
Capitulo 3:
Variaciones temporales y las ecuaciones de
Maxwell

En este caṕıtulo discutiremos las ecuaciones del electromagnetismo con variaciones en el espacio y el tiempo.
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1. Fuerza de Lorenz

Las corrientes fueron una entidad misteriosa hasta que fueron descubiertas la conexión entre las cargas y
las corrientes. Si definimos

ρ(x, t) =
∑
i

qiδ
(3) (x− xi(t))

J(x, t) =
∑
i

qivi(t)δ
(3) (x− xi(t))

claramente tenemos la ecuación de continuidad macroscópica

∂ρ

∂t
+ ∇ · J = 0

De dichas relaciones obtenemos además

dpi
dt

= F(xi, t) = qE(xi, t) + q
[vi
c
×B(xi, t)

]
Es importante notar que los campos que siente una particular cargada es E y B, los cuales incluyen todas
las cargas en el material. Mientras que D y H son los campos producidos por las distribuciones de carga y
corrientes libres (netas) promediadas en una escala espacial y temporal.

F V
R

Figura 1: Conductor en un campo magnético

Supongamos que tenemos un conductor que se mueve en un campo magnético uniforme; entonces las cargas
libres en el conductor sienten una fuerza que es proporcional a v × B. En el fondo dicha fuerza genera
un campo eléctrico “efectivo” Ē en el conductor. Asumiendo una trasformación Galileana, re-escribimos la
ecuación de arriba para un sistema de referencia moviéndose con el conductor, obteniendo

F = qĒ → Ē =
[v
c
×B

]
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Esto demuestra que los campos se transforman de una manera no trivial (esta observación nos llevara a la
teoŕıa de la relatividad y a una formulación covariante de las ecuaciones de Maxwell). Por lo tanto es de
esperarse que la relación general es

F = qĒ → Ē = E +
[v
c
×B

]

cuando hay campos eléctricos y magnéticos en el sistema inicial. Lo cual se ha comprobado en un sinf́ın
de experimentos para velocidades pequeñas. Aun falta lo que pasa para B̄, pero esto lo estudiaremos en el
caṕıtulo de relatividad.

2. La Ley de Inducción de Faraday

Faraday (∼ 1830) observó el comportamiento de un circuito eléctrico en el tiempo cambiando los campos
magnéticos. El observó que se generaba un transiente de corriente en el circuito si

La corriente de un circuito aledaño era prendida o apagada

Un circuito adyacente, con una corriente fija, se mov́ıa respecto al primer circuito

Un magneto permanente se pońıa dentro o fuera del circuito

La relación derivada para la diferencia de potencial mostrada en el diagrama es

|ĒL| =
∣∣∣v
c
B0L

∣∣∣
las cuales se pueden relacionar con integrales de superficie y de linea, para el caso menos homogéneo, como∮

δS(t)

Ē · d` = −1

c

d

dt

∫
S(t)

(B · n̂) dS

recordando que el borde de la superficie esta orientada de tal forma que d` y n̂ satisfacen la regla de
la mano derecha. Esto quiere decir que si Bo es paralelo a n̂ y por lo tanto sale del plano en la figura,
entonces Ē y d` están en la misma dirección. Esta derivada completa es exactamente el resultado relevante
(y experimental), y tiene sentido si notamos que el área del circuito de la figura cambia como

dA

dt
= −vL

Estas son las observaciones de Faraday, que pueden ser resumidas como

ε = −1

c

dΦ

dt

con las definiciones
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Φ =

∫
S(t)

B · n̂dS ε =

∮
δC

Ē · d`

Con Φ como el flujo magnético que cruza el circuito cerrado. ε es la fuerza electromotriz o la integral de
ĺınea del campo eléctrico Ē que rodea el circuito. El campo Ē es, para el sistema de referencia en reposo,
un elemento d` del circuito C. La constante de proporcionalidad c−1 depende de las unidades definidas por
las leyes de Coulomb y Ampére, y puede ser obtenida por un argumento similar al usado arriba para una
transformación Galileana. El signo (-) es consistente con la ley de Lenz, que dice que la corriente inducida
está en una dirección que se opone al cambio de flujo en el circuito.

Notemos que tenemos

dB

dt
=
∂B

∂t
+ (v ·∇)B =

∂B

∂t
−∇× (v ×B) + v(∇ ·B)

donde v es constante durante la diferenciación. Por lo tanto

d

dt

∫
S(t)

(B · n̂) dS =

∫
S(t)

∂B

∂t
· n̂dS −

∮
∂S(t)

(v ×B) · d`

Esto nos permite re-escribir la ley de Faraday con los campos en el mismo sistema de referencia∫ [
∇× E +

1

c

∂B

∂t

]
· n̂dS = 0

Dado que la superficie es en principio arbitrario, tenemos

∇× E +
1

c

∂B

∂t
= 0

Con esta relación podemos completar las ecuaciones de Maxwell, propuestas por él mismo en 1865, como

∇ · E = 4πρ ∇× E = −1

c

∂B

∂t

∇ ·B = 0 ∇×B =
4π

c
J +

1

c

∂E

∂t

El ultimo termino de la ecuación de Ampére fue derivado en el capitulo 1 y es necesario para hacer las
ecuaciones consistentes con la descripción microscópica

∂ρ

∂t
+ ∇ · J = 0

La ley de fuerza

F = qE + q
[v
c
×B

]
En muchas situaciones, también incluiremos la ley de Ohm
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J = σĒ = σ
(
E +

v

c
×B

)
que relacione la corriente y el campo eléctrico. Veremos más de esto más adelante.

3. Materia y las ecuaciones de Maxwell

En el capitulo 2 derivamos que en la presencia de materiales tenemos

< ρ̄(x, y) >= ρ(x, y)−∇ ·P(x, t) +
∂2Qα,β

∂xα∂xβ
+ . . .

con lo cual podemos definir

Dα = Eα + 4πPα − 4π
∂Qαβ

∂xβ
+ . . .

También encontramos que en el caso que vn = v (el sistema completo puede moverse con velocidad constante
v), entonces

Bα = Hα + 4πMα +
[
(D− E)× v

c

]
α

el último término es usualmente pequeño, cuando

v

c
<< 1

3.1. Ecuaciones de Maxwell

Estos resultados se mantienen en el caso de variaciones temporales. Al aplicar nuestro promediado a la
ecuación microscópica

〈∇× e〉 = −1

c

〈
∂b

∂t

〉
obtenemos la representación macroscópica de la ecuación de Faraday

∇× E = −1

c

∂B

∂t

Por lo tanto las ecuaciones de Maxwell son a primer orden

∇ ·D = 4πρ ∇× E = −1

c

∂B

∂t

∇ ·B = 0 ∇×H =
4π

c
J +

1

c

∂D

∂t

En muchos casos podemos asumir que tenemos un material linear como en el capitulo 2. Se debe tener
cuidado en considerar las variaciones en las temperaturas y en las densidades. Por lo tanto, el análisis
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directo requiere el uso de conceptos de mecánica estad́ıstica, y la descripción tensorial es un poco más
complicada.

3.2. Condiciones de Borde

Podemos estudiar nuevamente las condiciones de borde para las, ahora completas, ecuaciones de Maxwell.
Para un borde inmóvil, tenemos lo que teńıamos antes

(D2 −D1) · n̂ = 4πσ (E2 − E1)× n̂ = 0

(B2 −B1) · n̂ = 0 (H2 −H1)× n̂ =
4π

c
K

Para una interfase en movimiento, con velocidad v, usamos la transformación∫
S

[
∂D̄[x(t), t]

∂t

]
· n̂dS →

∫
S(t)

[
dD̄[x(t), t]

dt

]
· n̂dS

Debido a que en el sistema S, D no cambia en el tiempo. Mientras que en el sistema S(t), la integral debe
cambiar debido a el movimiento de S. Entonces, tenemos∫

S(t)

[
∂D

∂t
+ (v ·∇) D

]
· n̂dS =

∫
S(t)

[
∂D

∂t
−∇× (v ×D) + v (∇ ·D)

]
· n̂dS

Notemos que no tomamos derivadas con respecto a v. Entonces, las condición de borde para los campos,
visto en el sistema del laboratorio, para la interfase en movimiento, es

(D2 −D1) · n̂ = 4πσ (E2 − E1)× n̂− (n̂ · β) (B2 −B1) = 0

(B2 −B1) · n̂ = 0 (H2 −H1)× n̂+ (n̂ · β) (D2 −D1) =
4π

c
K

4. Transformaciones duales y monopolos magnéticos

Supongamos que incluimos una carga magnética y corriente

∇ · E = 4πρ ∇× E = −1

c

∂B

∂t
− 4π

c
Jm

∇ ·B = 4πρm ∇×B =
4π

c
J +

1

c

∂E

∂t

Podemos hacer la siguiente transformación, con ξ real,

E = Ē cos ξ + B̄ sin ξ B = −Ē sin ξ + B̄ cos ξ

ρe = ρ′e cos ξ + ρ′m sin ξ Je = J̄e cos ξ + J̄m sin ξ

ρm = −ρ′e sin ξ + ρ′m cos ξ Jm = −J̄e sin ξ + J̄m cos ξ
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que deja las ecuaciones de Maxwell invariantes. Esto también deja E×B,E2 +B2 invariantes. Esto significa
que es una asunto de conveniencia el hablar de carga eléctrica o magnética. Si todas las part́ıculas tienen el
mismo radio de carga eléctrica a magnética, podemos hacer una transformación dual para obtener ρm = 0
y Jm = 0. Por el estudio de la mecánica cuántica de un electrón en presencia de un monopolo magnético,
se puede demostrar que la consistencia de tal cuantización requiere

qmqe
h̄c

=
n

2
n = 0,±1,±2, . . .

aśı que la existencia de un monopolo magnético implica la cuantización de una carga eléctrica.

5. Transformaciones de campos

Ahora iremos a las leyes de transformación para los campos, esto nos servirá, por ejemplo, para construir
relaciones tipo D(E) y H(B). Estamos interesados en tres transformaciones en general.

Supongamos que realizamos una transformación de coordenadas que es, en general, no lineal. La pregunta
es qué le pasa a las variables f́ısicas

5.1. Rotación

Las coordenadas se transforman como vectores bajo un rotación

x̄ = Rx

donde
x̄T x̄ = xTx → RTR = 1

Esto implica que det R = ±1. El producto cruz, se transforma de una forma especial, dada por

B = C×D → C̄ = det(R)Ā× B̄

y por lo tanto C se denomina un pseudo-vector. Notemos que el producto cruz da un −1 al hacer x→ −x.
Por ejemplo, x,v,p se transforman como vectores y el momento angular como pseudo-vector.

El potencial electrostático sólo depende de la distancia entre dos puntos, y por lo tanto es invariante bajo
rotaciones. Se le denomina un escalar

Ψ̄(x̄) = ψ(x)

Por ejemplo el producto escalar de dos vectores se transforma como un escalar.

Si una transformación del sistema transforma un campo como vector, entonces

V̄ (x̄) = RV(x)

Se puede definir la transformación de un vector.
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5.2. Inversión Espacial

Supongamos que realizamos una transformación de coordenadas

x̄ = −x

los vectores se transforman como vectores polares

V(x̄) = −V(x)

o como seudo-vectores(aśı como el producto cruz)

V(x̄) = V(x)

Un análisis similar se aplica a los escalares y los tensores. En general, un tensor de rango N se transforma
con un factor (−1)N , y un seudo-tensor se transforma como (−1)N+1.

5.3. Inversión Temporal

Supongamos que realizamos una transformación de coordenadas

t̄ = −t

La pregunta es cuando los tensores son pares o impares. Tomemos como ejemplo las ecuaciones de movi-
miento de Newton; son invariantes respecto a una reversión temporal si t̄ = −t y x̄ = x, dado que

m
d2x

dt2
= −q∇Ψ → m

d2x̄

dt̄2
= −q∇̄Ψ̄

5.4. Cantidades Electromagnéticas

Si decidimos que la carga debe ser un escalar bajo las 3 transformaciones. De las ecuaciones de Maxwell
notamos que E es un vector polar dado que ∇ · E = 4πρ. Por lo tanto podemos construir Tabla 1.

Table 1.
Cantidad Transformación Inversión Inversión

Rotación Espacial Temporal
E,D,P vector impar par
B,H,M pseudo-vector par impar
J vector impar impar
S = cE×H/4π pseudo-vector impar impar

Supongamos que queremos encontrar P(E,B0) en una campo magnético constante. Entonces, los candidatos
para la transformación de propiedades son de segundo orden en B0

P = λ0E + λ1

(
∂E

∂t
×B0

)
+ λ2 (B0 ·B0) E + λ3 (E ·B0) B0 + . . .
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Si requerimos que, para bajas frecuencias, sólo las fuerzas eléctricas entren, entonces

P = λ0E + λ1

(
∂E

∂t
×B0

)
+ λ2 (B0 ·B0)

∂2E

∂t2
+ λ3

(
∂2E

∂t2
·B0

)
B0 + . . .

Otra relación que es interesante es la relación de Ohm mas generalizada, que tiene

λo
∂J

∂t
= E +

v

c
×B + ηoJ + λ1(H× J) + . . .

Este resultado incluye el comportamiento girotrópico y el efecto de Hall en los materiales y el plasma.

6. Enerǵıa y Teorema de Poynting

Comenzaremos mirando un sistema de part́ıculas; tenemos

F = qE + q
v

c
×B

6.1. Ecuación de Enerǵıa

Si miramos las ecuaciones de fuerza, notaremos que las relaciones de enerǵıa pueden ser derivadas multipli-
cando por la velocidad (no-relativista). En este caso sólo el campo E da una
contribución

d

dt

[
1

2
mv2

]
= qv · E

En el caso de una distribución de carga continua, el trabajo efectuado por el campo es

d

dt
[Umec] =

∫
Ω

(J · E) d3x

=
1

4π

∫
Ω

[
cE · (∇×H)−

(
E · ∂D

∂t

)]
d3x

= − 1

4π

∫
Ω

[
c∇ · (E×H) +

(
E · ∂D

∂t

)
+

(
H · ∂B

∂t

)]
d3x

Si asumimos que el material es lineal, podemos definir la enerǵıa electromagnética

Ue&m =
1

8π

∫
Ω

[(E ·D) + (B ·H)] dx3

Definiendo U = Umec + Ue&m tenemos el principio de conservación de enerǵıa como

dUmec
dt

+
dUe&m
dt

= −
∮
δΩ

(n̂ · S) ds
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con

S =
c

4π
(E×H)

como el vector de Poynting. Dado que el volumen es arbitrario, podemos definir la densidad de enerǵıa
electromagnética como

ue&m =
1

8π
[E ·D + B ·H]

y por lo tanto

∂u

∂t
+ (∇ · S) = 0

6.2. Enerǵıa Magnética

Finalicemos la discusión acerca de la enerǵıa magnética. El término

Wm =

∫
(B ·H)

8π
d3x

es la enerǵıa magnética en el campo. Podemos usar un simple argumento para notar que lo arriba escrito
es, justamente, la enerǵıa magnética. Tomemos un pequeño “loop” de corriente de espesor ∆σ y área S. Si
el flujo sobre el loop cambia, entonces la fuente debe hacer trabajo para mantener la corriente constante.

d

dt

[
1

2
mv2

]
= qv · E → dW

dt
= −Iε =

I

c

dΦ

dt

Cuando un se realiza un cambio infinitesimal, tenemos

dW =
I

c
dΦ

Aqúı asumimos que las corrientes son sumables, entonces ∇ · J = 0. El incremento del trabajo realizado
contra el emf inducido, es

δW =
J∆σ

c

∫
S

(n̂ · δB) ds =
J∆σ

c

∫
S

[n̂ · (∇× δA)]ds =
J∆σ

c

∮
δS

δA · d`

Cualquier distribución de la densidad de la corriente puede ser escrita como una suma de pequeños “loops”
cómo éste. Entonces, como J∆σδ` = Jd3x, tenemos

δW =
1

c

∫
(δA · J) d3x → δW =

1

4π

∫
(δB ·H) d3x

y para el caso de un material lineal, tenemos

W =
1

2c

∫
A · Jd3x → W =

1

8π

∫
(B ·H) d3x

Las expresiones de la derecha son para una distribución localizada de cargas.

11



Problema: Para el caso de N circuitos eléctricos, es posible demostrar que

W =
1

2

N∑
n=1

LnI
2
n +

1

2

∑
n6=m

LnMnmLm

donde Ln es la auto-inductancia y Mn,m es la inductancia mutua entre pares de circuitos.

6.3. Ecuación del Momento

La suma de todos los momentos es

dPmec
dt

=

∫
V

[
ρE +

1

c
(J×B) + (otrasfuerzas)

]
d3x

Ahora utilizaremos

ρ =
1

4π
∇ ·D J =

c

4π
∇×H− 1

4π

∂D

∂t

con lo cual obtenemos

ρE +
1

c
J×B =

1

4π

[
1

c
B× ∂D

∂t
+ E∇ ·D−B× (∇×H)

]

=
∂

∂t

[
1

4πc
B×D

]
+

1

4π
[(∇× E)×D + E∇ ·D−B× (∇×H)]

Sumando el termino H∇ ·B = 0, y después de un poco de álgebra, podemos encontrar que

dPmec

dt
+
d

dt

∫
Ω

[
1

4πc
(D×B)

]
d3x =

∫
Ω

∇ ·T d3x =

∮
δΩ

T · n̂ dS

donde el tensor de stress de Maxwell es

Tαβ =
1

4π

[
EαDβ +BαHβ −

1

2
[(E ·D) + (B ·H)]δαβ

]
Además tenemos

[∇ ·T]β =
∂Tα,β
∂xα

con

[T · n̂]β = Tα,βn̂α

Obtenemos el resultado que los campos electromagnéticos tienen un momento efectivo

PE&M =
1

4πc
(D×B)
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Es importante notar que esta expresión en materiales no es aceptada comúnmente, ya que intuitivamente
es razonable pensar que PE&M debeŕıa estar relacionado con S, y por lo tanto una expresión mas aceptada
es

PE&M =
S

c2
=

1

4πc
(E×H)

Es posible derivar esta expresión directamente de la mecánica estad́ıstica, para el caso de medios lineales
e isotropicos, notando que ε como µ dependen de la temperatura. Ahora, en el caso lineal, la primera
expresión, se puede escribir como

PE&M =
1

4πc
(D×B) → PE&M =

µε

c2
S =

1

v2
ph

S

que muestra que en un material el momentum se desplaza con la velocidad de fase en el medio, lo cual
sugiere que la primera expresión no esta tan equivocada.

Este momento electromagnético puede ser visto como presión radiativa. La NASA ha diseñado una nave
espacial que puede ir lejos de la Tierra usando la presión radiactiva solar como un sistema de propulsión.
Se debe tener cuidado, eso śı, para contrarrestar el efecto gravitacional.

6.4. Campos Armónicos

Asumamos que los campos tienen una dependencia temporal harmónica

Ē(x, t) = Re[E(x)e−iωt] =
1

2
[E(x)e−iωt + E∗(x)eiωt]

Por lo tanto los productos los podemos evaluar como

J̄ · Ē =
1

2
Re
[
(J∗ · E) + (J · E) e−2iωt

]
La última parte del producto desaparece si estamos interesados en promedios temporales.

Las ecuaciones de Maxwell para este caso particular son

∇ ·D = 4πρ ∇× E = i
ω

c
B

∇ ·B = 0 ∇×H =
4π

c
J− iω

c
D

podemos calcular nuevamente el principio de conservación de enerǵıa como

1

2

∫
Ω

(J∗ · E) d3x+ 2iω

∫
Ω

(we − wm)d3x+

∮
δΩ

(S · n̂) ds = 0

donde
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S =
c

8π
(E×H∗) we =

1

16π
(E ·D∗) wm =

1

16π
(B ·H∗)

La parte real representa la conservación de enerǵıa, promediada en el tiempo. La parte imaginaria describe
el flujo de enerǵıa entre los campos. Esta ecuación nos permite, además, definir la impedancia de un circuito.

Imaginemos un sistema electromagnético que es forzado por un voltaje oscilatorio Vi y una corriente Ii, que
ingresan al circuito por una pequeña superficie Si. La potencia que entra al sistema

1

2
I∗Vi = −

∫
Si

(S · n̂) ds

y por lo tanto tenemos

1

2
I∗Vi =

1

2

∫
Ω

(J∗ · E) d3x+ 2iω

∫
Ω

(we − wm)d3x+

∮
δΩ−Si

(S · n̂) dS

La integral de superficie es la potencia irradiada al infinito (una integral real), y a altas frecuencias, una
importante componente del equilibrio de enerǵıa. La impedancia es definida como Z = R−iX, con Vi = ZIi

R =
1

|Ii|2
{[∫

Ω
Re (J∗ · E) d3x

]
+ 2

∮
δΩ−Si

Re (S · n̂) dS
}

+ 4ω
∫

Ω
Im[wm − we]tx3

X =
1

|Ii|2
{

4ωRe
[∫

Ω
(we − wm)d3x

]
−
∫

Ω
Im(J∗ · E)

}
Notemos que en esta definición hemos asumido que ε, σ, y µ son reales (aśı J∗ ·E, E×H∗, E ·D∗ y B ·H∗ son
reales), aunque pueden representar medios no lineales (dependen de los campos) o anisotropicos (tensores).
Mas adelante, cuando estudiemos óptica, veremos que esta es la forma apropiada de proceder.

Para bajas frecuencias, tenemos

R =
1

|Ii|2
∫

Ω
σ|E|2d3x

X =
4ω

|Ii|2
∫

Ω
(wm − we)d3x

asumiendo la ley de Ohm, J = σE, con σ como un escalar real.

En general si no hay efectos de propagación en el circuito, y estamos interesados en la solución asintótica,la
corriente entrante tiene la misma frecuencia que el voltaje entrante.

Si tenemos una inductancia localizada, la dinámica esta regida por

14



V = L
dI

dt

entonces podemos ver que la inductancia esta relacionada con X donde la enerǵıa magnética domina

V = −iωLI = −iXI → X = ωL =
4ω

|Ii|2

∫
Ω

wmd
3x

Problema: Calcular
∫
B2dx3 ∼ L para un anillo de corriente.

Si tenemos una capacitancia, la dinámica esta regida por

V = Q/C

entonces, podemos ver que la capacitancia esta también conectada con la reactancia X, donde ahora
la enerǵıa eléctrica es la dominante

V =
I

−iωC
= −iXI → X = − 1

ωC
= − 4ω

|Ii|2

∫
Ω

wed
3x

Problema: Calcular
∫
E2dx3 ∼ 1/C para un capacitador infinito.

Un circuito LRC esta regido por

V (t) =
Q(t)

C
+ I(t)Rc + L

dL(t)

dt

entonces tenemos

Vi =

(
−1

iωC
+Rc − iωL

)
Ii = (R− iX)Ii

y por lo tanto

R = Rc X = ωL− 1

ωC

Problema: Graficar las soluciones numéricas para Q(t) y I(t).

15



7. Solución por potenciales

Podemos ver que el considerar el campo eléctrico como el gradiente de del potencial eléctrico ya no es válido.
En el vaćıo, necesitamos definir los potenciales; comenzaremos por B = ∇×A

∇×
[
E +

1

c

∂A

∂t

]
= 0 → E = −1

c

∂A

∂t
−∇ψ

Usando la forma que tienen las ecuaciones de Maxwell (sin materiales)

∇2ψ +
1

c

∂ (∇ ·A)

∂t
= −4πρ

∇2A− 1

c2

∂2A

∂t2
−∇

[
(∇ ·A) +

1

c

∂ψ

∂t

]
= −4π

c
J

Pero estamos interesados en los campos, no en los potenciales, esto implica una libertad de “gauge”, la cual
esta dada por

A→ Ā = A + ∇ω

pero esto requiere que

ψ → ψ̄ = ψ − 1

c

∂ω

∂t

7.1. Gauge de Coulomb

En este caso asumimos una transformación de escala

∇ ·A = 0

lo que nos da

∇2ψ = −4πρ

∇2A− 1

c2

∂2A

∂t2
= −4π

c
J +

1

c
∇∂ψ

∂t

Lo que muestra que el potencial escalar satisface la misma ecuación de antes, y puede ser integrada inme-
diatamente como

Ψ(x, t) =

∫
ρ(y, t)

|x− y|
dy3

Pero la ecuación para A es mas complicada. Podemos reescribir la ecuación de arriba, para el vector potencial
como

∇2A− 1

c2

∂2A

∂t2
= −4π

c
Js = −1

c
∇×∇×

∫
J(y)d3y

|x− y|

16



Esta no-local densidad de corriente es la llamada “densidad de corriente transversal”. En general la solución
representa un tiempo de propagación infinito para el potencial; y ondas viajeras que se propagan con
velocidad constante c para el vector potencial. Este Gauge es bastante útil para electrodinámica cuántica,
donde se requiere la cuantización de A.

7.2. Gauge de Lorentz

En este caso usamos la libertad de Gauge como

∇ ·A +
1

c

∂ψ

∂t
= 0

Con esta transformación de gauge obtenemos

∇2ψ − 1

c2

∂2ψ

∂t
= −4πρ

∇2A− 1

c2

∂2A

∂t
= −4π

c
J

Supongamos que tenemos unos potenciales que no satisfacen esta libertad, entonces podemos encontrar
otros potenciales tal que

∇ · Ā+
1

c

∂ψ̄

∂t
=

[
(∇ · A) +

1

c

∂ψ

∂t

]
+

[
∇2ω − 1

c2

∂2ω

∂t2

]
porque siempre es posible encontrar una solución para ω

∇2ω − 1

c2

∂2ω

∂t2
= −

[
(∇ ·A) +

1

c

∂ψ

∂t

]
como veremos mas adelante.

En general, el resolver problemas de electromagnetismo requiere resolver la ecuación de onda con y sin con-
diciones de borde. En general la solución representa onda viajeras que se propagan con velocidad constante
c. Esto implica que para sentir una perturbación se requiere un tiempo de propagación. Esto es bastante ex-
traño, porque no hemos hecho mención a un sistema de referencia en particular. Esta observación conducirá,
eventualmente, a la teoŕıa de la relatividad especial.

8. Soluciones para fuentes harmónicas

Supongamos que tenemos que resolver la ecuación de Maxwell

∇ ·D = 4πρ ∇× E = i
ω

c
B

∇ ·B = 0 ∇×H =
4π

c
J− iω

c
D

17



para una variación harmónica en el tiempo J(x)e−iωt. Para el caso de los potenciales tenemos

∇2Ψ +
√
µεk2

oΨ = −4π

ε
ρ

∇2A+
√
µεk2

oA = −4πµ

c
J

en el Gauge de Lorenz y con ko = ω/c.

Problema: Tomemos un cilindro conductor muy largo de radio
ρ = a sobre el cual tenemos una corriente total I = Ioe

−iωt que se
desplaza a lo largo del cilindro. Encuentre los campos producidos y
la potencia radiada por unidad de largo.

a
Dado que tenemos un cilindro conductor infinito en z, ∂z = 0. Tenemos que resolver la ecuación de Helmholtz
para ρ > a

∇2
⊥Az + k2

oAz = 0

con ko = |ω/c|, ya que la corriente es en la dirección z. La simetŕıa dictamina que

∂

∂θ

por lo tanto si exigimos simetŕıa azimutal, podemos escribir la ecuación para Az(ρ)

1

ρ

∂

∂ρ

(
ρ
∂Az
∂ρ

)
+ k2

oAz = 0

que tiene como solución las funciones de Hankel H
(1)
m (x) = Jm(x) + iNm(x) y H

(2)
m (x) = Jm(x) − iNm(x),

con m = 0. Dado que queremos condiciones de borde de radiación en infinito

ĺımx→∞ Jm(x)→
√

2
πx

cos
(
x− mπ

2
− π

4

)
ĺımx→∞Nm(x)→

√
2
πx

sin
(
x− mπ

2
− π

4

)
encontramos

Az = A0H
(1)
0 (koρ) → 1√

πx
ei(kor−ωt)

Nos falta encontrar A0. El campo magnético se puede encontrar (B = ∇× A) de las relaciones de arriba

Bφ = −∂Az
∂ρ

= −A0koG0(koρ)
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hemos introducido la función auxiliar

G0(x) =
dH

(1)
0 (x)

dx

Ahora utilizamos la condiciones de borde

Bφ =
4π

c
Kz =

2Io
ac

con lo que obtenemos

A0 =
2I0

ckoaG0(koa)

El campo eléctrico para ρ > a es

Ez = − 1

ikoρ

∂

∂ρ
(ρBφ) =

1

iko

[
1

ρ

∂

∂ρ

(
ρ
∂Az
∂ρ

)]
=

1

iko

[
−k2

oAz
]

= ikA0H
(1)
0 (koρ)

0 2 4 6 8 10
koa

0.001

0.1

10

P�L

Figura 2: Potencia Radiada Total.

Aunque esta expresión es consistente con

E = −1

c

∂A

∂t

para oscilaciones temporales harmónicas se obtiene el campo eléctrico directamente de

i
ω

c
E = ∇×B

ya que puede suceder que Ψ 6= 0. Notemos que si la oscilación es harmónica, entonces se puede encontrar la
solución completa al problema resolviendo para A, y no es necesario resolver la ecuación para el potencial
escalar Ψ. La potencia radiada por unidad de largo es
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P

L
=

∫
R→∞

c

8π
(E×B∗) · ρ̂ρdφ

= (2π)
c

8π
|ko|2|Ao|2

(
ĺımρ→∞

(
ρH

(1)
0 (koρ)G∗0(koρ)

))
= (2π)

c

8π
|ko|2

(
4

c2|ko|2a2

)
|I0|2

|G0(koa)|2
2

π

=
2

cπa2

|I0|2

|G0(koa)|2

la cual se muestra en la Fig. 2.

Problema: Tomemos una onda plana Eoe
i(kox−ωt)ŷ (con ko = ω/c) incidente sobre un cilindro infinito

(∂/∂z = 0) en la coordenada z. Encuentre los campos radiados.

La onda incidente se puede escribir como

BI = Eoe
i(kox−ωt)ẑ = Eoe

i(koρ cosφ−ωt)ẑ = Eo

∞∑
m=−∞

Jm(koρ)imei(mφ−ωt)ẑ

Notemos que en este caso es un poco complicado trabajar con el potencial vector, porque tendŕıamos que
trabajar integrales de los Jm(x), que también se pueden escribir en termino de los Jm. Es mas conveniente
trabajar con los campos directamente en este problema particular, ya que

∇ ·D = 4πρ ∇× E = i
ω

c
B

∇ ·B = 0 ∇×H =
4π

c
J− iω

c
D

- implica la misma ecuación de onda para ρ > a

∇2E + k2
oE = 0 ∇2B + k2

oB = 0

Los campos radiados también van a mantener esta simetŕıa en ẑ. Por lo tanto podemos encontrar el campo
radiado Br

z de la ecuación de Helmholtz para ρ > a, la cual se puede resolver por separación de variables
como Br

z = U1(ρ)U2(φ), lo que nos da

1

ρ

d

dρ

(
ρ
dU1

dρ

)
+

(
k2
o −

m2

ρ2

)
U1 = 0

d2U2

dφ2
+m2U2 = 0

Por lo tanto la solución para el campo radiado es
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Br
z =

∞∑
m=−∞

amH
(1)
m (koρ)ei(mφ−ωt)

donde hemos forzado ondas de salida en el infinito. A esto le tenemos que sumar el campo asintótico que
también es una solución de la ecuación de onda

Bz =
∑
m

[
amH

(1)
m (koρ) + imEoJm(koρ)

]
ei(mφ−ωt)

Para encontrar am tenemos que aplicar una condición de borde. En este caso conviene

Eφ(ρ = a, φ) = 0

porque no sabemos la corriente inducida en la superficie del conductor. Dado que

ikoE = ∇×B → E =
i

koρ

[
∂Bz

∂φ
ρ̂− ρ∂Bz

∂ρ
φ̂

]
por lo tanto

amH
(1)
m

′
(koa) + imEoJ

′
m(koa) = 0 → am = −imEoJ

′
m(koa)

H
(1)
m

′
(koa)

Podemos encontrar la densidad de carga superficial como

σ =
1

4π
Eρ(ρ = a, φ)

y también la corriente superficial

Kρ =
c

4π
Bz(ρ = a, φ)

Notemos que en este caso

E 6= iω

c
A

porque tenemos una densidad de carga superficial. El vector de Poynting se puede calcular como

S =
c

8π
Er
φ(Br

z)
∗ρ̂

y la potencia radiada es entonces

dU

dt
=

∫ 2π

0

Sρρdφ = 4E2
o

∑
m

∣∣∣∣∣ J ′m(koa)

H
(1)
m

′
(koa)

∣∣∣∣∣
2

En la onda incidente tenemos

S0 = c
E×B

8π
=
cE2

o

8π
x̂

21



La sección eficaz de escatering, se puede definir como

σ(φ)dφ = ρ
S · ρ̂
SO

dφ

y por lo tanto en el limite ka << 1 podemos escribir

σ(φ) =
π(koa)3

8
(1− 2 cosφ)2

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0
y

koa = 0.1

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0
y

koa = 1

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0
y

koa = 10

2 4 6 8 10
koa

2

4

6

8

ΣT

Figura 3: Sección eficaz de escatering diferencial σ(θ)/σmax normalizada para (a) koa = 0,1 (nmax = 5, 10),
(b) koa = 1 (nmax = 5, 10), (c) koa = 10 (nmax = 20, 30). (d) Sección eficaz de escatering total (nmax =
10, 20, 30).
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Problema: Considere una corriente puntual J = J0δ(x)δ(y)δ(z −
L/2) e−iωt ẑ, entre dos planos conductores z = 0 y z = L. Calcule
el campo eléctrico y magnético en todo el espacio.

Podemos mirar el problema desde el punto de vista del potencial vector con sus respectivas simetŕıas, ya
que

A = Az(ρ, z)ẑ ∇2Az + k2
oAz = −4πJ/c = −2Jo

δ(ρ)

ρ
δ

(
z − L

2

)
.

Con lo cual

B = ∇× A =
∂Az
∂ρ

φ̂ E =
i

ko
∇×B =

i

ko

[
−∂

2Az
∂ρ∂z

]
ρ̂+

i

ko

[
∂

∂ρ
(ρ
∂Az
∂ρ

)

]
ẑ

Notemos que la unica condicion de borde que podemos ultilizar es sobre el componente tangencial Eρ = 0,
lo que exige que

∂Az
∂z

= 0

y por lo tanto la funcion delta se puede escribir como

δ(z − L/2) =
2

L

∑
n=0

cos
(nπz
L

)
cos
(nπ

2

)
con una expansio similar para el potencial

Az(ρ, z) =
2

L

∑
n=0

g(ρ) cos
(nπz
L

)
cos
(nπ

2

)
Al aplicar la ecuacion de onda obtenemos

1

ρ

∂

∂ρ
ρ
∂g

∂ρ
+ γ2

n g = −2Jo
cρ
δ(ρ) γ2

n = k2
o −

(nπ
L

)2

que tiene solucion

gn(z) = CnH
(1)
0 (γnρ)

ya que satisface la condicion de radiacion en ρ→∞

A→ 1
√
ρ
ei(γρ−ωt) .

Ahora tenemos que integrar esta ecuacion cerca del origen, usando la expansion de N0(x) ∼ 2(lnx)/π

ĺım
a→0

∫ a

0

ρdρ ×
[

1

ρ

∂

∂ρ
ρ
∂g

∂ρ
+

[
k2
o −

(nπ
L

)2
]
g = −2Jo

cρ
δ(ρ)

]
→ Cni2π

2

π
= −2Jo

c

Az(ρ, z) = i
Jo

2cL

∑
n=0

H
(1)
0 (γnρ) cos

(nπz
L

)
cos
(nπ

2

)
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Los campos son

B = φ̂i
Jo

2cL

∑
n=0 γn W1(γnρ) cos

(nπz
L

)
cos
(nπ

2

)
E = −ρ̂ Jo

2kocL

∑
n=0 γn W1(γnρ)

[nπ
L

]
sin
(nπz
L

)
cos
(nπ

2

)
−ẑ Jo

2kocL

∑
n=0 [γn W1(γnρ) + ρ γ2

n W2(γnρ)] cos
(nπz
L

)
cos
(nπ

2

)
con

W1(x) =
dH

(1)
0 (x)

dx
W2(x) =

d2H
(1)
0 (x)

dx2

Usando las condiciones de borde podemos evaluar la corriente K y la densidad de carga σ
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9. Solución Numérica de la ecuación de ondas

La solución numérica de la ecuación de ondas supone usar

fx(x, t) =
f(x+ dx, t)− f(x− dx, t)

2dx
+O(dx3)

fxx(x, t) =
f(x+ dx, t)− 2f(x, t) + f(x− dx, t)

dx2
+O(dx3)

ft(x, t) =
f(x, t+ dt)− f(x, t− dt)

2dt
+O(dt3)

ftt(x, t) =
f(x, t+ dt)− 2f(x, t) + f(x, t− dt)

dt2
+O(dt3)

En una dimensión, podemos estimar en un punto de una grilla (i, n), con xi = i∆x como el elemento
espacial, y tn = n∆t como la variable tiempo, tenemos

∇2ψ − 1

c2

∂2ψ

∂t2
= −4πf(x, t)

ψn+1
i = 2ψni − ψn−1

i +
c2∆t2

∆x2

(
ψni+1 − 2ψni + ψnn+1

)
+ 4π

∫ (n+1)∆t

n∆t

f(xi, t)dt

La generalización a 2 y 3 dimensiones es trivial.

Se debe tener cuidado con la especificación de las condiciones de borde. Para que la ecuación sea numéri-
camente estable, es importante considerar cierta relación entre ∆x y ∆t, para la ecuación de ondas sin
fuentes. Comenzamos con una perturbación de la forma

fnj = Mneikj∆x

y con la definición

r =
c∆t

∆x

da origen a la ecuación

M2 = 2M − 1 + r22M(1 + cos k∆x)

para M y k. Con r ≤ 1, la ecuación de arriba satisface |M | ≤ 1 para todos loa valores de k, por lo tanto,
la solución es estable. Esto tiene sentido, ya que esto significa que debe calcular con más rápido que la
propagación de la onda. No nos podemos mover delante de la onda.
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9.1. Propagación de Frentes

La ecuación

∂A

∂t
+ U(x, t)

∂A

∂x
= g(x, t)

es una de las ecuaciones más complicadas en la f́ısica, pero al mismo tiempo es la más común. Puede ser
resuelta por el método de las caracteŕısticas definidas por la curva

dr(λ)

dt
= U(r(λ), τ(λ))

dτ(λ)

dt
= 1

de esto obtenemos que

A(λ) = A(r(λ), τ(λ))

dA(λ)

dλ
=
∂A

∂r

dr

dλ
+
∂A

∂τ

dτ

dλ
= g(r(λ), τ(λ))

Supongamos ahora que queremos integrar ambas ecuaciones hacia adelante en t, desde t hasta t + ∆t.
Entonces integraremos hacia adelante en el tiempo cada punto x en la red a una posición.

xi(t+ ∆t) = xi + U(xi, t)∆t

A[xi(t+ ∆t), t+ ∆t] = A[xi, t] + g[xit]∆t

Notemos que el elemento de la grilla xi(t) se desplazo a xi(t+ ∆t) que ya no esta en los puntos de la grilla.
A nosotros nos interesa obtener

An+1
i = A[xi(t), t+ ∆t]

Para volver a esta grilla, tenemos que interpolar. Una posibilidad es buscar los dos elementos de la grilla
xi(t + ∆t) que están mas cerca de xi e interpolar linealmente An+1

i . Otra posibilidad es notar que hay un
punto x̄ que se propaga hasta xi en el intervalo ∆t,

xi = x̄+ U(x̄, t)∆t

A[xi, t+ ∆t] = A[x̄, t] + g[x̄, t]∆t

y por lo tanto tenemos que interpolar A[x̄, t], con la definición

x̄(k) = xi − U(x̄(k−1), t)∆t
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Esta ultima relación generalmente se resuelve por integración a partir de x̄(0) ≈ xi hasta que converja. Este
es el método mas usado en las grandes simulaciones de clima.

Hemos, esencialmente, conveccionado g con una velocidad U , y entonces hemos obtenido A en un tiempo
posterior.
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