la densidad de carga que aporta la enésima molécula es

ρ̄n(x, t) =
∑

i q
(n)
i δ(3)(x− xn(t)− x

(n)
i (t)) = qnδ

(3)(x− xn(t))− pn(t) ·∇δ(3)(x− xn(t))

+
∑

αβ qn,αβ(t)
∂2

∂xα∂xβ
δ(3)(x− xn(t)) . . .

donde

qn =
∑
i

q
(n)
i pn(t) =

∑
i

q
(n)
i x

(n)
i (t)

Si definimos

ρ̄m(x, t) =
∑
n

ρ̄n(x, t) ,

ahora podemos promediar en nuestra escala intermedia para obtener

< ρf (x, t) > + <
∑
n

ρn(x, t) >= ρ(x)−∇ ·P(x) +
∑
αβ

∂2

∂xα∂xβ
Qαβ + . . .

donde ρ(x) (para mantener la convención estándar) corresponde a la densidad de carga macroscópica neta
o libre. Hemos usado que

∇ ·
(
p δ(3) (x− xn)

)
= p ·∇δ(3) (x− xn)

Tenemos las siguientes definiciones

P(x, t) =
1

λ3

∫
λ3
dy3

∑
n

δ(3) (x− xn(t)− y) pn(t)

donde pn(t) =
∑

i q
(n)
i x

(n)
i (t) es el dipolo eléctrico efectivo (y promediado en el sentido cuántico) de la

molécula n. Es importante notar que el promedio de una derivada espacial es

∂

∂xi
〈F (x, t)〉 =

1

λ3

∫
λ3

∂F (x− y, t)

∂xi
dy3 =

〈
∂F (x, t)

∂xi

〉
Lo mismo aplica para una derivada temporal. Notemos que si incluimos el promedio temporal en nuestro
promediador en Eq. 1, se obtiene el mismo resultado en los dos casos.
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Notemos que la contribución de la superficie tiene que ser pequeña, para que esto tenga sentido. De alguna
forma esto determina la escala λ. De la misma forma tenemos

Qαβ(x, t) =
1

λ3

∫
λ3
dy3

∑
n

δ(3) (x− xn(t)− y) qn,αβ(t)

donde qn,αβ es el tensor quadrupolar efectivo (y promediado en el sentido cuántico) de la molécula n.

La ecuación para el campo eléctrico macroscópico se obtiene promediando

∇ · E(x, t) =<∇ · e(x, t) >

y la ecuación de Maxwell macroscópica es entonces

∇ · E = 4π < ρ >= 4πρ(x, t)− 4π (∇ ·P) + . . .

donde E(x, t) = 〈e(x, t)〉 es el campo macroscópico. Podemos definir

Dα = Eα + 4πPα − 4π
∂Qαβ

∂xβ
+ . . .

y re-escribir la ecuación de Maxwell como

∇ ·D = 4πρ(x, t)

donde ρ es la densidad de carga neta macroscópica (o libre). Esta derivación ha incluido la dependencia
temporal de las variables para hacerla consistente con el caso dinámico.

Es importante darse cuenta que E es el campo macroscópico total (efectivo y macroscópico) que sienten las
part́ıculas en la fuerza de Lorenz

F = qE

y que además

E = −∇Φ

dado que aun tenemos

∇× E =<∇× e >= 0

correspondiente al promedio macroscópico de la ecuación microscópica.

Todav́ıa necesitamos una relación entre D y E, que en general nos dan las ecuaciones microscópicas del
plasma, o la mecánica cuántica. Si asumimos que el medio es lineal, entonces tenemos
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P = λcE

podemos escribir

∇ · (ε E) = 4πρ

con la definición de ε = 1 + 4πλc. Vemos que el problema se resuelve como antes, pero con la propiedad de
densidad de carga afectada por la contribución del dipolo. Veremos mas adelante que ε es en realidad un
tensor.

2.3. Condiciones de borde

Ahora tenemos las ecuaciones de Maxwell que incluye el medio

∇ ·D = 4πρ

∇× E = 0

Asumiendo la misma construcción del primer capitulo, tenemos

(D2 −D1) · n̂12 = 4πσ

(E2 − E1)× n̂12 = 0

la componente normal de la región 1 a la región 2, y la carga superficial es ahora una carga superficial real
(no inducida). Aun cuando σ = 0, hay una polarización en la densidad de carga superficial en el limite entre
los dos medios, y está dado por

σe = −(P2 −P1) · n̂12

Problema: Una cavidad esférica en un medio dieléctrico inmerso en un campo eléctrico uniforme

Notemos que en general ε depende de la posición, en particular en la interfase. Esto implica que la ecuación
de Maxwell

∇ · (ε E) = 0 → ε∇2Φ + (∇ε) · (∇Φ) = 0

Pero en la dos regiones (no en el borde) tenemos ε = const, por lo tanto el potencial satisface la ecuación
de Laplace.

∇2Φ = 0

Es importante notar que no hay cargas libres en el sistema, solo cargas de polarización. Dado que tenemos
Φ(r →∞) = Eoz = −Eor cos θ, podemos construir la solución general adentro y afuera de la cavidad como
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Φin =
∞∑
l=0

Alr
lPl cos θ

Φout = −Eor cos θ +
∞∑
l=0

Blr
−(l+1)Pl cos θ

ε

Figura 2: Cavidad en medio dieléctrico

donde no hay cargas externas, entonces ε no aparece todav́ıa. Solo aparece a través de las condiciones de
borde

−1

a

∂Φin

∂θ

∣∣∣∣
r=a

= −1

a

∂Φout

∂θ

∣∣∣∣
r=a

−∂Φin

∂r

∣∣∣∣
r=a

= −ε∂Φout

∂r

∣∣∣∣
r=a

→
Φin = −

[
3ε

1 + 2ε

]
Eor cos θ

Φout = −
[
1 +

ε− 1

1 + 2ε

a3

r3

]
Eor cos θ

El campo dentro de la esfera es constante proporcional a Eo, mientras el campo afuera tiene también una
contribución de un campo del polo eléctrico con momento

p =
1− ε
1 + 2ε

a3Eo

y la carga superficial de la polarización es

σe = −(Pout −Pin) · r̂ =
ε− 1

4π

∂Φ

∂r

∣∣∣∣
r=a

=
3

4π

ε− 1

1 + 2ε
Eo cos θ

Problema: Problema de apantallamiento dieléctrico. Supongamos que potemos un cascaron dieléctrico
entre los radios a < r < b. Encuentre el campo eléctrico

Las ĺıneas de campo eléctrico pueden ser calculadas numéricamente resolviendo el siguiente sistema de
ecuaciones
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dr

ds
=

E(r)

| E(r) |
Por lo tanto, la idea es programar un integrador que resuelva la trayectoria que parte del punto (xo, yo, zo),
con lo cual se calcula un sistema de trayectorias para diferentes condiciones iniciales, como se ve en la Fig.
3.

-2 -1 1 2
x

-1.5

-1

-0.5

0.5

1

1.5

yField Lines

-2 -1.5 -1 -0.5 0.5 1 1.5 2
x

-2

-1.5

-1

-0.5

0.5

1

1.5

2
yField Lines

Figura 3: Equipotencial y Lineas de fuerza para el problema de la cavidad en el medio dieléctrico, con
ε = 10.

Problema: Resuelva el potencial producido por un anillo de carga de densidad lineal λ a una distancia
R > a fuera de una esfera dieléctrica de radio a. Ayuda: construya la función de Green.

3. Multipolos magnéticos

Asumamos una distribución de corriente localizada, luego podemos calcular el potencial usando la funciona
infinita de Green expandiendo en una seria de Taylor, cerca del origen

Ai(x) =
1

cx

∫
Ji(y) d3y +

xj
cx3

∫
Ji(y)yj d

3y + . . .

=
xj
cx3

∫
Ji(y)yj d

3y + . . .

= −
[

x

x3
×
(

1

2c

∫
y × J d3y

)]
i

+ . . .

= −
[

x×m

x3

]
i

+ . . .
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el coeficiente en los paréntesis cuadrados es el momento magnético

m =
1

2c

∫
y × J d3y

Hemos usado la expresión

∇y · (fgJ) = (∇yf) · gJ + (∇yg) · fJ + fg∇y · J

con f = 1, g = yi, e integrado sobre una superficie infinita con∫
Ω

∇y · (fgJ) dy3 =

∫
∂Ω

(fgJ) · n̂ dS = 0

para una distribución localizada. Notemos que en magnetostatica tenemos ∇y · J = 0. Con esto podemos
entonces demostrar que ∫

Ji(y) d3y = 0

para el caso magnetostático. En el segundo paso utilizamos f = yj, g = xjyi para demostrar que∫
Ω

[xjyiJj + xjyjJi] dy
3 = 0

y

εi,j,kxj(y × J)k = εi,j,kεk,l,mxjylJm = xjyiJj − xjyjJi

En términos de los coeficientes mas usuales, con n = x− xo, tenemos

A =
m× x

x3
→ B1(x) =

3n̂(m · n̂)−m

| x− xo |3

En general el valor de los momentos dependen de la elección del origen como podemos ver aqúı. Por supuesto
asumimos que el campo aqúı evaluado lejos de las fuentes, entonces la aproximación no es válida cerca de
las fuentes como podemos ver evaluando

∫
r<R

B(x) dx =


8π

3
m inside

4π

3
R3B(0) outside

donde la esfera de radio R incluye y excluye la fuente respectivamente. Por lo tanto, considerando el origen
debemos incluir

B1(x) =
3n̂(m · n̂)−m

| x− xo |3
+

8π

3
mδ(3)(x− xo)

Si la corriente fluye en un circuito cerrado plano , tenemos

11



m =
1

2c

∫
x× J d3x =

I

2c

∫
x× d` =

I

c
n̂

∫
da =

IA

c
n̂

Suponiendo que tenemos un número de part́ıculas

J(x) =
∑
i

qiviδ
(3)(x− xi) → m =

1

2c

∑
i

qi(xi × vi) =
1

2c

∑
i

qi
mi

Li

entonces esto es equivalente al momento angular de las part́ıculas. Conocemos de la mecánica cuántica que
en general el momento de las part́ıculas en un medio depende fuertemente de la magnitud del campo local
(caso ferromagnético) y en particular del spin de las part́ıculas.

La densidad de momento magnético se define como

M =
1

2c
x× J

4. Medio magnético

Si un medio está presente, luego el momento magnético local se re-orienta a si mismo, y interactúa con los
vecinos, para producir dipolos, quadrupolos, etc.

4.1. Derivación rápida

La contribución al vector potencial producido por una densidad (por unidad de volumen λ3) de momento
magnético M(x) =

∑
i ni 〈mi〉 es

A(x) =
1

c

∫ [
J(y)

| x− y |
+
cM(y)× (x− y)

| x− y |3

]
d3y

=
1

c

∫
[J(y) + ∇y ×M(y)]

1

| x− y |
d3y

Hemos asumido que la contribución del dipolo es la más relevante. Podemos concluir que

∇×H = ∇× [B− 4πM] =
4π

c
J

y también

∇ ·B = 0
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4.2. Derivación “un poco mas” correcta

Utilizando un procedimiento parecido al anterior para un medio eléctrico, podemos escribir la ecuación
microscópicas como

∇× b(x, t) =
4π

c
j̄(x, t) =

4π

c

[
j̄f (x, t) + j̄m(x, t)

]
donde j̄ incluye tanto la corriente neta o libre j̄f y las corrientes efectivas alrededor de las moléculas y
átomos j̄m.

La ecuación macroscópica de campo es

∇×B(x) =
4π

c

〈
j̄(x, t)

〉
La densidad de corriente que aporta la molécula es

j̄n(x, t) =
∑
i

q
(n)
i

(
vn(t) + v

(n)
i (t)

)
δ(3)

(
x− xn(t)− x

(n)
i (t)

)
con lo cual tenemos

j̄n(x, t) ≈ qnvn(t)δ(3) (x− xn(t))− vn(t)
[
pn(t) ·∇δ(3) (x− xn(t))

]
+

∑
i q

(n)
i v

(n)
i (t) δ(3) (x− xn(t))−

∑
α

[∑
i qiv

(n)
i (t) x

(n)
i,α (t)

] ∂

∂xα
δ(3) (x− xn(t)) + . . .

Notemos el termino ∑
i

q
(n)
i v

(n)
i (t) δ(3) (x− xn(t)) =

dpn(t)

dt
δ(3) (x− xn(t))

Si calculamos

∂P(x, t)

∂t
=

∂

∂t

1

λ3

∫
λ3
d3y

∑
n δ

(3) (x− xn(t)− y) pn(t)

≈ 1

λ3

∫
λ3
d3y

∑
n

[
δ(3) (x− xn(t)− y)

dpn(t)

dt
− pn

(
vn ·∇δ(3) (x− xn(t)− y)

)]
=

〈∑
n

dpn
dt

δ(3)(x− xn)

〉
−
〈∑

n pn
(
vn ·∇δ(3) (x− xn)

)〉
y utilizamos

j̄m =
∑
n

j̄n ,

vemos que
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〈̄
j(x, t)

〉
= J(x, t) +

1

4π

∂

∂t
[D(x, t)− E(x, t)]

−
〈∑

n vn(t)
[
pn(t) ·∇δ(3)(x− xn)

]〉
+
〈∑

n pn(t)
[
vn(t) ·∇δ(3) (x− xn)

]〉
−

〈∑
n

∑
i q

(n)
i v

(n)
i (t)

[
x

(n)
i (t) ·∇δ(3)(x− xn)

]〉
donde la corriente macroscópica esta definida como

J(x, t) =
〈̄
jf (x, t)

〉
+

〈∑
n

qnvnδ
(3)(x− xn(t)

〉
.

Notemos que

∇×
[
vn(t)× pn(t) δ(3)(x− xn)

]
= vn(t)

[
pn(t) ·∇δ(3)(x− xn)

]
− pn(t)

[
vn(t) ·∇δ(3)(x− xn)

]
,

por lo tanto 〈̄
j(x, t)

〉
= J(x, t) +

1

4π

∂

∂t
[D(x, t)− E(x, t)]

+ ∇×
〈∑

n pn(t)× vn(t) δ(3)(x− xn)
〉

−
〈∑

n

∑
i q

(n)
i v

(n)
i (t)

[
x

(n)
i (t) ·∇δ(3)(x− xn)

]〉
Definamos ahora el momento magnético molecular (evaluado por ejemplo utilizando una formulación cuánti-
ca)

mn(t) =
∑
i

q
(n)
i

2c
x

(n)
i (t)× v

(n)
i (t)

y la magnetización macroscópica como

M(x, t) =

〈∑
n

mn(t)δ(3)(x− xn(t))

〉
=

1

λ3

∫
λ3
dy3

∑
n

δ(3) (x− xn(t)− y) mn(t) ,

Notemos que

∇×
[
mn(t) δ(3)(x− xn)

]
= −mn(t)×∇δ(3)(x− xn)

=
∑

i

q
(n)
i

2c
x

(n)
i (t)

[
v

(n)
i (t) ·∇δ(3)(x− xn)

]
−
∑

i

q
(n)
i

2c
v

(n)
i (t)

[
x

(n)
i (t) ·∇δ(3)(x− xn)

]
y usando un argumento similar al usado anteriormente para la contribución de M en A, podemos finalmente
escribir
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〈̄
j(x, t)

〉
= J(x, t) +

1

4π

∂

∂t
[D(x, t)− E(x, t)]

+ c∇×M(x, t)

+ ∇×
〈∑

n pn(t)× vn(t) δ(3)(x− xn)
〉

Asumiendo que el material no tiene un movimiento neto (vn = 0), podemos concluir que a primer orden

∇×H = ∇× [B− 4πM] =
4π

c
J

De la misma forma, la segunda ecuación de Maxwell en su formulación macroscópica es

∇ ·B = 0

Esta derivación ha incluido la dependencia temporal de las variables para hacerla consistente con el caso
dinámico. Notemos que en ese caso la ecuación de Maxwell seŕıa

∇×H =
4π

c
J +

1

c

∂D

∂t
con

H = B− 4πM D = E + 4πP

Es importante darse cuenta que B es el campo que sienten las part́ıculas en la fuerza de Lorenz.

Notemos que con las definiciones

ρ(x, t) =
∑
n

qnδ
(3)(x− rn(t)) J(x, t) =

∑
n

qnvn(t)δ(3)(x− rn(t))

podemos ver que

∂ρ

∂t
+ ∇ · J = 0

No es dif́ıcil de demostrar que nuestra derivación “un poco mas correcta” mantiene esta condición a todo
orden y por lo tanto las ecuaciones de Maxwell en el material garantizan este relación entre las corrientes
y las cargas. Claro que para el caso electrostático la condición es ∇ · J = 0.
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5. Condiciones de borde y solución

Las ecuaciones de Maxwell para la magnetoestática en un material son

∇×H =
4π

c
J

∇ ·B = 0

Asumiendo la misma construcción del primer caṕıtulo tenemos

(B2 −B1) · n̂ = 0

(H2 −H1)× n̂ =
4π

c
K

La densidad de corriente superficial (como discontinuidad) esta definida como

K = ĺım
dh→0

∫
Jdh

Aún cuando K = 0, hay una densidad corriente de la magnetización superficial en el borde entre los dos
medios, y está dado por

Km = −c(M2 −M1) · n̂

Todav́ıa necesitamos una relación entre H y B.

1. Caso 1: Si asumimos que el medio es lineal, tenemos un medio diamagnético

B = µH

M = λMB
→∇×B =

4πµ

c
J

2. Caso 2: Un imán permanente

M = constante

3. Caso 3: Para materiales ferromagnéticos, en los cuales tenemos hysteresis, podemos describir

B = F(H)

En cada caso podemos resolver los problemas como lo hab́ıamos hecho hasta ahora, pero con la densidad
de corriente apropiada afectada por la contribución de los dipolos.
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5.1. Método general

El problema general es

∇×H = ∇× [B− 4πM] =
4π

c
J

con

∇ ·B = 0

En general necesitamos especificar la dependencia de M(B). Dado que B = ∇×A, y asumiendo el Gauge
de Coulomb ∇ ·A = 0, podemos escribir

∇2A = −4π

c
J− 4π∇×M

lo cual se debe de resolver con las condiciones de borde apropiadas.

5.2. Caso J = 0, por potencial escalar

Para el caso B = µH (con µ = const), podemos introducir un potencial escalar

∇×H = 0 → H = −∇Φ

con lo cual tenemos la ecuación

∇2Φ = 0

Para casos donde µ o M dependen del espacio o de los campos, entonces tenemos que resolver un problema
más complicado.

Problema: Una esfera de radio a y µ = const en un campo B asintótico B = Boẑ.

Notemos que en general µ depende de la posición. En particular en la interfase tenemos

∇ · (B) = ∇ · (µH) = 0 → µ∇2Φ + ∇µ ·∇Φ = 0

Esto garantiza que Φ es continuo cruzando la interfase. Además, en la dos regiones (no en el borde)
tenemos µ = const, por lo tanto la ecuación de Maxwell satisface

∇2Φ = 0

Dado que H(r→∞) = B(r→∞) = Bo tenemos Φ(r →∞) = −Boz = −Bor cos θ, y la expansión
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Φin =
∞∑
`=0

A`r
`P`(cos θ)

Φout = −Bor cos θ +
∞∑
`=0

Bl

r`+1
P`(cos θ)

Notemos que µ no aparece todav́ıa. Solo aparece en las condiciones de borde, para Br y Hθ

−1

a

∂Φin

∂θ

∣∣∣∣
r=a

= −1

a

∂Φout

∂θ

∣∣∣∣
r=a

−µ∂Φin

∂r

∣∣∣∣
r=a

= −∂Φout

∂r

∣∣∣∣
r=a

 →

Φin = −
[

3

µ+ 2

]
Bor cos θ

Φout = −
[
1 +

1− µ
µ+ 2

a3

r3

]
Bor cos θ

En vez de la continuidad de los campos tangenciales hemos utilizado la continuidad de Φ.

En términos de los campos tenemos

Hin =

[
3

µ+ 2

]
Bo

Hout = Bo +
1− µ
µ+ 2

a3

r3
[Bo − 3(Bo · x̂)x̂]

El campo dentro de la esfera es un campo magnético constante proporcional a Bo, mientras que el
campo de afuera tiene también una contribución de un campo de dipolo magnético con momento

m =
µ− 1

µ+ 2
a3Bo → M =

3

4π

µ− 1

µ+ 2
Bo

Problema: Considere una esfera de radio a de material polarizable
con constante µ. En el plano ecuatorial alrededor de esta esfera ten-
emos un anillo de radio b > a en la cual fluye una corriente constante
J = Joφ̂. Encuentre el campo magnético en todo el espacio.

µ

J

Primero escribamos el potencial vector A = Aoφ̂ para el anillo en todo el espacio, con

Ao =
4πIa

c

∞∑
`=0

1

2`+ 1

r`<
r`+1
>

|C1
` |2P 1

` (0)P 1
` (cos θ)
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donde ahora r> = Max[r, b] y r< = Min[r, b]. Dado que

P 1
` (0) =

 (−1)(`−1)/2 (`+ 1)!

2`
(
n− 1

2

)
!

(
n+ 1

2

)
!

` impar

0 ` par

Por lo tanto supongamos A = Aφ(r, θ)φ̂ y para r 6= b tenemos

∇2A = 0 → ∇2Aφ −
1

r2 sin2 θ
Aφ = 0

Con lo cual podemos plantear la solución

Aφ(r, θ) =
∞∑
`=0

1

2`+ 1
|C`,1|2P 1

` (0)P 1
` (cos θ)


a` r

` r < a

r`<
r`+1
>

+
a`b`
r`+1

r > a

Utilizando las condiciones de borde de continuidad

a` a
` =

a`

b`+1
+
a` b`
a`+1

Usando

B = ∇×A =
1

r2 sin θ

[
r
∂Aφ sin θ

∂θ
r̂ − r sin θ

∂rAφ
∂r

θ̂

]
con B = µH y dado que no hay corriente superficiales, tenemos

µ
∂rAφ
∂r

∣∣∣∣
r=a−

=
∂rAφ
∂r

∣∣∣∣
r=a+

que es equivalente a

µ a`(`+ 1)a` = (`+ 1)
a`

b`+1
− ` a

`b`
a`+1

De estas relaciones podemos resolver a` y b`, y también calcular el campo magnético

B = ∇×A

19



Problema: Una esfera de radio a con magnetización M = Moẑ constante.

Notemos que en general µ depende de la posición. En particular en la interfase tenemos

∇ · (B) = ∇ · (H + 4πM) = 0 → ∇2Φ = 4π∇ ·M

Esto garantiza que Φ es continuo cruzando la interfase. Además, en la dos regiones (no en el borde)
tenemos µ = const, por lo tanto la ecuación de Maxwell satisface

∇2Φ = 0

Dado que H(r→∞) = B(r→∞) = Bo tenemos Φ(r →∞) = −Boz = −Bor cos θ, y la expansión

Φin =
∞∑
`=0

A`r
`P`(cos θ)

Φout =
∞∑
`=0

Bl

r`+1
P`(cos θ)

Notemos que M no aparece todav́ıa. Solo aparece en las condiciones de borde, para Br y Hθ

−1

a

∂Φout

∂θ

∣∣∣∣
r=a

− −1

a

∂Φin

∂θ

∣∣∣∣
r=a

= 0

−∂Φout

∂r

∣∣∣∣
r=a

−
[
−∂Φin

∂r

∣∣∣∣
r=a

+ 4πM · r̂|r=a
]

= 0

 →
Φin =

4π

3
Mor cos θ

Φout =
4π

3
Mo

a3

r3
r cos θ

Notemos el signo positivo en la expresión del componente radial de B ya que la normal en r < a
apunta hacia adentro de la caja. En vez de la continuidad de los campos tangenciales hemos utilizado
la continuidad de Φ.

En términos de los campos tenemos

Hin = 4πM

Hout = 4π
a3

r3
[M− 3(M · x̂)x̂]

y el campo magnético es
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Bin = 8πM

Bout = 4π
a3

r3
[M− 3(M · x̂)x̂]

Es interesante notar que hay otras formas de resolver este mismo problema. Por ejemplo dado que
tenemos

∇ ·B = ∇ · [H + 4πM] = 0 → ∇2Φ = 4π∇ ·M

podemos escribir el potencial como

Φ = −
∫

Ω

∇y ·M(y)

| x− y |
d3y

donde la integral es en todo es espacio. Notemos que para la esfera tenemos

M = Moẑθ(a− r)

con

θ(x) =

[
0 x < 0
1 x > 0

por lo tanto

∇ ·M = Mo
∂

∂z
θ(a− r) = −Moδ(a− r)

z

r
= M · n̂δ(a− r)

Esto implica que obtenemos el mismo resultado anterior

Φ = Mo

∑∞
`=0

∑m=`
m=−`

4π

2`+ 1
Y`,m(θ, φ)

∫∞
0
r2
ydryδ(ry − a)

r`<
r`+1
>

∫ π
0

sin θydθy
∫ 2π

0
dφy cos θyY

∗
`,m(θy, φy)

=
4π

3
Moa

2 r<
r2
>

cos θ

ya que

cos θ =

√
4π

3
Y1,0(θ, φ)
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Si M es suave y localizado, podemos usar

∇x·
∫

Ω

M

|x− y|
d3y =

∫
Ω

M·∇x
1

|x− y|
d3y 0 =

∫
Ω

∇y ·M
|x− y|

d3y = −
∫

Ω

M·∇x
1

|x− y|
d3y+

∫
Ω

∇y · ∇y

|x− y|
d3y

para escribir

Φ = −∇x ·
∫

Ω̄

M(y)

| x− y |
d3y

donde Ω̄ corresponde a la region donde M 6= 0.

Si la magnetización puede ser considerada como discontinua en la superficie podemos escribir tambien

Φ = −
∫

Ω̄

∇y ·M(y)

| x− y |
d3y +

∮
δ̄Ω

M(y) · n̂
| x− y |

dSy

ya que la expresión anterior para el caso de una esfera se puede re-escribir como

∇y ·M = −M · n̂δ(a− ξ)

con ξ como la variable que parametriza el borde de magneto. Para el caso de la esfera tenemos el
mismo resultado anterior

Φ = Mo

∑∞
`=0

∑m=`
m=−`

4π

2`+ 1
Y`,m(θ, φ)a2 r

`
<

r`+1
>

∫ π
0

sin θydθy
∫ 2π

0
dφy (ẑy · r̂y)Y ∗`,m(θy, φy)

=
4π

3
Moa

2 r<
r2
>

cos θ

Este problema también se puede resolver en términos del vector potencial A ya que

∇×H = ∇× [B− 4πM] = 0 → ∇2A = −4π∇×M

lo que tiene como solución

A =

∫
Ω

∇y ×M(y)

| x− y |
d3y

en el Gauge de Coulomb. Donde la integral es sobre todo el espacion Ω.
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Si M es suave y localizado, entonces podemos escribir

A = ∇x ×
∫

Ω̄

M(y)

| x− y |
d3y

Si hay una discontinuidad podemos escribir

A =

∫
Ω̄

∇y ×M(y)

| x− y |
d3y +

∮
δ̄Ω

M(y)× n̂
| x− y |

dS

por la misma razón anterior.

Problema: Calcular el campo magnético producido por un magneto permanente dentro de una cavi-
dad conductora.

Las condiciones de borde en el conductor son

(B−Bc) · n̂ = 0 (B−Bc)× n̂ =
4π

c
K

Si en el conductor prefecto podemos asumir que las cargas se moverán libremente para forzar que no
hayan campos dentro de este, podemos entonces decir que

B · n̂ = 0 B× n̂ =
4π

c
K

Por lo tanto el campo magnético normal B⊥ = 0 en el borde. Ahora la segunda condición no es
muy satisfactoria, ya que sabemos que si la conductividad es alta, pero finita, entonces la corriente
superficial eventualmente se debeŕıa disipar tal que K→ 0. Por lo tanto, la condición

B× n̂ =
4π

c
K

se da por lo general en una situación tiempo dependiente, donde tenemos un forzamiento que mantiene
K 6= 0. Osea, esta condición de borde depende de la historia del proceso que crea la configuración
final. De la misma manera, si la conductividad es grande, pero finita, entonces

J = σE

y por lo tanto tenemos que resolver el problema como un problema tiempo dependiente, ya que vamos
a necesitar otra ecuación que relacione E con B (la ecuación de Faraday).

Notemos que el campo magnético terrestre tiene un campo magnético estático, aproximadamente
dipolar, sobre su superficie, y por lo tanto el campo magnético no es cero dentro de la tierra, a pesar
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de que la conductividad es bastante alta. En este caso las condiciones de borde son, dado que no
tenemos corriente en la superficie,

(B−Bc) · n̂ = 0 (B−Bc)× n̂ = 0

Problema: Pongamos media esfera de radio R hecha de un magneto permanente sobre un muy buen
conductor. Encuentre el campo magnético en toda todo el espacio. Cual es la fuerza que siente el
magneto?

Problemas interesantes:

1. Qué cambiaŕıa si dejamos el problema ser en dos dimensiones, e.g. el problema de una ĺınea de
corriente en la dirección z?

2. Incluyendo una cavidad ciĺındrica dieléctrica.

3. Una vela espacial magnética

6. Enerǵıa

Para un grupo de part́ıculas, tenemos la ecuación de Newton

dmiẋi
dt

= Fi

Multiplicando esta ecuación por la velocidad obtenemos la conservación de enerǵıa

ẋi ·
dmiẋi
dt

=
d

dt

(
miẋ

2
i

2

)
=
∑
j 6=i

ẋi · Fint
j,i + ẋi · Fext

i

Si también requerimos que la fuerza entre dos part́ıculas sea conservativa, el potencial satisface

dU(xj,xi)

dt
=
∂U(xj,xi)

∂xj

· ẋj +
∂U(xj,xi)

∂xi

· ẋi = −ẋjFi,j − ẋiFj,i

Con lo cual
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d

dt

(∑
i

miẋi
2

2

)
=

∑
i 6=j

ẋi · Fj,i +
∑
i

ẋi · Fext
i

=

[∑
j>i

ẋi · Fj,i +
∑
j<i

ẋi · Fj,i

]
+
∑
i

ẋi · Fext
i

=

[∑
j>i

ẋi · Fj,i +
∑
i<j

ẋj · Fi,j

]
+
∑
i

ẋi · Fext
i

= − d

dt

[∑
j>i

Ui,j

]
+
∑
i

ẋi · Fext
i

Por lo tanto tenemos el principio de conservación de enerǵıa

d

dt
(T + U) =

∑
i

ẋi · Fi
ext

con la definición

T =
∑
i

miẋi
2

2
U =

∑
j>i

Ui,j =
1

2

∑
i 6=j

Ui,j

El cambio en enerǵıa E = T + U es el trabajo hecho por las fuerzas exteriores. También tenemos

T =
∑
i

miẋi
2

2
=

1

2
M ˙Rcm +

∑
i

miẋi
′2

2

y la enerǵıa puede ser descompuesta en la enerǵıa del centro de masa y la enerǵıa con respecto a él.

6.1. Enerǵıa eléctrica

En el caso de una fuerza eléctrica externa (estática) en el espacio vaćıo, tenemos que el cambio en la
enerǵıa está dado por

W = −
∫ B

A

FE · d` = q

∫ B

A

∇ΦE · d` = q(ΦB − ΦA) →
∫
ρ(x)Φ(x)d3x

esto es independiente del camino tomado, es decir, la fuerza es conservativa.
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6.1.1. En un espacio vaćıo

Por lo tanto, el trabajo hecho en traer una carga desde el infinito es solo q veces el potencial escalar.
Luego, trayendo un número de part́ıculas desde el infinito en cantidades infinitesimales, tenemos que
el trabajo hecho por las part́ıculas internas está dado por

U =
∑

j>i Ui,j =
1

2

∑
j 6=i

qiqj
ri,j

U =
1

2

∫
ρΦ d3x = − 1

8π

∫
Φ∇2Φ d3x =

1

8π

∫
|E|2 d3x

Las últimas integraciones fueron hechas sobre todo el espacio por partes. Hay una contribución de
“enerǵıa propia” que está presente en las distribuciones continuas que no están presentes en la repre-
sentación discreta. Cuidado debemos tener en la cuenta de la contribución de la “enerǵıa propia” en
cualquier cálculo.

Para un sistema de conductores, cada uno con un potencial Vi y carga Qi, en espacio vaćıo, el potencial
depende linealmente de la carga Qj (representa un factor geométrico), y

Qi =
∑

j Ci,jVj

Vi =
∑

j pi,jQj

→ U =
1

2

∑
i

QiVi =
1

2

∑
i,j

ViCijVj

Las Cii son las capacitancias, y Ci,j son los coeficientes de inducción.

6.1.2. Expansión de dipolo

Ponemos una densidad de carga ρ en un campo externo descrito por Φ, calculamos la enerǵıa como

U =

∫
ρΦ d3x

note que el factor 1/2 no se aplica aqúı debido a que el campo es externo.

Φ(x) = Φ(0)− x · E(0)− 1

2
xixj

∂Ej
∂xi

+

[
1

6
r2∇ · E

]
. . .

U = qΦ(0)− p · E(0)− 1

6
Qi,j

∂Ej(0)

∂xi
+ . . .

ya que ∇ ·E = 0 para un campo externo. La contribución del quadrupolo a la enerǵıa es de particular
interés en la f́ısica nuclear.

Por lo tanto, la enerǵıa de los dos dipolos interactuantes es
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U1,2 =
p1 · p2 − 3(p2 · n̂)(p1 · n̂)

| x1 − x2 |3

donde n̂ es el vector unitario del dipolo 1 al dipolo 2.

6.1.3. En un medio presente

Hasta ahora hemos usado la relación lineal para W en el espacio vaćıo. Esta condición de linealidad no
es muy clara en el caso general, y es mejor aproximar el problema desde el punto de vista del campo.
En particular, la enerǵıa fue calculada trayendo la carga desde el infinito por pequeñas cantidades al
mismo tiempo y sumando las contribuciones, luego

δW =

∫
δρΦ d3x =

1

4π

∫
∇ · (δD)Φ d3x =

1

4π

∫
E · δD d3x

Ahora integramos δD : 0→ D

W =
1

4π

∫
d3x

∫ D

0

E · δD → 1

8π

∫
E ·D d3x =

1

2

∫
ρΦ d3x

Hemos usado que E = −∇Φ, y la última expresión es verdadera solo si el medio es lineal, y recuper-
amos el resultado lineal. En general, la integral de arriba puede depender de la historia del proceso
(hysteresis) y puede ser muy complicado. Comparando este resultado con el que teńıamos, concluimos
que esta no-linealidad aparece en un proceso no local.

Notemos que la enerǵıa depende de la historia. Como traemos carga del infinito, debemos ser cuida-
dosos si mantenemos los conductores a V o Q constantes. Si requerimos mantener estos valores con-
stantes, entonces debemos trabajar moviendo cargas hacia afuera y hacia adentro, para mantener la
constancia en los conductores.

6.2. Enerǵıa magnética

Supongamos que tenemos una lenta variación de un campo externo B,

Bi(x) = Bi(0) + (x ·∇)Bi(0) + . . .

tenemos
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Fi =
1

c

[∫
J×B d3x

]
i

=
1

c
εi,j,k

∫
[JjBk(0) + Jjx`∂`Bk] d

3x

=
1

c
εi,j,k(m×∇)jBk

donde hemos usado la definicion anterior

(m×∇)j =
1

c

∫
Jjx` d

3x ∂`

Por lo tanto

F = (m×∇)×B = ∇(m ·B)−m(∇ ·B) = ∇(m ·B)

donde hemos asumido que ∂imk = 0. Podemos observar que la enerǵıa potencial puede ser definida
como

U = −m ·B

lo cual está bien, excepto que el trabajo debe ser hecho en traer esta configuración al lugar (desde el
infinito) ya que se requiere mantener J que produce M. Este peŕıodo transiente debe ser estudiado
en el formalismo del próximo caṕıtulo con campos dependientes del tiempo. Por lo tanto, la enerǵıa
magnética depende del camino tomado a la contribución en el caso general.

Un análisis similar puede ser hecho para el torque neto

N =
1

c

∫
x× [J×B] d3x → N = m×B(0)

para un campo externo.

7. Modelos de materiales

En general ε y µ pueden ser tensores. El caso mas claro es cuando hay un campo magnético constante
presente. En ciertas situaciones es posible resolver por estos tensores.
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7.1. Modelos simples de ε y µ

Problema El oscilador harmónico. Si ponemos un campo eléctrico constante

mr̈ = −mω2
or + qE

Normalizando este problema, podemos re-definir el tiempo como τ = ωot, y nos queda le ecuación de
movimiento

¨̄x = −x̄ +
q

ω2
om

E

Es posible encontrar la solución general a este problema como

x(t) = xo cos(ωot) +
vo
ωo

cos(ωot) +
q

mω2
o

E (1− cos(ωot))

z(t) =

[
q

ω2
o

]
Ez + zo cosωot+

vzo
ωo

sinωot

y por lo tanto podemos encontrar el tensor macroscópico

P = ĺım
T→∞

nq
1

T

∫ T

o

x(τ)dτ =

[
nq2E

mω2
o

]
con

λ =
nq2

mω2
o

De la misma forma si aplicamos un campo magnético constante

mr̈ = −mω2
or +

q

c
ṙ×B

Nuevamente es posible re-escalar las ecuaciones de movimiento como

ẍ = −x + ẋ×
(

qB

ωomc

)
Es posible encontrar la solución general a este problema. Al calcular la magnetización

M = ĺım
T→∞

n
1

T

∫ T

o

q

2c
x× ẋ dτ
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encontramos que M es lineal con B, y que µ es diagonal, pero depende de las condiciones iniciales. Esto
significa que necesitamos tomar un promedio extra sobre las distribuciones de part́ıculas. Podemos
encontrar, asumiendo isotroṕıa (x2

i = r2
o/3 y v2

i = v2
o/3), queµ es

µi,j =
nq2

10mc2ωo

[
2

3
r2
o −

2

3mω2
o

mv2
o +

1

mωo
Li

]
δi,j

Para el caso de un tomo tenemos

vo = ωo ro

y usando Lx = Ly = Lz = L, podemos encontrar

µ =
nq2

10m2c2ω2
o

L

Si pensamos en la foto clásica de un electrón alrededor de un núcleo sin un campo eléctrico, el campo
combinado es cero fuera del átomo en el sentido tiempo promedio. Un campo eléctrico impuesto
deforma la órbita circular generando un campo dipolo red lejos del átomo.

Problema: Tomemos el problema de un electrón en una fuerza central

mr̈ = −Qq
r3

r

Calcule los tensores ε y µ a primer orden en |E| y |B| promediados en forma apropiada. Notemos que
acá tenemos que promediar también en la orientación de la elipse.

Tomemos el modelo clásico de un electrón en una orbita circular alrededor de un núcleo, dado por un
potencial

U(r) = −k
r

con la ecuación de movimiento en el plano x − y. El momento angular es L = pθẑ. En el plano la
ecuación de movimiento es

mρ̈ = −V ′(ρ) → V (ρ) = U(ρ) +
p2
θ

2µρ2

La orbita circular en el plano esta dada por
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V ′(ρo) = 0

con

ρo =
p2
θ

km
θ̇o =

pθ
mρ2

o

Esto define el vector

ρo = ρo cos(θ̇ot)x̂+ ρo sin(θ̇ot)ŷ

Si perturbamos la orbita circular

r = ρo + [x(t), y(t), z(t)]

obtenemos las ecuaciones de movimiento

ẍ =
k

2mρ3
o

[
x+ 3 cos

(
2θ̇ot

)
x+ 3 sin

(
2θ̇ot

)
y
]

+
q

m
Ex

ÿ =
k

2mρ3
o

[
y + 3 sin

(
2θ̇ot

)
x− 3 cos

(
2θ̇ot

)
y
]

+
q

m
Ey

z̈ = − k

mr3
o

z +
q

m
Ez

al cual le hemos agregado un campo eléctrico uniforme.

7.2. Modelos Estad́ısticos de ε y µ

En general, cuando tenemos muchas part́ıculas en el sistema, es preferible utilizar un método estad́ısti-
co para encontrar valores par ε y µ

Dada una ecuación de enerǵıa, llamado un Hamiltoniano, veremos luego que la función de distribución
de equilibrio puede ser escrita en términos del Hamiltoniano, y está dado en la forma canónica como

f(x, p) =
e−βH∫

e−βH dxdp

de la cual podemos definir el valor esperado para cualquier variable dinámica o función

< F >=

∫
e−βHF (x, p) dxdp∫

e−βH dxdp

usando una descripción para H construiremos un modelo para materiales eléctricos y magnéticos.

31



Problema: Tomemos un Hamiltoniano del oscilador armónico con la presencia de un campo eléctrico,
luego

H =
p2

2m
+
m

2
ω2
ox

2 − eEz

P = N < ppol >= N < ez >=
Ne2

mω2
o

E

pero las part́ıculas pueden bajar su enerǵıa reorientandose hacia el campo

H = Ho − po · E = Ho − poEo cos θ

P = N < ppol >= N < po cos θ >' 1

3

p2
o

kT
Eo

7.3. Modelos simples de magnetización

Como vimos abajo, la enerǵıa de una colección de N spins puede ser escrita como

H =
∑
i

h · si +
∑
i,j

Ji,jsj · si

con H como la enerǵıa o el Hamiltoniano y J como la interacción entre los spins, el cual es en general
una interacción de dipolo que decae como r−3. Usando un rango corto de interacción dando solamente
a los vecinos más cercanos contribución, tenemos

M(h, {si}) =

∫
e−βH

∑
i si dxdp∫

e−βH dxdp

Esta formula puede generar interesantes dinámicas, transiciones de fase, etc. La transición de fase no
se convierte hasta que vamos en dimensiones más altas (el modelo en dos dimensiones ising de On-
sager). Usando una aproximación mala del campo en una dimensión en “equilibrio” según la mecánica
estad́ıstica, tenemos

H =
∑

i (h + J 〈s〉) · si =
∑

i (h + JNM) · si

Mz(h, {si}) = 〈
∑

i sz,i〉 =

∫
e−βH

∑
i sz,i dxdp∫

e−βH dxdp
= N tanh[(h+ JNM)β]

el último resultado es obtenido asumiendo que sz es discreto y puede tener valores 1,-1. Notemos
que este problema implica resolver una ecuación trascendental, el cual se puede resolver por ejemplo
usando un método de Newton para encontrar el cero de la función

g(M,β, bo) = M −N tanh[(bo + JNM)β]
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Figura 4: (a)Solución de Mz usando el campo medio en 1-D para diferentes temperaturas, para N = 10 y
J = 0,1

De la Fig. 4a podemos observar el caso de paramagnético con J > 0, donde los espines se alinean con
el campo. Aqúı también observamos una transición de fase exactamente en el limite β → 0. El caso
de diamagnético J < 0, los espines se alinean con los vecinos. El caso ferromagnético, en el limite
Bo → 0, aun tenemos una magnetización si la temperatura T < Tc.

7.4. Método de MonteCarlo

En general tenemos que evaluar la integral de arriba en el equilibrio, consistente con fluctuaciones a
cierta temperatura T. Tomemos el Hamiltoniano con s=1,-1, y podemos utilizar el método de monte
Carlo para encontrar la magnetización en equilibrio con un baño termal. En cada instante t, tenemos
la configuración {s(t)

I } con interacción vecino mas cercano. Repetir la siguiente receta para cada valor
de β = 1/T la temperatura

1. Tomar un spin al azar y hacer un flip en x = {s(t)
I }

2. Calcular la enerǵıa ∆E = E(y)− E(x)

3. X=y si ∆E¡0 o si r < exp(−β∆E), con r un numero al azar

4. Repetir N veces

Podemos entonces calcular la Magnetización < s
(t)
I > y repetimos para otros valores de T y B,

estimando la curva M(T,B). Se puede observar una transición de fase en 2D. En la Fig. 4b vemos
como se da esta transición de fase para ciertos valores.

7.5. Dinámica de Espines

Hasta ahora hemos trabajado con situaciones en equilibrio, pero también podemos estar interesados en
la dinámica de los espines. Para ello podemos asumir un modelo para un esṕın que puede orientarse en
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Figura 5: (a)Solución de Monte Carlo para el modelo de Ising (400x400) mostrando dominios claros para
T = 2. (b)La magnetización como función de la temperatura, mostrando la transición de fase a temperatura
finita. Hecho por Paul Blackburn.

por ejemplo 3 dimensiones. Utilizando la expresión canónica para la evolución de la variable, utilizando
el paréntesis de Poisson, tenemos que

dSi
dt

= [Si,B]

Esperamos ver cosas interesantes con este modelo, denominado de Heissenberg. Hasta donde yo se
este es un problema interesante que puede dar origen a publicaciones.

Para el caso de orientación en 3 dimensiones, tenemos

dSi
dt

= J
∑
j

Si × Sj

y si usamos interacción con vecinos próximos se puede hacer la simulación. La temperatura se puede
forzar desde los bordes.

8. Solución numérica

Hay una manera simple para resolver la ecuación para el potencial cuando incluimos dieléctricos

∇ · (ε∇Ψ) = − = 4πρ

Integrando sobre el volumen de una esfera de radio ∆x, podemos encontrar que
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∮
∂Ω

ε∇Ψ · n̂dS ≈ −4π

∆
x∆y∆zρi,j,k

con lo cual podemos estimar numéricamente la integral de superficie∮
∂Ω
ε∇Ψ · n̂dS = εi+1/2,j,k(E · x̂)i+1/2,j,k + εi−1/2,j,k(−E · x̂)i−1/2,j,k

+ εi,j+1/2,k(E · ŷ)i,j+1/2,k + εi,j−1/2,k(−E · ŷ)i,j−1/2,k

+ εi,j,k+1/2(E · ẑ)i,j,k1/2 + εi,j,k−1/2(−E · ẑ)i,j,k−1/2

donde

(E · x̂)i+1/2,j,k =
∂Ψ

∂x

∣∣∣∣
i+1/2,j,k

=
Ψi+1,j,k −Ψi,j,k

∆x

(E · ŷ)i,j+1/2,k =
∂Ψ

∂y

∣∣∣∣
i,j+1/2,k

=
Ψi,j+1,k −Ψi,j,k

∆y

(E · ẑ)i,j,k+1/2 =
∂Ψ

∂z

∣∣∣∣
i,j,k+1/2

=
Ψi,j,k+1 −Ψi,j,k

∆z

Esto corresponde a la discretización a primer orden de la ecuación de arriba. Podemos resolver esto
por relajación o por un método directo.

El caso de elementos finitos tenemos que minimizar el funcional

S[Φ] =

∫ [
(ε∇Φ)2 + 4πρ

]
dx

usando elementos finitos como describimos anteriormente.

El caso magnético se hace en forma similar.
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