Capitulo 2:
Expansion multipolar y medios

En este capitulo discutiremos los comportamientos electrostaticos y magnetostaticos de cargas localizadas
y elementos de corriente, como también los efectos que estos producen en el medio.
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1. Multipolos eléctricos

Si asumimos una distribucion de carga localizada con

X'y
T2

2
)
|X—y|—\/x2+y2—2x-y—\x|\/1+ﬁ—2

podemos calcular el potencial usando la funcién de Green, para el espacio infinito,lejos de la fuente local
|z| >> |y| expandiendo

1+

11 x-y_ vy 3x-y)
x—y| |z 2 222 4t

En términos de los coeficientes mas usuales tenemos

p = [py)ydy
Qiy = [r(x)Byy; —y*0i;) dy

podemos escribir

@(x):/—‘p(y) Py L BX QT
X — Y] r x

Podemos encontrar

_3f(p-n)—p

n=x-— X, — E,(x) R
o

En termino de una expansion en multipolos también podemos escribir

o0

> 4 Y}}m(@, ¢) I 3 4 Yi,m(07 ¢)
Ox) =) TR /p(y)y D0y, 0y) dPy| =D Sl gt dm
Im Lm

donde los coeficientes en los paréntesis cuadrados son los momentos de los dipolos. En general, el valor de los
momentos multipolares dependen de la eleccion del origen. Por supuesto asumimos que el campo evaluado
esta lejos de las fuentes, por lo que esta aproximacién no es valida cerca de las fuentes como podemos ver
en la evaluacion

4
gp mstde
/ E(x) d®r =
r<R 4
) ?WR?’E(O) outside

donde la esfera de radio R incluye y excluye las fuentes respectivamente. Por lo tanto, cuando consideramos
el origen debemos incluir



3n(p-n)—p 4w
e P L

Suponiendo que tenemos un numero de particulas

p(x) = Z 0P (x—x;) — p= /p(x)x dr = Z ¢iXi

2. Medio eléctrico

Es importante notar que dado que la carga es discreta, aun en un medio macroscopicamente neutral hay
efectos macroscépicos como vimos arriba.

2.1. Derivacion rapida

Si un medio esta presente entonces la carga, asumiendo un medio neutral, se re-orienta a si mismo para
producir dipolos, quadrupolos, etc. La contribucion al potencial total es

B ply) [ Ply) (x-y) x-x)Qi(y)x—x) | 3
2 = /LX—yIJr x—y P [ x—y [ B

1
— |y -V, Py Pyt ...
[ e ) - V4 PO
donde P(x) = >, N; (pi) es la densidad dipolar. Hemos usado

([ Ply) ) _Vy Py 1
Vy(m—w)‘ x—y] TrO)V

A = L e

asumiendo que P — 0 en infinito. También asumimos que la contribucién del dipolo es la mas relevante.
Podemos definir la ecuacién para el campo vectorial D = E + 47P a primer orden como

e integrando por partes

V.-D=V_.[E+47P| =4np

Esta es la ecuacién de la electrostatica en materiales.

Problema: Una particular cargada dentro del material siente una fuerza producida por E o D?



2.2. Derivacion “un poco mas” correcta

Aqui es importante tener en cuenta la escala intermedia A que se usa para pasar del discreto al continuo, lo
que técnicamente significa promediar sobre un volumen de tamafio A* alrededor de la posicién x y durante
un tiempo 7" alrededor del tiempo t, esto es

< Fxt) >= L/ F(x -yt — r)dy’dr (1)
TX Jysr

y tiene sentido si las fluctuaciones espacio-temporales son pequenas (esto implica algunas restricciones de
densidad, etc.). Notemos que también podemos utilizar un kernel K (y) para suavizar los efectos de borde,
en vez de la funcion escalén que utilizamos aqui. Notemos que en muchas situaciones, como materiales
normales, la escala deberfa ser A ~ 102 A, con lo cual podemos “borrar” las escalas atémicas y moleculares.
Por lo tanto la escala temporal apropiada T' ~ L/c ~ 1071¢ s es tan pequenia que efectivamente no hace
nada. Pero hay muchas situaciones, por ejemplo en plasmas, donde este promedio espacio-temporal tiene que
ser hecho con cuidado, porque T puede ser importante. Por ejemplo, cuando la desviacién de la velocidad es
proporcional a la velocidad termal (v?) ~ vZ. Esto tiene particular importancia en plasmas diluidos, el cual
corresponde a la mayoria del universo. En general si tenemos una ecuacion que modela la microfisica las
fluctuaciones espaciales y temporales, como es el caso del plasma, nos damos cuenta que estas fluctuaciones
estan amarradas a través de una funcién de dispersién w(k), y por lo tanto el promedio temporal (o espacial)
es redundante. Aunque se puede hacer si es necesario. Es entonces suficiente calcular

1
< F(x,t)>=— | F(x—y,t)dy
A3 Jys

Intermedia

Micro Macrao

AT

Figura 1: Escala para promediar

Macroscopicamente, tenemos una ecuacion para el campo fluctuante

V e =drp=4n(p; + pm)

donde p incluye tanto la carga libre p; y las distribuciones de carga alrededor de las moléculas y dtomos
Pm, que en general son neutrales en la escala A

< pm(x,t) >=10



(n)

Para la enésima molécula, tenemos un set de cargas en las posiciones x; ~ que se estan moviendo alrededor

del centro de masas x,(t) de la molécula. Dado que A >> |x§")|, podemos expandir

3) ) ") o) riaaly P
59 (x — 30 — 1) = 69 (x = 33) — 7 - VOO (x ) + 3 [ D 59 (x = x0) | + ...
%; 2 0z,0x3

de lo que podemos concluir que la densidad de carga que aporta la enésima molécula es
pulx,t) = 32,460 (x = xu (1) = x" (1)) = 4u0® (x = xa (1)) = Palt) - V5 (x — (1))

82
8xa8m5

+ 2 ap dnas(t) 5B (x — x, (1)) . ..

donde
n Zqi Pn(t) ZQZ' x;  (t)
Si definimos
ﬁm(X7 t) - Z ﬁn(x7 t) )

ahora podemos promediar en nuestra escala intermedia para obtener

82
<pp(x,t) >+ < an(x,t) >=p(x) = V- P(x) +Zax—axﬁQaﬁ+---
af «

n

donde p(x) (para mantener la convencién esténdar) corresponde a la densidad de carga macroscépica neta
o libre. Hemos usado que
V- (p 6B (x — X,)) =P V¥ (x — x,)

Tenemos las siguientes definiciones
1 3 3)
PO ) = 3 [ D20 6 xt) = p)ma)

donde p,(t) = >, qZ(")XE") (t) es el dipolo eléctrico efectivo (y promediado en el sentido cuédntico) de la

molécula n. Es importante notar que el promedio de una derivada espacial es
0 1 OF(x —y,t) , 4 OF(x,t)
Flxt)=— [ =22 g3 (227
(9:1:'1- < (X’ >> A3 /)\3 8:131 4 8:1:‘1

Lo mismo aplica para una derivada temporal. Notemos que si incluimos el promedio temporal en nuestro
promediador en Eq. 1, se obtiene el mismo resultado en los dos casos.




Notemos que la contribuciéon de la superficie tiene que ser pequena, para que esto tenga sentido. De alguna
forma esto determina la escala A. De la misma forma tenemos

Qus(x.1) = 3 /A ST 6 (1)~ 9) ()

donde g, o5 es el tensor quadrupolar efectivo (y promediado en el sentido cuantico) de la molécula n.

La ecuacion para el campo eléctrico macroscopico se obtiene promediando

V- E(x,t) =<V -e(x,t) >

y la ecuacion de Maxwell macroscépica es entonces

V- -E=dr <p>=dmp(x,t) — 47 (V -P) + ...

donde E(x,t) = (e(x,t)) es el campo macroscépico. Podemos definir

a@aﬁ

D,=FE,+4rP, — 4n
(9.1‘5

+ ...

y re-escribir la ecuacion de Maxwell como

V - D = 4mp(x,1)

donde p es la densidad de carga neta macroscépica (o libre). Esta derivacién ha incluido la dependencia
temporal de las variables para hacerla consistente con el caso dinamico.

Es importante darse cuenta que E es el campo macroscépico total (efectivo y macroscépico) que sienten las
particulas en la fuerza de Lorenz

vy que ademas

dado que aun tenemos

VXE=<Vxe>=0

correspondiente al promedio macroscopico de la ecuaciéon microscépica.

Todavia necesitamos una relacion entre D y E, que en general nos dan las ecuaciones microscépicas del
plasma, o la mecéanica cuantica. Si asumimos que el medio es lineal, entonces tenemos



P=)\E
podemos escribir

V. (e E)=4mp

con la definicién de € = 1 + 47 \.. Vemos que el problema se resuelve como antes, pero con la propiedad de
densidad de carga afectada por la contribucién del dipolo. Veremos mas adelante que € es en realidad un
tensor.

2.3. Condiciones de borde

Ahora tenemos las ecuaciones de Maxwell que incluye el medio

V-D = dmp
VxE =0

Asumiendo la misma construccion del primer capitulo, tenemos

(Dy —Dy) -1y = 4dmo
(EQ _El) X ﬁ12 = 0

la componente normal de la region 1 a la regién 2, y la carga superficial es ahora una carga superficial real
(no inducida). Aun cuando o = 0, hay una polarizacién en la densidad de carga superficial en el limite entre
los dos medios, y estd dado por

Oc¢ = —(Pz - Pl) ST

Problema: Una cavidad esférica en un medio dieléctrico inmerso en un campo eléctrico uniforme

Notemos que en general € depende de la posicion, en particular en la interfase. Esto implica que la ecuacion
de Maxwell

V- (¢E)=0 - V2P + (Ve) - (VD) =0

Pero en la dos regiones (no en el borde) tenemos € = const, por lo tanto el potencial satisface la ecuacién
de Laplace.

V2P =0

Es importante notar que no hay cargas libres en el sistema, solo cargas de polarizacion. Dado que tenemos
O(r — 00) = Ey,z = —E,rcosf, podemos construir la solucién general adentro y afuera de la cavidad como



b, = ZAZTIPZCOSH

=0

Doy = —E,rcost+ Z Bl?”_(l+1)Pl cos 6
=0

Figura 2: Cavidad en medio dieléctrico

donde no hay cargas externas, entonces € no aparece todavia. Solo aparece a través de las condiciones de
borde

100, 100, 3¢
T4 09 a 00 | _, Bin == l1+25} Eor 0088
%
0d;, 0Pt e—1a°
- S Byt = — |1 g
or |._, o —a out [ 1 + 2¢ 7“3] o 089

El campo dentro de la esfera es constante proporcional a F,, mientras el campo afuera tiene también una
contribucion de un campo del polo eléctrico con momento

I1—¢ 4
= E,
P= 12"
y la carga superficial de la polarizacion es
e—10d 3 e—1

E,cosf

A Or T:azgl—l—%

Problema: Problema de apantallamiento dieléctrico. Supongamos que potemos un cascaron dieléctrico
entre los radios a < r < b. Encuentre el campo eléctrico

Las lineas de campo eléctrico pueden ser calculadas numéricamente resolviendo el siguiente sistema de
ecuaciones



dr E(r)

ds | E(r)]
Por lo tanto, la idea es programar un integrador que resuelva la trayectoria que parte del punto (z,, Yo, 2o),
con lo cual se calcula un sistema de trayectorias para diferentes condiciones iniciales, como se ve en la Fig.
3.
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Figura 3: Equipotencial y Lineas de fuerza para el problema de la cavidad en el medio dieléctrico, con

e = 10.

Problema: Resuelva el potencial producido por un anillo de carga de densidad lineal A a una distancia
R > a fuera de una esfera dieléctrica de radio a. Ayuda: construya la funcién de Green.

3. Multipolos magnéticos

Asumamos una distribucién de corriente localizada, luego podemos calcular el potencial usando la funciona
infinita de Green expandiendo en una seria de Taylor, cerca del origen

1 T,
Ai(w) = — [ Jily) dy+ 5 / Ti(y)y; Py + ...
T 3
= 5 | iy &y +




el coeficiente en los paréntesis cuadrados es el momento magnético

1
m:—/nydgy
2c

Hemos usado la expresion

V- (fgd) = (Vyf) g3 +(Vyg) - fI+ fgV,-J

con f =1, g =uy;, e integrado sobre una superficie infinita con

[9-trgm gt = [ (o3 nds <o
Q o0

para una distribucién localizada. Notemos que en magnetostatica tenemos V, -J = 0. Con esto podemos
entonces demostrar que

[ 3w #y=o0

para el caso magnetostatico. En el segundo paso utilizamos f = y;, g = x;y; para demostrar que

/ [[Bjyijj + ZBjiji] dy3 =0
Q

€ijkTi(y X Ik = €ijrehimTiyIm = 059i )5 — 2595 J;

En términos de los coeficientes mas usuales, con n = x — X,,, tenemos

m X X 3n(m-n)—m

A = — Bl(X) =

a3 |x—x, 3
En general el valor de los momentos dependen de la eleccion del origen como podemos ver aqui. Por supuesto
asumimos que el campo aqui evaluado lejos de las fuentes, entonces la aproximaciéon no es valida cerca de

las fuentes como podemos ver evaluando

8§m inside
/ B(x) dx =
r 4
< ?WR?’B(O) outside

donde la esfera de radio R incluye y excluye la fuente respectivamente. Por lo tanto, considerando el origen
debemos incluir
3n(m-n)—m 87

B (x) = X%, —l—?m5(3)(x—x0)

Si la corriente fluye en un circuito cerrado plano , tenemos

11
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Suponiendo que tenemos un nimero de particulas

1 1 4;

entonces esto es equivalente al momento angular de las particulas. Conocemos de la mecanica cuantica que
en general el momento de las particulas en un medio depende fuertemente de la magnitud del campo local
(caso ferromagnético) y en particular del spin de las particulas.

La densidad de momento magnético se define como

M:ixxJ
2c

4. Medio magnético

Si un medio esta presente, luego el momento magnético local se re-orienta a si mismo, y interactia con los
vecinos, para producir dipolos, quadrupolos, etc.

4.1. Derivacion rapida

La contribucién al vector potencial producido por una densidad (por unidad de volumen A\*) de momento
magnético M(x) = ) . n; (m;) es

A(X) _ 1/|: J(y) +CM(y)X(X_y) dSy

c) lIx—y| [x—y

1/ 1
= — [ Jy) +V,xM(y)] —— &%

c [() Yy ()]|X—y|

Hemos asumido que la contribucion del dipolo es la mas relevante. Podemos concluir que

VXH:VX[B—47TM]:4%TJ

y también

V-B=0

12



4.2. Derivacién “un poco mas” correcta

Utilizando un procedimiento parecido al anterior para un medio eléctrico, podemos escribir la ecuacion
microscopicas como

V 5 bx, 1) = ) = o [iyx,t) + Gl )]

donde 7 incluye tanto la corriente neta o libre jf y las corrientes efectivas alrededor de las moléculas y
atomos J,,.

La ecuacion macroscopica de campo es
4 -
Y x B(x) = - (j(x,1))
La densidad de corriente que aporta la molécula es
Jnxt) = ™ (val®) + vV (0) 89 (x = xa(t) = x (1))

con lo cual tenemos

(%) = qva(t)0? (x = x4 (t)) = va(t) [Pa(t) - V@ (x — x,(1))]

S0 00 (x = x0(0) = 5, [ a0 20)] -6 (xx,0)) +
Notemos el termino
S0 59 0= xa1) = 2 69 (-, 1)
Si calculamos z
oD O ot S0 (= x(1) ~ y) Bl
= S B S 09 x,(0) - 3) P b (v, 0 (- x,(0) - 3)

= (S 5000 (Sp (v T ()

y utilizamos

jm - Zjna

vemos que

13



(o) = Joot) + o

- <Zn vi(t) [pn(t) V6@ (x — Xn>]> + <Zn Pa(?) [Vn(t) V6@ (x — Xn)]>
— (S SV [x() voOx - x)| )

donde la corriente macroscopica esta definida como

[D(x,t) — E(x,1)]

I(x,t) = (35 (x,1)) + <Z Gvd® (x xn<t>> .

n

Notemos que

V X [Vn( ) X pat) 6@ (x — Xn)} = Va(t) [pn(t) -V (x — Xn)} — Palt) [Vn(t) -V (x - Xn)} )

por lo tanto
(1) = Jxt)+ 5 Dx1) — E(x,1)]
+ V{3, palt ) X v (1) 0P (x — x,,))
— (Sl [0 Ve x - x,)] )

Definamos ahora el momento magnético molecular (evaluado por ejemplo utilizando una formulacién cuanti-
ca)
q(n)
my,(6) = D% (1) x v (1)
— 2c

y la magnetizacién macroscépica como

xt):<Zmn(t)5(3)(x—xn(t))>: /dgﬁz 68 (x — xn(t) — y) my(2),

Notemos que

V x [m,(t) 6®(x —x,)] = —m,(t) x Vi®(x — x,)

(n) (n)
= L 3@ VP v (x — x,)| = 5 E v (@) [xP(1) - 8O (x — x,,)

ZQC K3 ZQC (2

y usando un argumento similar al usado anteriormente para la contribucién de M en A, podemos finalmente
escribir

14



G(x, t)> = J(x,t)+ %% [D(x,t) — E(x,1)]

+ ¢V xM(x,t)

+ YV x (3, pa(t) x via(t) 0P (x — x,))

Asumiendo que el material no tiene un movimiento neto (v, = 0), podemos concluir que a primer orden

1
V><H=V><[B—47TM]:%TJ

De la misma forma, la segunda ecuacién de Maxwell en su formulacion macroscopica es

Esta derivacion ha incluido la dependencia temporal de las variables para hacerla consistente con el caso
dindmico. Notemos que en ese caso la ecuacion de Maxwell seria

Am 10D
VxH=—J+-—
% c +cc9t
con
H=B-4M ID=E +47P

Es importante darse cuenta que B es el campo que sienten las particulas en la fuerza de Lorenz.

Notemos que con las definiciones

p(x,1) =Y 40P (x = 1 (1)) J(xt) = Y uva(t)3® (x = 1 (t))

n

podemos ver que

dp B
E—FVJ—O

No es dificil de demostrar que nuestra derivaciéon “un poco mas correcta” mantiene esta condicién a todo
orden y por lo tanto las ecuaciones de Maxwell en el material garantizan este relacién entre las corrientes
y las cargas. Claro que para el caso electrostatico la condicién es V - J = 0.

15



5. Condiciones de borde y solucion

Las ecuaciones de Maxwell para la magnetoestatica en un material son

VxH = 4—7TJ

c
vV-B =0

Asumiendo la misma construccion del primer capitulo tenemos

(B2 - Bl) - O
AT

7
(H,—H;) xh = —K
c

La densidad de corriente superficial (como discontinuidad) esta definida como

K= lim [ Jdh

dh—0

Aun cuando K = 0, hay una densidad corriente de la magnetizacion superficial en el borde entre los dos
medios, y esta dado por

Km = —C(Mg — Ml) -

Todavia necesitamos una relacion entre H y B.

1. Caso 1: Si asumimos que el medio es lineal, tenemos un medio diamagnético

B=uH

LV xB- Thy
M = \,/B c

2. Caso 2: Un imén permanente

M = constante

3. Caso 3: Para materiales ferromagnéticos, en los cuales tenemos hysteresis, podemos describir

B = F(H)

En cada caso podemos resolver los problemas como lo habiamos hecho hasta ahora, pero con la densidad
de corriente apropiada afectada por la contribucion de los dipolos.

16



5.1. Meétodo general
El problema general es

VXH:VX[B—47TM]:477TJ

con

V-B=0

En general necesitamos especificar la dependencia de M(B). Dado que B = V X A y asumiendo el Gauge
de Coulomb V - A = 0, podemos escribir

47
c

VA =—-——J—47V xM

lo cual se debe de resolver con las condiciones de borde apropiadas.
5.2. Caso J = 0, por potencial escalar
Para el caso B = yH (con pu = const), podemos introducir un potencial escalar

VxH=0 —H=-Vo

con lo cual tenemos la ecuacion

V2P =0

Para casos donde o M dependen del espacio o de los campos, entonces tenemos que resolver un problema
mas complicado.

Problema: Una esfera de radio a y p = const en un campo B asintético B = B, 2.

Notemos que en general ;o depende de la posicién. En particular en la interfase tenemos

V- (B)=V-(uH)=0 — pV2ie + V- Vo =0

Esto garantiza que ® es continuo cruzando la interfase. Ademads, en la dos regiones (no en el borde)
tenemos p = const, por lo tanto la ecuacion de Maxwell satisface

V20 =0

Dado que H(r — 00) = B(r — o0) = B, tenemos ®(r — c0) = —B,z = —B,rcosf, y la expansién

17



;1 Z Apr®Py(cos )
=0
S = rcose—i—z £+1 Py(cosb)

Notemos que i no aparece todavia. Solo aparece en las condiciones de borde, para B, y Hy

109, 10D,y 3
=T By =— |——| B
a 00 a 00 | _. in LJFQ] o C080
%
aq)zn a(I)out 1_,u
= = Bt = — |1+ —L 2| Byreosd
a 81” r=a 87“ r=a ' |: - M+2 :| e

En vez de la continuidad de los campos tangenciales hemos utilizado la continuidad de ®.

En términos de los campos tenemos

Hin = i Bo
A+ 2

1—padd

H,, = B,
¢ +u+2r3

[Bo — 3(Bo - #)Z]

El campo dentro de la esfera es un campo magnético constante proporcional a B,, mientras que el
campo de afuera tiene también una contribucién de un campo de dipolo magnético con momento

1 1
h=leg, o M=ot lg

m =
o+ 2 47r,u+2

Problema: Considere una esfera de radio a de material polarizable

con constante u. En el plano ecuatorial alrededor de esta esfera ten- J
emos un anillo de radio b > a en la cual fluye una corriente constante

J= Joqg. Encuentre el campo magnético en todo el espacio.

Primero escribamos el potencial vector A = Aoé para el anillo en todo el espacio, con

Arla =~ 1
Ao = c Zzg+1 Z+1|C€’2PK< )P} (cos )

18



donde ahora r~ = Max[r,b] y r- = Min[r,b]. Dado que

(4 1)!
(—1)(E0/2 (1+ ) — ¢ impar
P} 0) = o (L2 (22 )
40 ()%
0 ¢ par
Por lo tanto supongamos A = A,(r, 9)@% y para r # b tenemos
VA =0 — V2A, - —— 4, =0
© 7 r2gin2g’ Y
Con lo cual podemos plantear la solucion
ap rt r<a
= 1
Ay(r,0) =Y ———|Cu1|* P} (0)P}(cos
1.0 =3 S ICuPR O os0) | o
/=0 Tiﬁ m r>a
Utilizando las condiciones de borde de continuidad
, ab atly
e = 1m T e
Usando
1 0A,sinf Orég -
B=Vx A = P — rsinf 0
8 72 sin 6 [ a0 Mo }

con B = yH y dado que no hay corriente superficiales, tenemos

(97"14¢ . 87’A¢
or r=a— or r=a+
que es equivalente a
at a‘by

De estas relaciones podemos resolver a, y by, y también calcular el campo magnético

B=VxA
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Problema: Una esfera de radio a con magnetizacion M = M,2Z constante.

Notemos que en general p depende de la posicién. En particular en la interfase tenemos

V- B)=V:-(H+4rM) =0 — V20 =47V - M

Esto garantiza que ® es continuo cruzando la interfase. Ademads, en la dos regiones (no en el borde)
tenemos p = const, por lo tanto la ecuacion de Maxwell satisface

V20 =0

Dado que H(r — 00) = B(r — o0) = B, tenemos ®(r — c0) = —B,z = —B,rcosf, y la expansién

d;, = ZAgTepg(COS 0)
(=0

I
Pout = 7T_sz(COS 0)

£=0

Notemos que M no aparece todavia. Solo aparece en las condiciones de borde, para B, y Hy

1 a(I)out 1 8<I>m o O -
a 00 a 00 | _, b, = 5 Mor cos
N
8(I)out 0<I>m . 47‘(‘ a3
_ or —a o |:_ or . + 47M - r‘ra:| =0 (I)out = ?MOT_ST cos 6

Notemos el signo positivo en la expresién del componente radial de B ya que la normal en r < a
apunta hacia adentro de la caja. En vez de la continuidad de los campos tangenciales hemos utilizado
la continuidad de .

En términos de los campos tenemos

H;,, = 4M
a’ .
H,;, = 47rﬁ M —3(M - &)z]

y el campo magnético es
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B, = 4r— [M—3(M-#)3]

Es interesante notar que hay otras formas de resolver este mismo problema. Por ejemplo dado que
tenemos

V-B=V .- [H+4tM]=0 — V?®=47V-M

podemos escribir el potencial como

- Vy -M(y)

o —
Q ‘X_Y|

d>y
donde la integral es en todo es espacio. Notemos que para la esfera tenemos

M = M,20(a — 1)

con
0 x <0
0(z) = 1 r>0
por lo tanto
0 4 .
V-M= Moa—ﬁ(a —r)=—-M(a—71)==M"-ndé(a—r)
2 r

Esto implica que obtenemos el mismo resultado anterior

o0 m= 47T [o¢] re ™ . 27 *
o = My} ., Zmze—e 20 T 1n7m<97 ?) fo 7"Zalry(s(@ - a)rﬁil fo sin 0, d0, fo dey cos 6, Y}, (0y, ¢y)
>
= 4—7TMOa2T—< cos 6
3 r2

ya que

4
cost = 4/ ?WYL()(Q, })
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Si M es suave y localizado, podemos usar

M 1 M :
vf/ fy:/hmvx >y 0= Vy /hdv dPy+ Yij&fy
o lx =yl Q x —y| R—YI x —y| Q [x =Vl

para escribir

olx—y|

donde Q corresponde a la region donde M # 0.

Si la magnetizaciéon puede ser considerada como discontinua en la superficie podemos escribir tambien

0 |x—yl| o [ x—y|

ya que la expresion anterior para el caso de una esfera se puede re-escribir como

V, M=-M adj(a—¢)

con £ como la variable que parametriza el borde de magneto. Para el caso de la esfera tenemos el
mismo resultado anterior

4

rt
o = M, Ze ozm_—z Yom(9, gb)aQ e+1 0 smH do f dpy (2y - ""y)Yzm( ys Py)
4
= —WM a —COSG
3 r>

2€—|—1

Este problema también se puede resolver en términos del vector potencial A ya que

VxH=Vx[B—-4tM]=0 — V?A=-47V xM

lo que tiene como solucion

A= /‘7 d
X—yl

en el Gauge de Coulomb. Donde la integral es sobre todo el espacion (2.
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Si M es suave y localizado, entonces podemos escribir
M
A:Wx/—lﬂm%
alx—y|
Si hay una discontinuidad podemos escribir

Vy x M(y) &y + M(y) x f

A= e O R
a |x—y| o | xX—y|

s

por la misma razén anterior.

Problema: Calcular el campo magnético producido por un magneto permanente dentro de una cavi-
dad conductora.

Las condiciones de borde en el conductor son

4
(B-B,) =0 (B-B.,) xn=—K
C

Si en el conductor prefecto podemos asumir que las cargas se moveran libremente para forzar que no
hayan campos dentro de este, podemos entonces decir que

47
B-n=0 Bxn=—K
c
Por lo tanto el campo magnético normal B, = 0 en el borde. Ahora la segunda condicién no es
muy satisfactoria, ya que sabemos que si la conductividad es alta, pero finita, entonces la corriente

superficial eventualmente se deberia disipar tal que K — 0. Por lo tanto, la condicion

4
Bxn=—K
C

se da por lo general en una situacion tiempo dependiente, donde tenemos un forzamiento que mantiene

K # 0. Osea, esta condicion de borde depende de la historia del proceso que crea la configuracion
final. De la misma manera, si la conductividad es grande, pero finita, entonces

J=0E

y por lo tanto tenemos que resolver el problema como un problema tiempo dependiente, ya que vamos
a necesitar otra ecuacién que relacione E con B (la ecuacién de Faraday).

Notemos que el campo magnético terrestre tiene un campo magnético estatico, aproximadamente
dipolar, sobre su superficie, y por lo tanto el campo magnético no es cero dentro de la tierra, a pesar
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de que la conductividad es bastante alta. En este caso las condiciones de borde son, dado que no
tenemos corriente en la superficie,

(B—B,) A =0 (B—B,) xA=0

Problema: Pongamos media esfera de radio R hecha de un magneto permanente sobre un muy buen
conductor. Encuentre el campo magnético en toda todo el espacio. Cual es la fuerza que siente el
magneto?

Problemas interesantes:

1. Qué cambiaria si dejamos el problema ser en dos dimensiones, e.g. el problema de una linea de
corriente en la direccién z?

2. Incluyendo una cavidad cilindrica dieléctrica.

3. Una vela espacial magnética

6. Energia

Para un grupo de particulas, tenemos la ecuaciéon de Newton

dt

— F,

Multiplicando esta ecuaciéon por la velocidad obtenemos la conservacion de energia

dm;x; d [m;x? ,
Z i 2 1% _ -i.Fz‘n‘t 'i_Fcf,act
7 dt( 2 ) ;X pi TR

Si también requerimos que la fuerza entre dos particulas sea conservativa, el potencial satisface

dU(xj,x3)  OU(xj,%;) . U (x5, xi) e %F o — % F.
= I e— - 7+ 1) iV RY4

dt 8Xj J 8Xi !

Con lo cual
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. 2
%(Z mi2Xi ) _ leF],z"f_ZXlFfmt

' i#
- ZXZFJF"ZXZFM +Z>‘(i.FZ¢xt
L 7>1 j<i ;
- ZXi'Fj,i"i‘ZXj-Fi’j +Z>Q-Ff$t
L j>1i i<j -
= ZU’J —|—sz Femt
>

Por lo tanto tenemos el principio de conservacion de energia
(T +U) Z x; - Fyet

con la definicion

X 1
T:Zm; U:ZUi,jzézUiJ

> i#]

El cambio en energia £ =T + U es el trabajo hecho por las fuerzas exteriores. También tenemos

.9 2
m;X; mix;/
TR MR -
7
y la energia puede ser descompuesta en la energia del centro de masa y la energia con respecto a él.

6.1. Energia eléctrica

En el caso de una fuerza eléctrica externa (estética) en el espacio vacio, tenemos que el cambio en la
energia esta dado por

B B
W——/ FE-dﬁ—q/ Vog-dl =q(dg —Dy) — /p(m)@(ac)d?’x
A A

esto es independiente del camino tomado, es decir, la fuerza es conservativa.
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6.1.1. En un espacio vacio

Por lo tanto, el trabajo hecho en traer una carga desde el infinito es solo ¢ veces el potencial escalar.
Luego, trayendo un ntimero de particulas desde el infinito en cantidades infinitesimales, tenemos que
el trabajo hecho por las particulas internas esta dado por

1 qiq;
U= Zj>z' Ui, = ) Zj;éi ri

1 1 1
=—[pddPr=—— [OV?D PPr=— [|E]? &
v 2f'0 v 87Tf ’ 87Tf’ I* &'

Las ultimas integraciones fueron hechas sobre todo el espacio por partes. Hay una contribucién de
“energia propia” que esta presente en las distribuciones continuas que no estan presentes en la repre-
sentacion discreta. Cuidado debemos tener en la cuenta de la contribucién de la “energia propia” en
cualquier calculo.

Para un sistema de conductores, cada uno con un potencial V; y carga @);, en espacio vacio, el potencial
depende linealmente de la carga @); (representa un factor geométrico), y

Qi=>_,Ci;V; 1 1
SR U:_ZQi‘/z’:_Z‘/z’Cij‘/j
V;:iji,ij 2 i 2 i,j

Las Cy; son las capacitancias, y C; ; son los coeficientes de induccién.

6.1.2. Expansiéon de dipolo

Ponemos una densidad de carga p en un campo externo descrito por ®, calculamos la energia como

U:/p@d?’x

note que el factor 1/2 no se aplica aqui debido a que el campo es externo.

B() = 0(0) — x-B0) — g, 52 + 129 B .

U=q®0)—p-EQ0)— %Q” agjx(m

ya que V -E = 0 para un campo externo. La contribucién del quadrupolo a la energia es de particular
interés en la fisica nuclear.

Por lo tanto, la energia de los dos dipolos interactuantes es
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P1- P2 — 3(pz - 1) (p1-N)
| x1 — %2 3

Uip =

donde 7 es el vector unitario del dipolo 1 al dipolo 2.

6.1.3. En un medio presente

Hasta ahora hemos usado la relacion lineal para W en el espacio vacio. Esta condicién de linealidad no
es muy clara en el caso general, y es mejor aproximar el problema desde el punto de vista del campo.
En particular, la energia fue calculada trayendo la carga desde el infinito por pequenas cantidades al
mismo tiempo y sumando las contribuciones, luego

(5W—/5pq)d3x—i/V-((SD)@d%—i/E-&Dd?’x
47 4

Ahora integramos 6D : 0 — D

1 Y 1 3 1 3
W=— [ dx E-6iD - — |E-Dd’z==|[ pddx
A7 0 8T 2

Hemos usado que E = —V &, y la iltima expresion es verdadera solo si el medio es lineal, y recuper-
amos el resultado lineal. En general, la integral de arriba puede depender de la historia del proceso
(hysteresis) y puede ser muy complicado. Comparando este resultado con el que teniamos, concluimos
que esta no-linealidad aparece en un proceso no local.

Notemos que la energia depende de la historia. Como traemos carga del infinito, debemos ser cuida-
dosos si mantenemos los conductores a V' o () constantes. Si requerimos mantener estos valores con-
stantes, entonces debemos trabajar moviendo cargas hacia afuera y hacia adentro, para mantener la
constancia en los conductores.

6.2. Energia magnética

Supongamos que tenemos una lenta variaciéon de un campo externo B,

Bi(z) = B;(0) + (x - V)Bi(0) + . ..

tenemos
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1
F, = —{/Jde?’x}
¢ i

1
= Eeivjvk/[‘]jBk(O) +le’gagBk] d3x

1
= EELj,k(m X V)]Bk

donde hemos usado la definicion anterior

1
(m X V)] = E/ij dS.T 8@

Por lo tanto
F=(mxV)xB=V(m-B)-m(V-B)=V(m-B)

donde hemos asumido que 0;m; = 0. Podemos observar que la energia potencial puede ser definida
€como
U=-m-B

lo cual esta bien, excepto que el trabajo debe ser hecho en traer esta configuracién al lugar (desde el
infinito) ya que se requiere mantener J que produce M. Este periodo transiente debe ser estudiado
en el formalismo del préximo capitulo con campos dependientes del tiempo. Por lo tanto, la energia
magnética depende del camino tomado a la contribucién en el caso general.

Un analisis similar puede ser hecho para el torque neto

1
N:—/xx[JxB]d?’x — N=m x B(0)
c

para un campo externo.

7. Modelos de materiales

En general € y o pueden ser tensores. El caso mas claro es cuando hay un campo magnético constante
presente. En ciertas situaciones es posible resolver por estos tensores.
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7.1. Modelos simples de € y
Problema El oscilador harmoénico. Si ponemos un campo eléctrico constante

mi = —mw’r + ¢B

Normalizando este problema, podemos re-definir el tiempo como 7 = w,t, y nos queda le ecuacién de
movimiento

= - q
X=—-X+—
wim

E

Es posible encontrar la solucion general a este problema como

Vo
x(t) = X, cos(w,t) + o cos(wot) + mqw?E (1 — cos(w,t))
q Vzo .
2(t) = [—2} E. + z,cosw,t + —= sinw,t
wO (JJO

y por lo tanto podemos encontrar el tensor macroscopico

e °E
P = lim nq?/ x(1)dr = [nq ]

00 mw?

con

De la misma forma si aplicamos un campo magnético constante

.. q.
mi = —mw’r + -1 x B
c

Nuevamente es posible re-escalar las ecuaciones de movimiento como

. ) <qB)
X=—X+XX
wemc

Es posible encontrar la solucién general a este problema. Al calcular la magnetizacién

M — lim n B X % d
_ngonTOQCX X aT
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encontramos que M es lineal con B, y que u es diagonal, pero depende de las condiciones iniciales. Esto
significa que necesitamos tomar un promedio extra sobre las distribuciones de particulas. Podemos
encontrar, asumiendo isotropfa (z? = r2/3 y v} = v?/3), quep es

2
ng 2, 2 9 1
Hij 10mciw, 3T0 3muw? M+ mw,

7j
Para el caso de un tomo tenemos

Vo = Wy Ty
y usando L, = L, = L, = L, podemos encontrar

’flq2

o= 10m2c?w?

Si pensamos en la foto clasica de un electron alrededor de un nicleo sin un campo eléctrico, el campo
combinado es cero fuera del atomo en el sentido tiempo promedio. Un campo eléctrico impuesto
deforma la orbita circular generando un campo dipolo red lejos del atomo.

Problema: Tomemos el problema de un electrén en una fuerza central

Calcule los tensores € y p a primer orden en |E| y |B| promediados en forma apropiada. Notemos que
aca tenemos que promediar también en la orientacién de la elipse.

Tomemos el modelo clasico de un electrén en una orbita circular alrededor de un nicleo, dado por un
potencial

con la ecuacién de movimiento en el plano x — y. El momento angular es L = pgZ. En el plano la
ecuacion de movimiento es

.. b
mp=-V'(p) = V(p)=Ulp)+5
La orbita circular en el plano esta dada por
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V,(po) =0

con

km ° mp?
Esto define el vector

Po = Po cos(éot):?: + P sin(éot)y

Si perturbamos la orbita circular

r=po+ [z(1),y(t), 2(t)]

obtenemos las ecuaciones de movimiento

k . .
i = [x + 3cos (28075) z + 3sin (29015) y] +1g,
2mp3 m
L . .
y = [y + 3sin (2«90t) x — 3cos (29015) y} + gEy
2mp3 m
k
2 = ——z+ iEZ
mr m

al cual le hemos agregado un campo eléctrico uniforme.

7.2. Modelos Estadisticos de ¢ y u

En general, cuando tenemos muchas particulas en el sistema, es preferible utilizar un método estadisti-
co para encontrar valores par € y u

Dada una ecuacion de energia, llamado un Hamiltoniano, veremos luego que la funcién de distribucion
de equilibrio puede ser escrita en términos del Hamiltoniano, y esta dado en la forma candnica como

e PH
f(z,p) = Te 3 dudp

de la cual podemos definir el valor esperado para cualquier variable dinamica o funcién

[ e PHF(x,p) dedp
[ e=PH dxdp

< F >=

usando una descripcion para H construiremos un modelo para materiales eléctricos y magnéticos.
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Problema: Tomemos un Hamiltoniano del oscilador arménico con la presencia de un campo eléctrico,
luego

pProom

H:%%—Ewg:vQ—eEz
Ne?
P=N <ppy >=N <ez>= 2E
mw?

pero las particulas pueden bajar su energia reorientandose hacia el campo

H=H,-p,-E=H,— p,E,cost

1p2
P =N <ppo >=N < p,cost) >~ ngEO

7.3. Modelos simples de magnetizacién

Como vimos abajo, la energia de una coleccién de N spins puede ser escrita como

H:Zh'si+ZJi7ij'Si
i 1,j

con H como la energia o el Hamiltoniano y J como la interaccién entre los spins, el cual es en general
una interaccién de dipolo que decae como r~2. Usando un rango corto de interaccién dando solamente
a los vecinos mas cercanos contribucion, tenemos

[ePHS"s; dudp
M(h7 {51}) = feng d$dp

Esta formula puede generar interesantes dindmicas, transiciones de fase, etc. La transiciéon de fase no
se convierte hasta que vamos en dimensiones mds altas (el modelo en dos dimensiones ising de On-
sager). Usando una aproximacién mala del campo en una dimensién en “equilibrio” segin la mecanica
estadistica, tenemos

e PEN s . dx
Mah () = (S0} = L f%fq o P N anb{(h+ IN M)

el dltimo resultado es obtenido asumiendo que s, es discreto y puede tener valores 1,-1. Notemos
que este problema implica resolver una ecuacion trascendental, el cual se puede resolver por ejemplo
usando un método de Newton para encontrar el cero de la funcién

9(M,B,b,) = M — N tanh[(b, + JNM)p]

32



M[bo]

SIS3S
g1000

bo

Figura 4: (a)Solucién de M, usando el campo medio en 1-D para diferentes temperaturas, para N = 10 y
J=0,1

De la Fig. 4a podemos observar el caso de paramagnético con J > 0, donde los espines se alinean con
el campo. Aqui también observamos una transicion de fase exactamente en el limite 8 — 0. El caso
de diamagnético J < 0, los espines se alinean con los vecinos. El caso ferromagnético, en el limite
B, — 0, aun tenemos una magnetizacion si la temperatura 7' < 7.

7.4. Método de MonteCarlo

En general tenemos que evaluar la integral de arriba en el equilibrio, consistente con fluctuaciones a
cierta temperatura T. Tomemos el Hamiltoniano con s=1,-1, y podemos utilizar el método de monte
Carlo para encontrar la magnetizacién en equilibrio con un bano termal. En cada instante t, tenemos
la configuracion {sy)} con interaccion vecino mas cercano. Repetir la siguiente receta para cada valor
de 8 =1/T la temperatura

1. Tomar un spin al azar y hacer un flip en z = {S(It)}
2. Calcular la energia AE = E(y) — E(x)
3. X=y si AEj0 o si r < exp(—BAE), con r un numero al azar

4. Repetir N veces
Podemos entonces calcular la Magnetizacién < sgt) > y repetimos para otros valores de T y B,
estimando la curva M(T,B). Se puede observar una transicién de fase en 2D. En la Fig. 4b vemos
como se da esta transicion de fase para ciertos valores.

7.5. Dinamica de Espines

Hasta ahora hemos trabajado con situaciones en equilibrio, pero también podemos estar interesados en
la dinamica de los espines. Para ello podemos asumir un modelo para un espin que puede orientarse en
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Magnejizacion Medida
Solucion de Onsager
Dalos suavizados

Magnetizacion
=
-

10 15 20 28 E1]
Temperatura (J)

Figura 5: (a)Solucién de Monte Carlo para el modelo de Ising (400x400) mostrando dominios claros para
T = 2. (b)La magnetizacién como funcién de la temperatura, mostrando la transicién de fase a temperatura
finita. Hecho por Paul Blackburn.

por ejemplo 3 dimensiones. Utilizando la expresion candnica para la evolucion de la variable, utilizando
el paréntesis de Poisson, tenemos que

ds;
dt

Esperamos ver cosas interesantes con este modelo, denominado de Heissenberg. Hasta donde yo se
este es un problema interesante que puede dar origen a publicaciones.

Para el caso de orientacion en 3 dimensiones, tenemos
ds;

y si usamos interaccion con vecinos préximos se puede hacer la simulacién. La temperatura se puede
forzar desde los bordes.

8. Solucién numérica

Hay una manera simple para resolver la ecuacion para el potencial cuando incluimos dieléctricos

V  (eVV¥) = — =4mp

Integrando sobre el volumen de una esfera de radio Az, podemos encontrar que

34



4
% eVVU - ndS =~ —XxAyAzp@j,k
Gl9)
con lo cual podemos estimar numéricamente la integral de superficie

fag eVU .- ndS = €i+1/2,j,k<E : fi)i+1/2,j,k + 61-1/2,j,k(—E : fi)i—l/z,j,k

+ €ijr2kEY)ijri/2x +6i-1/2x(—E - ¥)ij-1/2x

+ 6i,j,k+1/2(E : Z)i,j,kl/z + Ei,j,k71/2(_E : 2)i,j,k71/2

donde
(BB = 68_\; i+1/2,5k - Wi+17j72; St
(E-¥ijrrzx = g—j e _ \I'ileakA ; Wik
B Bigirayz = g_f ij,k+1/2 - Wi7j7k+1A; B

Esto corresponde a la discretizacion a primer orden de la ecuacién de arriba. Podemos resolver esto
por relajaciéon o por un método directo.

El caso de elementos finitos tenemos que minimizar el funcional

S[®] = / [(eV®)® + 47p] da

usando elementos finitos como describimos anteriormente.

El caso magnético se hace en forma similar.
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