Capitulo 3:
Variaciones temporales y las ecuaciones de

Maxwell

En este capitulo discutiremos las ecuaciones del electromagnetismo con variaciones en el espacio y el tiempo.
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1. Fuerza de Lorenz

Las corrientes fueron una entidad misteriosa hasta que fueron descubiertas la conexion entre las cargas y
las corrientes. Si definimos

plx,t) = Z 60" (x — xi(t))
J(x,t) = Z givi()6® (x — xi(t))

claramente tenemos la ecuacién de continuidad macroscopica

dp B
E—FV'J—O

De dichas relaciones obtenemos ademaés

dp;
dt

= F(xi,t) = gB(xi,1) + ¢ [ x B(x;, )]
C

Es importante notar que los campos que siente una particular cargada es E y B, los cuales incluyen todas
las cargas en el material. Mientras que D y H son los campos producidos por las distribuciones de carga y
corrientes libres (netas) promediadas en una escala espacial y temporal.
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Figura 1: Conductor en un campo magnético

Supongamos que tenemos un conductor que se mueve en un campo magnético uniforme; entonces las cargas
libres en el conductor sienten una fuerza que es proporcional a v x B. En el fondo dicha fuerza genera
un campo eléctrico “efectivo” E en el conductor. Asumiendo una trasformacién Galileana, re-escribimos la
ecuacion de arriba para un sistema de referencia moviéndose con el conductor, obteniendo

F = (E = E:[XxB]
C



Esto demuestra que los campos se transforman de una manera no trivial (esta observacién nos llevara a la
teoria de la relatividad y a una formulacién covariante de las ecuaciones de Maxwell). Por lo tanto es de
esperarse que la relacion general es

F—¢E — E-E+[ xB

cuando hay campos eléctricos y magnéticos en el sistema inicial. Lo cual se ha comprobado en un sinfin
de experimentos para velocidades pequenas. Aun falta lo que pasa para B, pero esto lo estudiaremos en el
capitulo de relatividad.

2. La Ley de Induccion de Faraday

Faraday (~ 1830) observé el comportamiento de un circuito eléctrico en el tiempo cambiando los campos
magnéticos. El observé que se generaba un transiente de corriente en el circuito si

= La corriente de un circuito aledano era prendida o apagada
= Un circuito adyacente, con una corriente fija, se movia respecto al primer circuito

= Un magneto permanente se ponia dentro o fuera del circuito
La relacién derivada para la diferencia de potencial mostrada en el diagrama es
_ v
\BL| = ‘—BOL‘
c

las cuales se pueden relacionar con integrales de superficie y de linea, para el caso menos homogéneo, como

_ 1d
j’{ Ede—-2L [ B.a)as
5S(t) cdt Jsw

recordando que el borde de la superficie esta orientada de tal forma que d€ y mn satisfacen la regla de
la mano derecha. Esto quiere decir que si B, es paralelo a ni y por lo tanto sale del plano en la figura,
entonces E v df estdn en la misma direccién. Esta derivada completa es exactamente el resultado relevante
(y experimental), y tiene sentido si notamos que el area del circuito de la figura cambia como

dA
2 L
a

Estas son las observaciones de Faraday, que pueden ser resumidas como

1do

c dt

con las definiciones



(I)z/ B - ndS e:]{E-dE
S(t) sC

Con @ como el flujo magnético que cruza el circuito cerrado. € es la fuerza electromotriz o la integral de
linea del campo eléctrico E que rodea el circuito. El campo E es, para el sistema de referencia en reposo,
un elemento d€ del circuito C. La constante de proporcionalidad ¢~! depende de las unidades definidas por
las leyes de Coulomb y Ampére, y puede ser obtenida por un argumento similar al usado arriba para una
transformacién Galileana. El signo (-) es consistente con la ley de Lenz, que dice que la corriente inducida
esta en una direccion que se opone al cambio de flujo en el circuito.

Notemos que tenemos

dB 0B 0B
o + (v V)B—E—VX(VXB)—FV(V-B)

donde v es constante durante la diferenciacién. Por lo tanto

B
L (B-ﬁ,)dS:/ 9B s — f (v x B) - de
dt S(t) at aS(¢)

Esto nos permite re-escribir la ley de Faraday con los campos en el mismo sistema de referencia

/[V E+18—B] -ndS =0
c 0

Dado que la superficie es en principio arbitrario, tenemos

10B
VxE+-—=0
+ c Ot
Con esta relacién podemos completar las ecuaciones de Maxwell, propuestas por él mismo en 1865, como
10B
V. -E=4mp VXE=———
c Ot
1 oE
V-B=0 V xB= —J
c ot

El ultimo termino de la ecuacién de Ampére fue derivado en el capitulo 1 y es necesario para hacer las
ecuaciones consistentes con la descripcion microscépica
dp

V.J=0
o "

La ley de fuerza

F:qE+q[%XB}

En muchas situaciones, también incluiremos la ley de Ohm



J:aE:a(EJrsz)
c

que relacione la corriente y el campo eléctrico. Veremos mas de esto més adelante.

3. Materia y las ecuaciones de Maxwell

En el capitulo 2 derivamos que en la presencia de materiales tenemos

_ 9 Qa
< plz,y) >= p(x,y) —V-P<x,t>+a$—aﬁ+...
con lo cual podemos definir
Do = Eo + 47Py — 470908
83:5

También encontramos que en el caso que v,, = v (el sistema completo puede moverse con velocidad constante
V), entonces

Ba = H, + 47 M, + [(D—E)xz]
Cla

el ultimo término es usualmente pequeno, cuando

v
-<<1
&

3.1. Ecuaciones de Maxwell

Estos resultados se mantienen en el caso de variaciones temporales. Al aplicar nuestro promediado a la

ecuacion microscopica
1 /0b
Vxe)=—(—
< ¢ c < ot >

obtenemos la representacion macroscopica de la ecuacién de Faraday

VXE:—la—B
c Ot

Por lo tanto las ecuaciones de Maxwell son a primer orden

10B
V.-D =4mp VXE:——a—

c Ot

4
V-B=0 VXH:_WJ+18—D

c c Ot

En muchos casos podemos asumir que tenemos un material linear como en el capitulo 2. Se debe tener
cuidado en considerar las variaciones en las temperaturas y en las densidades. Por lo tanto, el analisis



directo requiere el uso de conceptos de mecanica estadistica, y la descripcién tensorial es un poco mas
complicada.

3.2. Condiciones de Borde

Podemos estudiar nuevamente las condiciones de borde para las, ahora completas, ecuaciones de Maxwell.
Para un borde inmovil, tenemos lo que teniamos antes

(DQ—Dl)'ﬁ:4WU (EQ_El)X/fL:O

4
(B, —B,) A =0 (H, —H)) x i = —K
C

Para una interfase en movimiento, con velocidad v, usamos la transformacién
[ [2D00] g, [ [AREOA] g

Debido a que en el sistema S, D no cambia en el tiempo. Mientras que en el sistema S(t), la integral debe
cambiar debido a el movimiento de S. Entonces, tenemos

/ {a_DJF(V.V)D}.ﬁdSZ [a—D—Vx(vxD)+V(V-D)}~ﬁ,dS
s L Ot s L Ot

Notemos que no tomamos derivadas con respecto a v. Entonces, las condicién de borde para los campos,
visto en el sistema del laboratorio, para la interfase en movimiento, es

(Dy — Dy) - 7 = 7o (E;—Ey) xA— (A-8)(By—By) =0

4. Transformaciones duales y monopolos magnéticos

Supongamos que incluimos una carga magnética y corriente

10B 4
V.-E=dmp VxE=_--2_"g_
c Ot c
4 10E
V -B =4mp,, VxB:_WJ+__
c c ot
Podemos hacer la siguiente transformacion, con & real,
E = Ecos¢ + Bsin¢ B = —Esiné 4+ Bcos¢

Pe =pocosé~+p,,siné J.=J.cosé + J,,siné
Pm = —p . sin€ + p/, cosé Jon = —J.siné + J,, cos €



que deja las ecuaciones de Maxwell invariantes. Esto también deja E x B,E? + B? invariantes. Esto significa
que es una asunto de conveniencia el hablar de carga eléctrica o magnética. Si todas las particulas tienen el
mismo radio de carga eléctrica a magnética, podemos hacer una transformaciéon dual para obtener p,, = 0
y Jn = 0. Por el estudio de la mecénica cuantica de un electrén en presencia de un monopolo magnético,
se puede demostrar que la consistencia de tal cuantizacion requiere

GmGe _ M
=- n=0,%1,42,...
hc 2 n 07 Y Y

asi que la existencia de un monopolo magnético implica la cuantizaciéon de una carga eléctrica.

5. Transformaciones de campos

Ahora iremos a las leyes de transformacion para los campos, esto nos servira, por ejemplo, para construir
relaciones tipo D(E) y H(B). Estamos interesados en tres transformaciones en general.

Supongamos que realizamos una transformacion de coordenadas que es, en general, no lineal. La pregunta
es qué le pasa a las variables fisicas

5.1. Rotacion
Las coordenadas se transforman como vectores bajo un rotacién
T = Rx

donde
'z =x'x — R'R=1

Esto implica que det R = £1. El producto cruz, se transforma de una forma especial, dada por
B=CxD — C =det(R)A x B

y por lo tanto C se denomina un pseudo-vector. Notemos que el producto cruz da un —1 al hacer x — —z.
Por ejemplo, x, v, p se transforman como vectores y el momento angular como pseudo-vector.

El potencial electrostatico sélo depende de la distancia entre dos puntos, y por lo tanto es invariante bajo
rotaciones. Se le denomina un escalar

U(2) = d(x)

Por ejemplo el producto escalar de dos vectores se transforma como un escalar.

Si una transformacién del sistema transforma un campo como vector, entonces

V(z) = RV(x)

Se puede definir la transformacién de un vector.



5.2. Inversion Espacial
Supongamos que realizamos una transformacién de coordenadas
r=-X
los vectores se transforman como vectores polares
V(@) = -V(x)
o como seudo-vectores(asi como el producto cruz)
V(z) = V(x)

Un analisis similar se aplica a los escalares y los tensores. En general, un tensor de rango N se transforma
con un factor (—1)", y un seudo-tensor se transforma como (—1)V+1.

5.3. Inversion Temporal

Supongamos que realizamos una transformacion de coordenadas

t=—t
La pregunta es cuando los tensores son pares o impares. Tomemos como ejemplo las ecuaciones de movi-
miento de Newton; son invariantes respecto a una reversion temporal si t = —t y & = x, dado que
d*x d*x _
az ~ 1 az 1

5.4. Cantidades Electromagnéticas

Si decidimos que la carga debe ser un escalar bajo las 3 transformaciones. De las ecuaciones de Maxwell
notamos que E es un vector polar dado que V - E = 47p. Por lo tanto podemos construir Tabla 1.

Table 1.
Cantidad Transformacion | Inversion | Inversion
Rotacién Espacial | Temporal
ED,P vector impar par
B.HM pseudo-vector par impar
J vector impar impar
S = cE x H/4x | pseudo-vector | impar impar

Supongamos que queremos encontrar P(E, By) en una campo magnético constante. Entonces, los candidatos
para la transformacion de propiedades son de segundo orden en By

OE
P:>\0E+)\1 (EXB())—F/\Q(BOBo)E+)\3(EB0)B0+

9



Si requerimos que, para bajas frecuencias, solo las fuerzas eléctricas entren, entonces

2 2
O°E /\3(8E

OE

By | Bo+ ...
BN 0) 0
Otra relacién que es interesante es la relacién de Ohm mas generalizada, que tiene

03
AOE:EJr‘—C,><B+770J+)\1(H><J)+...

Este resultado incluye el comportamiento girotrépico y el efecto de Hall en los materiales y el plasma.

6. Energia y Teorema de Poynting

Comenzaremos mirando un sistema de particulas; tenemos

F:qE+qX><B
C

6.1. Ecuacién de Energia

Si miramos las ecuaciones de fuerza, notaremos que las relaciones de energia pueden ser derivadas multipli-
cando por la velocidad (no-relativista). En este caso sélo el campo E da una
contribucion

dr
Sl e —gv-E
dt {va] v

En el caso de una distribucién de carga continua, el trabajo efectuado por el campo es

d 3
E[Umec] = /Q(J : E) d’x

_ [cE-(VXH)—(E'a—Dﬂd?’x

47 Jq ot
1 oD OB\ .

Si asumimos que el material es lineal, podemos definir la energia electromagnética

Uetom = 5~ (8- D) + (B 1) 4’

Definiendo U = U,ec + Uegm tenemos el principio de conservacion de energia como

dUmec dUe&m -
— .S)d
a 7§Q (7 -5)ds

10




con

S:4i(E><H)

7

como el vector de Poynting. Dado que el volumen es arbitrario, podemos definir la densidad de energia
electromagnética como

1
Ueterm = — [E-D + B - H]
8

y por lo tanto

ou
E+(V‘S)—0

6.2. Energia Magnética

Finalicemos la discusién acerca de la energia magnética. El término

W, :/Md%
8

es la energia magnética en el campo. Podemos usar un simple argumento para notar que lo arriba escrito
es, justamente, la energia magnética. Tomemos un pequeno “loop” de corriente de espesor Ao y area S. Si
el flujo sobre el loop cambia, entonces la fuente debe hacer trabajo para mantener la corriente constante.

aw _ . _1d®
dt codt

dai1r
E{émv]—qv-E — =

Cuando un se realiza un cambio infinitesimal, tenemos

dW = £d¢
c

Aqui asumimos que las corrientes son sumables, entonces V - J = 0. El incremento del trabajo realizado
contra el emf inducido, es

A A A
(5W:J 0/(75,-(5B)d3:J U/[ﬁ,-(VX(SA)]ds:J 0]45A~d£
c S C S 65

C

Cualquier distribucién de la densidad de la corriente puede ser escrita como una suma de pequenos “loops”
cémo éste. Entonces, como JAcdl = Jd3x, tenemos

1 1
5W:—/(5A-J)d3x — (5W:—/((5B-H)d3x
c 47
y para el caso de un material lineal, tenemos
1 3 1 3
W=— | A -Jdz — W=— [ (B-H)duz
2c 8T

Las expresiones de la derecha son para una distribucién localizada de cargas.

11



Problema: Para el caso de N circuitos eléctricos, es posible demostrar que

W—liLIQleZLM L
_anl nin 2 niV¥tnmitsm

n#m

donde L,, es la auto-inductancia y M, ,, es la inductancia mutua entre pares de circuitos.

6.3. Ecuacion del Momento

La suma de todos los momentos es

deec 1
= / {pE + = (J x B) + (otrasfuerzas)| d*z
dt v c
Ahora utilizaremos
1 c 1 0D
=—V-D J=—VxH- ——
p 47 4 % 4 Ot
con lo cual obtenemos
1 1 |1 D
pE+-JxB = — —Bxa—+EV~D—B><(V><H)
c 47 | ¢ ot
0

™

= |:—B><D:|+%[(VXE)XD+EV-D—BX(VXH)]

Sumando el termino HV - B = 0, y después de un poco de algebra, podemos encontrar que

0Pree | d 1
at ' dt ),

donde el tensor de stress de Maxwell es

(DxB)}d3x:/V~Td3x:7{ T -ndS
Q 50

dre

1 1
Tos = = [EaDa + Butts = 51(5 - D) + (5 10,1
Ademas tenemos
T, 5
T, = —2
[V - Tlg .

con

[T - 7] = T4 pMa

Obtenemos el resultado que los campos electromagnéticos tienen un momento efectivo

1
PE&M:4_7TC(DXB)

12



Es importante notar que esta expresion en materiales no es aceptada comtunmente, ya que intuitivamente
es razonable pensar que P gg s deberia estar relacionado con S, y por lo tanto una expresiéon mas aceptada
es

S 1
PE&MIEZZL—?TC(EXH)

Es posible derivar esta expresion directamente de la mecanica estadistica, para el caso de medios lineales
e isotropicos, notando que € como p dependen de la temperatura. Ahora, en el caso lineal, la primera
expresion, se puede escribir como

1 € 1
ph

que muestra que en un material el momentum se desplaza con la velocidad de fase en el medio, lo cual
sugiere que la primera expresion no esta tan equivocada.

Este momento electromagnético puede ser visto como presién radiativa. La NASA ha disenado una nave

espacial que puede ir lejos de la Tierra usando la presion radiactiva solar como un sistema de propulsion.
Se debe tener cuidado, eso si, para contrarrestar el efecto gravitacional.

6.4. Campos Armonicos

Asumamos que los campos tienen una dependencia temporal harménica

B(x, 1) = Re[E(x)e "] = %[E(x)e‘m + B (x)e]

Por lo tanto los productos los podemos evaluar como

J - E = %Re [(J*-E)+(J-E)e_2i“t}

La udltima parte del producto desaparece si estamos interesados en promedios temporales.

Las ecuaciones de Maxwell para este caso particular son

V.D = dnp V xE=i B
C
47 w
V.B=0 VxH="J-i“D
C C

podemos calcular nuevamente el principio de conservacion de energia como

1
5/(J*-E)d%—k%w/(we—wm)d?’x—i—]{ (S-R)ds =0
Q Q

50
donde

13



c 1 1
= — (ExH" =—(E-D* m=— (B -H"
5 )= e N T )
La parte real representa la conservacion de energia, promediada en el tiempo. La parte imaginaria describe

el flujo de energia entre los campos. Esta ecuacién nos permite, ademas, definir la impedancia de un circuito.

S

Imaginemos un sistema electromagnético que es forzado por un voltaje oscilatorio V; y una corriente I;, que
ingresan al circuito por una pequena superficie S;. La potencia que entra al sistema

1[*%:—/ (S-7)ds
2 s

i

y por lo tanto tenemos

1 1
—I'V; = —/ (J*-E)d*x + in/(we — wy,)dPx +f (S-f)dS
2 2 Jq Q 50—S;

La integral de superficie es la potencia irradiada al infinito (una integral real), y a altas frecuencias, una
importante componente del equilibrio de energia. La impedancia es definida como Z = R—iX, con V; = Z1;

= |Ij\2 {UQ Re(J*-E)dz] + 2§, o Re(S-n) dS} + 4w [ Im[w,, — weta®
X = (hee Ly~ )] =y It )

Notemos que en esta definicién hemos asumido que €, o, y p son reales (asi J*-E, ExH* E-D* y B-H* son
reales), aunque pueden representar medios no lineales (dependen de los campos) o anisotropicos (tensores).
Mas adelante, cuando estudiemos Optica, veremos que esta es la forma apropiada de proceder.

Para bajas frecuencias, tenemos

1
4w

asumiendo la ley de Ohm, J = ¢E, con ¢ como un escalar real.

En general si no hay efectos de propagacion en el circuito, y estamos interesados en la solucién asintética,la
corriente entrante tiene la misma frecuencia que el voltaje entrante.

= Si tenemos una inductancia localizada, la dindmica esta regida por

14



dI
V= [—
dt

entonces podemos ver que la inductancia esta relacionada con X donde la energia magnética domina

V =—iwLll = —iX1 — X =wlL =

Problema: Calcular [ B?dz® ~ L para un anillo de corriente.

Si tenemos una capacitancia, la dindmica esta regida por

V=Q/C

entonces, podemos ver que la capacitancia esta también conectada con la reactancia X, donde ahora
la energia eléctrica es la dominante

1 1 4w
—iwC' ! - wC L% Jq

Problema: Calcular [ E*dz* ~ 1/C para un capacitador infinito.

Un circuito LRC esta regido por

Vit) = Tt + IR, + L%(f)

entonces tenemos

—1 , .

y por lo tanto

1
— R, X = wl — —
R=R w c

w

Problema: Graficar las soluciones numéricas para Q(t) y I(t).

15



7. Solucion por potenciales

Podemos ver que el considerar el campo eléctrico como el gradiente de del potencial eléctrico ya no es vélido.
En el vacio, necesitamos definir los potenciales; comenzaremos por B =V x A

Usando la forma que tienen las ecuaciones de Maxwell (sin materiales)

19(V-A)

2 N ) = 4
V= + - o TP
1 0’A 109 4T
2 _ . - — [
V<A 2P V{(V A)—l—cat} CJ

Pero estamos interesados en los campos, no en los potenciales, esto implica una libertad de “gauge”, la cual
esta dada por

A3 A=A+Vuw

pero esto requiere que

— 1 0w
V=1 — T
7.1. Gauge de Coulomb
En este caso asumimos una transformacion de escala
V-A=0
lo que nos da
V) = —47mp
1 0%A 4 1_0¢
V2A — — = _1J4+v—
c? Ot? c * c Ot

Lo que muestra que el potencial escalar satisface la misma ecuacién de antes, y puede ser integrada inme-
diatamente como

T
Wit = [ 2L g
x -yl
Pero la ecuacion para A es mas complicada. Podemos reescribir la ecuacién de arriba, para el vector potencial

como

V2A_182_A:_4_7TJ — 1VXVX/J(y—)d3y
x =yl

c? Ot? c ° c

16



Esta no-local densidad de corriente es la llamada “densidad de corriente transversal”. En general la solucién
representa un tiempo de propagacion infinito para el potencial; y ondas viajeras que se propagan con
velocidad constante ¢ para el vector potencial. Este Gauge es bastante ttil para electrodinamica cuantica,
donde se requiere la cuantizacién de A.

7.2. Gauge de Lorentz

En este caso usamos la libertad de Gauge como

19y
V-A =0
T c ot
Con esta transformacion de gauge obtenemos
1 0%
2 -z — _4
VY ¢ ot 7rp
1 0?A 47
VZA-—-— = ——J
2 ot c

Supongamos que tenemos unos potenciales que no satisfacen esta libertad, entonces podemos encontrar
otros potenciales tal que

19y 10y 5 1 P*w
V-A+- T {(V A)+Cat]+{vw—c2at2

porque siempre es posible encontrar una solucién para w
1 0w 104
Viw— S— = V-A)+
c? ot? {( )+ ¢ ot
como veremos mas adelante.

En general, el resolver problemas de electromagnetismo requiere resolver la ecuacién de onda con y sin con-
diciones de borde. En general la solucion representa onda viajeras que se propagan con velocidad constante
c. Esto implica que para sentir una perturbacion se requiere un tiempo de propagacion. Esto es bastante ex-
trano, porque no hemos hecho mencion a un sistema de referencia en particular. Esta observacién conducira,
eventualmente, a la teoria de la relatividad especial.

8. Soluciones para fuentes harmonicas

Supongamos que tenemos que resolver la ecuacion de Maxwell

VD =dnp VxE=i"B
C
4 w
V.B=0 VxH=-"J-i“D
C C

17



para una variacién harménica en el tiempo J(x)e ™. Para el caso de los potenciales tenemos

V2 + Juek?s = ——p
€
2 2 Amp
VA + Juek;A = ——J
c

en el Gauge de Lorenz y con k, = w/c.

Problema: Tomemos un cilindro conductor muy largo de radio
p = a sobre el cual tenemos una corriente total I = I,e~™! que se
desplaza a lo largo del cilindro. Encuentre los campos producidos y
la potencia radiada por unidad de largo.

a
Dado que tenemos un cilindro conductor infinito en z, 9z = 0. Tenemos que resolver la ecuacion de Helmholtz
para p > a

V3A, + KA =0

con k, = |w/c|, ya que la corriente es en la direccién z. La simetria dictamina que

0
00
por lo tanto si exigimos simetria azimutal, podemos escribir la ecuacién para A,(p)
10 0A,
- (p > +k2A, =0
pOp \" Op

que tiene como solucién las funciones de Hankel Hr(,p(a:) = Jp(z) +iNp(2) y HY () = J(x) — iNp(x),
con m = 0. Dado que queremos condiciones de borde de radiacion en infinito

mm T
) 2
limy o0 Jin(7) — 4/ = cOs (1’ - — = —)

2 4
1im, o0 Np(x) — 1/ 2 sin (m _mr_ E)
™ 2 4
encontramos
1 .
A, = AoHél)(kop) — gi(kor—wt)

Nos falta encontrar Ay. El campo magnético se puede encontrar (B = V x A) de las relaciones de arriba

0A,
B¢ = — ap = —AokoGo(lfop)

18



hemos introducido la funcién auxiliar

dHY (2
Ahora utilizamos la condiciones de borde
4 21,
By = —K, =
c ac
con lo que obtenemos
21,

El campo eléctrico para p > a es

1 0 1 [10 0A, 1 .
EZ = — (pB¢) = {—— (,0 ):| - 7 [_k'gAz] - ZkAOHél)(kop)

ikop Op
PL

10+
0.1+

0.001

. . . . L kg
0 2 4 6 8 10

Figura 2: Potencia Radiada Total.
Aunque esta expresion es consistente con

~10A

¢ Ot

para oscilaciones temporales harmoénicas se obtiene el campo eléctrico directamente de

“E=V xB
C

ya que puede suceder que ¥ = (. Notemos que si la oscilacion es harmonica, entonces se puede encontrar la
solucion completa al problema resolviendo para A, y no es necesario resolver la ecuacién para el potencial

escalar V. La potencia radiada por unidad de largo es

19



—(E x B*) - ppds

=)

fRHoo 87

= 2 kA (limyesoe (pH (ko) Gi(kop) ) )

C 4 |I[)|2 2
— 2k, 2
( 7T>87r’ | (c2|k0|2a2) |Go(koa)|?
2 |LP
cra? |Go(koa)|?

la cual se muestra en la Fig. 2.

Problema: Tomemos una onda plana E,e¢**=“Yg (con k, = w/c) incidente sobre un cilindro infinito
(0/0z = 0) en la coordenada z. Encuentre los campos radiados.

La onda incidente se puede escribir como

B; = Eoei(kom_wt)é _ Eoei(kopcosd) wt) 2 _ Z J op Zmez (mo— wt)Z
m=—oQ
Notemos que en este caso es un poco complicado trabajar con el potencial vector, porque tendriamos que
trabajar integrales de los J,,(z), que también se pueden escribir en termino de los J,,,. Es mas conveniente
trabajar con los campos directamente en este problema particular, ya que

VD =dnp VxE=i"B
C
4 w
V.B=0 VxH=-"J-i“D
C &

- implica la misma ecuacién de onda para p > a

V?E + K2E =0 V?’B + kB =0

Los campos radiados también van a mantener esta simetria en 2. Por lo tanto podemos encontrar el campo
radiado B’ de la ecuacién de Helmholtz para p > a, la cual se puede resolver por separacién de variables
como Bl = U;(p)Ua(¢), lo que nos da

1d dU1 m2

— k2— — U =0
pdp( dp)+(° p2> 1
d?U,
dep?

Por lo tanto la solucion para el campo radiado es

+m2U2 =0

20



Z ameT}) (kop>ei(m¢>7wt)

m=—0Q

donde hemos forzado ondas de salida en el infinito. A esto le tenemos que sumar el campo asintético que
también es una solucién de la ecuacién de onda

B, = Z [amH(l)(k:Op) + imEoJm(kop)] pilmo—wt)

m

Para encontrar a,, tenemos que aplicar una condicion de borde. En este caso conviene

Eg(p=a,0)=0

porque no sabemos la corriente inducida en la superficie del conductor. Dado que

i | 0B, 0B, A}
kb E=V x B — E= 0 —
{3¢ dp
por lo tanto
E,J! (k,
amHWY' (koa) + i™ E,J", (koa) = 0 — Ay, = —im#
HY (kya)
Podemos encontrar la densidad de carga superficial como
= £ B(p=a.0)
47_[_ p - a?
y también la corriente superficial
K, = —B.(p=a,0)
P yn ™7 p ’
Notemos que en este caso
E+YA
c

porque tenemos una densidad de carga superficial. El vector de Poynting se puede calcular como

S = EBT
8 ¢(>

y la potencia radiada es entonces

dU 271' ) 2
0

dt (k a)

En la onda incidente tenemos




La seccion eficaz de escatering, se puede definir como

S-p
o()do = ps—opd¢

y por lo tanto en el limite ka << 1 podemos escribir

k 3
o(¢) = m( ga) (1 —2cosg)?
koa=0.1 kea=1
y y

10 101
/\%
740””7(‘15”” "“0‘.5”“1‘.0X7.0HH‘.HH7””‘.””1‘.0X

-05

-10b -10b

koa= 10

-10 -05 N 10

-05r

Il Il Il Il Il kca
-10- 2 4 6 8 10

Figura 3: Seccién eficaz de escatering diferencial o(6)/0mq. normalizada para (a) k,a = 0,1 (npe = 5, 10),

(b) kpa =1 (Nunaz = 5,10), (¢) koa = 10 (Npmae = 20,30). (d) Seccidn eficaz de escatering total (nme. =
10,20, 30).
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Problema: Considere una corriente puntual J = Jyd(z)d(y)o(z —
L/2)e ™"z, entre dos planos conductores z = 0 y z = L. Calcule AJ
el campo eléctrico y magnético en todo el espacio.

z2=0
Podemos mirar el problema desde el punto de vista del potencial vector con sus respectivas simetrias, ya

que

A=A (p,2)2 VA, + KA, = —4nJ/c = —2JOM5 (z — g) .
i
Con lo cual
0A, - i i 0*A 1 [0, 0A,
B A — E = — B = — — d A R
VA= By m{an *a{a<apﬂz

Notemos que la unica condicion de borde que podemos ultilizar es sobre el componente tangencial £, = 0,
lo que exige que

0A,
0z

y por lo tanto la funcion delta se puede escribir como

dz—LJ2) = %Zcos (%) cos (%)

n=0

=0

con una expansio similar para el potencial

2 nmwz nmw
Ax(p,2) = 7 ) 9(p) cos <T> cos <7>
Al aplicar la ecuacion de onda obtenemos

1 8/)89 N2 g = 2J,
pdp"9p cp

que tiene solucion

9n(2) = CoHY (1)

ya que satisface la condicion de radiacion en p — oo

1 .
A —¢itwet)
\//_)

Ahora tenemos que integrar esta ecuacion cerca del origen, usando la expansion de Ny(x) ~ 2(Inz) /7

a 10 0g nm\ 2 2J, 2 2J,
I d - (— = Cpi2m— =
a0 Jo P [papp0p+[ <L>}g cp (p)] 7 o c
. J, 1) nwz nmw
A.(p,z) = 2—2 7 Hy" (ynp) cos ( 7 ) cos <7>
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Los campos son

1 Jo nmwz nm
B = gzﬁzQC—L Yo Yo Wilmp) cos< 7 )cos <7>

J, nmw nmwz n
B = —p5it Sacg 20 Walwe) || sin () eos ()
kaOCL neo Yo Wi(mp) 7 sin coS 5
J, nmz
“Oheocl

~

Somo B Wilanp) +p 22 Wattap)cos (“7) cos (37

con

dHy " (z) W(e) = Lo (@)
dx 2 dx?

Usando las condiciones de borde podemos evaluar la corriente K y la densidad de carga o

W1 (l’) =
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9. Soluciéon Numérica de la ecuacion de ondas

La solucién numérica de la ecuacion de ondas supone usar

f(x+dz,t) — f(x —dz,t)

fo(z,t) = 5 + O(dz?)
foaat) = flx+dx,t) — Qfgét) + f(x —dx,t) +O(d?)
fo = L@t dt)Zthf(:c,t ) o
fulent) = fla t+dt) — 2f0(lj;2, B+ flz,t—di) 0(dt™)

En una dimensién, podemos estimar en un punto de una grilla (i,n), con z; = iAx como el elemento
espacial, y t,, = nAt como la variable tiempo, tenemos

1 9%
. . 2L (n+1)At
Ui = 207 = T (U — 200+ ) / L, et
nAt

La generalizacién a 2 y 3 dimensiones es trivial.

Se debe tener cuidado con la especificacion de las condiciones de borde. Para que la ecuacion sea numeéri-
camente estable, es importante considerar cierta relaciéon entre Az y At, para la ecuacion de ondas sin
fuentes. Comenzamos con una perturbaciéon de la forma

n __ n ikjAx
Ji=M"e

y con la definicion

cAt
r=—

Az
da origen a la ecuaciéon
M? =2M — 1+ r*2M (1 + cos kAx)

para M y k. Con r < 1, la ecuacién de arriba satisface |M| < 1 para todos loa valores de k, por lo tanto,
la solucion es estable. Esto tiene sentido, ya que esto significa que debe calcular con mas rapido que la
propagacién de la onda. No nos podemos mover delante de la onda.
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9.1. Propagaciéon de Frentes

La ecuacién

0A 0A

es una de las ecuaciones mas complicadas en la fisica, pero al mismo tiempo es la mas comun. Puede ser
resuelta por el método de las caracteristicas definidas por la curva

dr()\)

Y (.7 )
dr(\) _
dt

de esto obtenemos que

A(N) = A(r(A), 7(V))
dA(N)  0Adr 0Adr )

i ordora I

Supongamos ahora que queremos integrar ambas ecuaciones hacia adelante en ¢, desde ¢ hasta ¢t + At.
Entonces integraremos hacia adelante en el tiempo cada punto x en la red a una posicion.

Alx;(t + At), t + At] = Alz;, t] + glzit] At

Notemos que el elemento de la grilla z;(t) se desplazo a z;(t + At) que ya no esta en los puntos de la grilla.
A nosotros nos interesa obtener

AP = Al (t),t + At]

Para volver a esta grilla, tenemos que interpolar. Una posibilidad es buscar los dos elementos de la grilla
z;(t + At) que estan mas cerca de z; e interpolar linealmente A7*!. Otra posibilidad es notar que hay un
punto T que se propaga hasta x; en el intervalo At,

v, =T+ U(z,t)At
Alx;, t + At] = Az, t] + g[T, t]At
y por lo tanto tenemos que interpolar A[Z,t], con la definicién

z®) =g, —U@*D )AL
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Esta ultima relacién generalmente se resuelve por integracién a partir de (%) ~ x; hasta que converja. Este
es el método mas usado en las grandes simulaciones de clima.

Hemos, esencialmente, conveccionado g con una velocidad U, y entonces hemos obtenido A en un tiempo
posterior.
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