
1



Capitulo 4:
Principio de la Relatividad

En este capitulo estudiaremos las consecuencias de la invariancia de la velocidad de la luz en el vaćıo.
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1. Teoŕıa de la relatividad

Las ecuaciones de Newton son invariantes con respecto a las transformaciones de Galileo

x̄ = Rx + vot+ xo
t̄ = t+ to

donde R es una rotación que satisface RTR = 1. Estas transformaciones definen los sistemas inerciales de
referencia, en donde las ecuaciones de Newton son satisfechas. Que sea invariante no significa que tenga el
mismo valor, significa que las ecuaciones tienen la misma forma. Esta definición funcionaŕıa muy bien, ex-
cepto que las ecuaciones de Maxwell (léase la ecuación de onda) no son invariantes bajo una transformación
galileana, ya que es experimentalmente observado que la velocidad de la luz c es una constante universal
independiente del sistema de referencia inercial.

Postulado I de la universalidad de la luz: En el vaćıo, la luz se propaga con la velocidad universal
c = 299792458[m/s] en todos los sistemas inerciales de referencia.

Postulado II del principio de relatividad especial: Las leyes de la naturaleza son invariantes (tienen la
misma forma) bajo el grupo de transformaciones de Lorentz L que mantienen la constancia de la velocidad
de la luz en todos los sistemas de referencia inerciales.

Postulado III del principio de relatividad especial: Siempre existe un sistema de referencia universal
que esta instantáneamente en reposo con un sistema dado, aunque este este acelerando.

2. Transformaciones

Definamos dos sistemas de referencia, K(x) y K̄(x̄). Supongamos que tenemos una transformación entre
estos dos sistemas de referencia,

x̄ = Λ(x)

Notemos que aunque Λ(x) puede no ser lineal, la transformación de los diferenciales, que viven en el espacio
tangente,

dx = DΛdx

si lo es, donde

L = [DΛ] → Li,j =
∂Λi(x)

∂xj

con D como el Jacobiano de la transformación. Las derivadas se transforman como

∂

∂xi
=
∂x̄j
∂xi

∂

∂x̄j
=
∂Λj(x)

∂xi

∣∣∣∣
x=Λ−1(x̄)

∂

∂x̄j
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y por lo tanto

∇x = LT
(
x = Λ−1(x̄)

)
·∇x̄

Las transformaciones apropiadas deben satisfacer que el determinante del Jacobiano sea diferente de cero,
en x.

En principio las relaciones dinámicas incluyen campos (como las ecuaciones de Maxwell) que también en
principio debeŕıan transformarse como

Fy = G [Fx] → Fx̄(x̄) = G[Fx

(
x = Λ−1(x̄)

)
]

Por ejemplo, supongamos que tenemos una relación dinámica H = 0 (que depende del espacio, derivadas y
campos) en el sistema K, esta relación dinámica en el sistema K̄ se veŕıa como

H [x,∇x, Fx . . . ] = H[Λ−1(x̄),LT
(
x = Λ−1(x̄)

)
∇x̄, G

−1[Fx̄(x̄)], . . . ]

= H[x̄,∇x̄, Fx̄x̄(), . . . ]

H es denominado invariante, o su forma es independiente del sistema elegido, si el resultado de estas dos
transformaciones deja

H(x̄,∇x̄, . . . ) = H(x̄,∇x̄, . . . )

Para el caso de las ecuaciones de Maxwell veremos más adelante que los campos también requieren trans-
formarse para que tengan la misma forma en diferentes sistemas de referencia.

Por ejemplo, miremos la ecuación de Newton, para la particular i,

mi
dvi
dt

= −∇xi

∑
j

V (|xi − xj|)

y le aplicamos una transformación galileana de la trayectoria de x(t) a x̄(t̄)

vi =
(
RT
)

(v̄i − vo)

dvi
dt

=
(
RT
) dv̄i
dt̄

∂

∂xk
=

∂x̄j
∂xk

∂

∂x̄j
= Rj,k

∂

∂x̄j
=
(
RT
)
k,j

∂

∂x̄j

Además, |xi − xj| = |x̄i − x̄j|. Por lo tanto, las ecuaciones de Newton son claramente invariantes si R es
una rotación

mi
dv̄i
dt̄

= −
(
RRT

)
∇x̄i

∑
j

V (|x̄i − x̄j|)

5



Miremos las ecuaciones de Maxwell entre sistemas de coordenadas (x, t) y (x̄, t̄). Lo primero que nos damos
cuenta es que las Leyes de Maxwell, o sea la ecuación de onda, para un escalar Ψ(

∇2 − 1

c2
∂2

∂t2

)
Ψ = 0

Bajo una transformación galileana, asumamos que

Ψ̄(x̄, t̄) = Ψ̄(Rx + vot+ xo, t+ to) = Ψ(x, t)

Por lo tanto

∂Ψ

∂xi
= (RT )i,j

∂Ψ̄

∂x̄j

∇2
xΨ = (RT )ij

∂

∂xi

∂Ψ̄

∂x̄j
= (RT )ij

∂x̄k
∂xi

∂

∂x̄k

∂Ψ̄

∂x̄j
= Rki(R

T )ij
∂

∂x̄k

∂Ψ̄

∂x̄j
= ∇2

x̄Ψ̄

∂Ψ

∂t
=

∂Ψ̄

∂t̄
+
∂x̄i
∂t

∂Ψ̄

∂x̄i
=
∂Ψ̄

∂t̄
+ vo,i

∂Ψ̄

∂x̄i

∂2Ψ

∂t2
=

∂

∂t̄

(
∂Ψ̄

∂t
+ vo,i

∂Ψ̄

∂x̄i

)
=
∂2Ψ̄

∂t̄2
+ 2vo.i

∂2Ψ̄

∂x̄i∂t̄
+ vo,ivo,j

∂2Ψ̄

∂x̄j∂x̄i

Por lo tanto la ecuación de onda no es invariante[
∇2

xΨ− 1

c2
∂2Ψ

∂t2

]
=

[
∇2
x̄Ψ̄− 1

c2
∂2Ψ̄

∂t̄2

]
− 2

vo,i
c2

∂2Ψ̄

∂x̄j∂t̄
− vo,i

c

vo,j
c

∂2Ψ̄

∂x̄j∂x̄i

bajo una transformación galileana. Notemos que el el limite vo/c << 1, es casi invariante.

Si en un sistema de referencia Ψ̄ satisface la ecuación de ondas, vemos que en el otro Ψ no la satisface. Note
que asumimos que Ψ no requiere transformarse en el nuevo sistema de referencia. Este es extremadamente
relevante, ya que implicaŕıa que si en un sistema de referencia se satisfacen las ecuaciones de Maxwell,
entonces en el otro sistema de referencia habŕıa que escribir otra forma para estas ecuaciones. Uno podŕıa
tratar de exigir que el campo Ψ podŕıa requerir una transformación, pero esto tampoco es factible, ya que
la transformación depende de derivadas cruzadas. Veremos mas adelante que resulta más útil pensar en
transformaciones de Lorentz, que en el limite vo/c << 1 son equivalentes a una transformación Galileana,
ya que sabemos que en el ĺımite de pequeñas velocidades las transformaciones Galileanas parecen estar
correctas.

3. La métrica para la relatividad especial

Supongamos que una onda de luz se genera en el punto (ts,xs). En el sistema de referencia K tenemos que
los puntos (t,x) del el frente de la onda de luz satisfacen

(x− xs)
2 − c2(t− ts)2 = 0
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Esta relación debe ser invariante en los dos sistemas de coordenadas con la misma velocidad c. Esta relación
define una métrica. Notemos, como veremos mas adelante, esto es equivalente a hacer invariante la ecuación
de onda.

Hay dos métodos de desarrollar la teoŕıa. Uno es usar una métrica Euclidiana lo que implica definir el tiem-
po como un número imaginario (ict,x). El otro método es usar una métrica Riemanniana en 4 dimensiones
reales con ct como una coordenada. En este caṕıtulo vamos a tomar la segunda alternativa, ya que es más
útil en f́ısica moderna, como la mecánica cuántica.

3.1. Formulación matricial y el espacio de Minkowsky

Ordenemos un poco nuestra formulación y definamos que nuestro espacio tiempo está caracterizado por el
vector diferencial ~dx de la posición que puede ser representado por la lista que representa a sus componentes
dx = (dx0, dx1, dx2, dx3) en la base estándar, donde x0 = ct. Notemos que hay una diferencia entre el
vector y su representación. Veremos mas adelante la importancia de poner el ı́ndice de los componentes
arriba para los vectores.

En general tenemos una medida de distancia dada por

ds2 =
(
dx0
)2 − (dx1)2 − (dx2)2 − (dx3)2 = dxT η dx

donde hemos hemos definido la matriz

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 η−1 = η

que define la métrica de Minkowsky. En general, es útil describir este espacio, como un espacio Pseudo-
Riemanniano, ya que en un espacio de Riemann la métrica da valores positivos para la magnitud de
vectores. Cuando los componentes del tensor de la métrica en la base estándar esta descrito por η, tenemos
la relatividad espacial, y un espacio de Minkowsky.

Nota: Notemos que técnicamente η no es un tensor, es la matriz de componentes que representa a un
tensor en la base que estamos usando. Por ahora seremos bastante vagos al respecto, pero mas adelante
aclararemos esto. El producto escalar entre vectores (palabra que definiremos en forma precisa mas adelante)
queda entonces definido como el producto〈

~dx | ~dx
〉

= dxTη dx =
(
dx0
)2 − (dx1)2 − (dx2)2 − (dx3)2

Ahora podemos definir el vector de derivadas como

∂ =

(
∂/∂x0

−∇

)
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Nuevamente, ∂ no es un vector, es una representación de un vector en el sistema estándar de coordenadas
en que estamos trabajando.

Mas adelante veremos por que el vector se define con el signo negativo para la derivada temporal. La
ecuación de onda se puede escribir como(

1

c2
∂2

∂t2
−∇2

)
= ∂Tη ∂

3.2. Transformación de Lorenz (grupo de Poincare)

Asumamos que los componentes de las coordenadas se transforman como

x̄ = Λ(x)

donde los diferenciales se transforman como

dx = L dx → Lij =
∂Λi

∂xj

donde DetL 6= 0 en el espacio. hemos re-definido L con los componentes arriba y abajo. Esta notación
será útil mas abajo. Notemos que dx es la representación (sus componentes) de un vector en una base, que
en este caso es la estándar. Este vector vive en el espacio tangente donde los componentes de los vectores
se transforman linealmente entre los sistema de coordenadas K y K̄. Notemos que el vector ~dx es el mismo
vector en los dos sistemas de coordenadas, solos sus componentes cambian dx→ dx al cambiar el sistema
de coordenadas (o bases) del sistema K al K̄. La distinción de ı́ndices arriba y abajo sera mas clara pronto.
En el caso de una transformación afina (que utilizaremos en la relatividad especial), tenemos que

x̄ = Lx + a

Los vectores, que transforman sus componentes como lo hace ~dx, se denominan 4-vectores.

Notemos que tenemos que forzar el producto interno〈
~dx | ~dx

〉
→ dx Tη dx = dx

(
LTη L

)
dx

a ser un invariante en todas las bases. Por lo tanto vemos que si queremos que la distancia ds2 sea invariante
en los dos sistemas de referencia (o una solución de la ecuación de onda), necesitamos que

LTη L = η

lo que define el grupo G de transformaciones de Lorenz (grupo de Poincare), ya que

1. si L1 y L2 pertenecen a G, entonces L = L1L2 también pertenecen a G.

2. la identidad pertenece G
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3. el inverso
L−1 = ηLTη

también pertenece a G

Notemos que

L−1 L = η LTη L = 1

Multiplicando L L−1 = 1, vemos que

L η LT = η

y por lo tanto LT también pertenece al grupo.

Veamos que pasa con la ecuación de onda. Las derivadas se transforman como

∂

∂xi
=
∂x̄j

∂xi
∂

∂x̄j
= Lj i

∂

∂x̄j
= (LT )ij

∂

∂x̄j

Notemos la representación del vector de derivadas satisface

∂ =

(
∂/∂x0

−∇

)
= η

(
∂/∂x0

∇

)

∂i = ηi,j
∂

∂xj
= ηi,j Lkj

∂

∂x̄k
= ηi,j Lkj ηk,w∂̄

w

o lo que es equivalente

∂ = η LT η ∂̄

Notemos que esto demuestra que los componentes de ∂ se transforman como un vector, ya que

∂̄ = L ∂

La ecuación de onda transforma entonces como

∂̄T η ∂̄ = ∂T LT η L ∂ = ∂T η ∂

y por lo tanto también es invariante si los sistemas de coordenadas se relacionan por una transformación
de Lorenz.
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3.3. Construcción del Grupo

La transformación de Lorentz forma el grupo de transformaciones de Poincare y automáticamente satisface
la invariancia de la ecuación de onda y del frente de la onda.

Notemos que el determinante (det L) = ±1. Las transformaciones se clasifican dependiendo del signo del
determinante det L = 1 (Proper) o det L = −1 (Improper) y del valor de L0

0 ≥ 1 (orthochronous o mape-
ando hacia adelante en el tiempo) o L0

0 ≤ −1. Nos interesa el subgrupo de las proper orthochronous
Lorentz transformations (POLT) (det L = 1, L0

0 ≥ 1). Estas son las transformaciones que nos interesan
porque preservan la causalidad (el antes y el después son preservados) y en el limite de pequeñas velocidades
tendremos las transformaciones Galileanas.

Claramente, rotaciones de la parte espacial R ∈ SO(3) (con det R = 1) pertenecen a este grupo

L(R) =


1 0 0 0
0
0 R
0


Pero, también están las transformaciones permiten mezclar el tiempo y el espacio.

Tomemos los dos sistemas de referencia, con el sistema K̄ moviéndose con velocidad v respecto al sistema
K en la dirección x̂1. Asumamos que la transformación no afecta los ejes perpendiculares a esta dirección
dx2 = dx̄2, dx3 = dx̄3. El frente de la onda debe ser un invariante, por lo cual tenemos(

dx0
)2 − (dx1)2 =

(
dx0 + dx1

) (
dx0 − dx1

)
=
(
dx 0 + dx 1

) (
dx 0 − dx 1

)
=
(
dx 0

)2 − (dx 1
)2

lo que debe de ser invariante en los dos sistemas de referencia. Por lo tanto, cada término en el paréntesis
solo puede ser una función de la velocidad

dx 0 + dx 1 = f(v) (dx0 + dx1)

dx 0 − dx 1 =
1

f(v)
(dx0 − dx1)

→
(
dx 0

dx 1

)
=

1

2


f +

1

f
f − 1

f

f − 1

f
f +

1

f


(
dx0

dx1

)

pero, el origen del sistema de referencia K̄ se mueve con velocidad v en el sistema K, lo que implica que el
origen del sistema K̄ está dado por dx = (dx0, dx0v/c, 0, 0) y por dx̄ = (dx 0, 0, 0, 0) en los dos sistemas de
referencia, con lo cual tenemos

f(v) =

√
1− v/c
1 + v/c

γ =
1√

1− v2/c2


→
(
dx 0

dx 1

)
= L(v)

(
dx0

dx1

)
=

(
γ −βγ
−βγ γ

)(
dx0

dx1

)
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con la definición β = v/c/ La transformación definida en una dirección más general es

L(v) =


γ −γ v

k

c

−γ v
k

c
δi,j + (γ − 1)

βiβj
β2

 =



γ −γβ1 −γβ2 −γβ3
−γβ1 1 + (γ − 1)

β2
1

β2
(γ − 1)

β1β2
β2

(γ − 1)
β1β3
β2

−γβ2 (γ − 1)
β2β1
β2

1 + (γ − 1)β2
2 (γ − 1)

β2β3
β2

−γβ3 (γ − 1)
β3β1
β2

(γ − 1)
β3β2
β2

1 + (γ − 1)
β2
3

β2


Es fácil probar que en el ĺım v/c→ 0, esta transformación se reduce a una simple transformación Galileana.
Además el inverso está dado por L(−v), ya que

L−1(v) = η LT η = L(−v)

Esta transformación se denomina un Boost para diferenciarlo de una rotación espacial que también satis-
face el requisito de una transformación de Lorentz.

Una conclusión importante es que el tiempo y las distancias medidas dependen del sistema de referencia
que se use.

3.3.1. Dilatación del tiempo

Supongamos que tenemos dos sistemas de referencia, el K y el K̄. En el sistema K̄ el reloj marca ∆t (con
∆x = 0 el reloj no se mueve). ¿Cuánto marca en el sistema K? La transformación dictamina (usando
L(−v))

c∆t = cγ∆t+ βγ∆x

Los intervalos de tiempo son finalmente
∆t = γ∆t

ya que γ ≥ 1, el intervalo del tiempo en el sistema K̄ es mas chico que en el sistema K para el mismo
evento. Esto se denomina dilatación del tiempo.

3.3.2. Contracción de las distancias

Otro problema interesante en el cual se producen dos mediciones al mismo tiempo en un sistema K̄
(∆x,∆t = 0) en la misma dirección del movimiento (v = {v, 0, 0}). En este sistema K las dos mediciones
se producen en tiempos diferentes, pero las dos mediciones se relacionan como(

c∆t
∆x

)
=

(
γ βγ
βγ γ

)(
0

∆x

)
Por lo tanto en el sistema K̄ medimos la distancia

∆x =
∆x

γ

Esta no es la forma mas adecuada de probar la contracción de las distancias en los sistemas en movimiento.
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3.3.3. Efecto doppler relativista

Problema: Si la ecuación de onda es invariante, entonces la fase de una onda plana debe de ser invariante.
Por lo tanto podemos escribir los componentes del vector de onda k = {ω/c, k1, k2, k3} en la base estándar,
con lo cual tenemos que 〈

~k | ~dx
〉

= k̄T η dx = kT η dx

y por lo tanto los componentes del vector de onda, representado por k, se transforma como los componentes
de un vector en este espacio de 4 dimensiones.

3.4. Descomposición de POLT

Es posible probar que toda POLT se puede escribir en forma única como el producto de una rotación L(R)
y una transformación “Boost”L(v), con

L = L(v)L(R)→


vi
c

=
Li0
L1

0

Ri
j = Lik −

1

1 + L0
0

L1
0L

0
j

Probar esto, implica demostrar que

v < c usando las propiedades de una transformación de Lorentz.

La relación de v/c permite la formulación de L(v) en término de algunos componentes de L.

L(R) = L(−v)L es una rotación con la definición del punto anterior permite establecer los compo-
nentes de R

Probar que la descomposición es única

El orden de la descomposición no es demasiado relevante, ya que L = L(R)L(v1) también pertenece a
POLT con la misma relación anterior, pero v = Rv1.

Este grupo de POLT es un algebra de Lie que contiene a SO(3) que depende de seis parámetros, tres
ángulos y tres velocidades y por lo tanto requiere de seis generadores. Los tres generadores correspondientes
a los tres ángulos de rotación los denominaremos como

J1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 J2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 J3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


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Para definir los generadores de los Boost podemos definir la función rapidity

f(v) = e−λ(v)

Con esta definición tenemos que el boost en x es

tanhλ =
|v|
c

eλ =

√
1 + β

1− β

→ L(v) =


coshλ − sinhλ 0 0
− sinhλ coshλ 0 0

0 0 1 0
0 0 0 1


Por lo tanto el generador de la transformación lo podemos escribir como

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


y la transformación la podemos escribir finalmente como

L = exp(−φφ̂ · J) exp(−λv̂ ·K)

Una forma de probar esta expresión es componiendo un número n de transformaciones infinitesimales.

Cuales son las relaciones de conmutación?

[Ji,Jj] = εi,j,kJk

[Ji,Kj] = [Ki,Jj] = εi,j,kKk

[Ki,Kj] = −εi,j,kKk

3.5. Adición de velocidades

Supongamos que tenemos un cuerpo que se mueve con velocidad u′ en el sistema de coordenadas K̄. ¿
Cuál es la velocidad u en el sistema de referencia K? Hay dos formas de ver este resultado. Uno es tomar
variaciones en el tiempo en los respectivos sistemas de referencia

∆x0 = γ∆x 0 + βγ∆x 1

∆x1 = γ∆x 1 + βγ∆x 0

→ u

c
=

∆x1

∆x0
=

ū/c+ β

1 + βū/c

la otra es componer dos “Boost”

L(u) = L(ūê1)L(vê1) = exp(−λ1K1) exp(−λ2K1) = exp(−(λ1 + λ2)K1)
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→ u

c
=

∆x1

∆x0
=

ū/c+ β

1 + βū/c

Transformaciones en direcciones más generales requieren más álgebra, pero son trabajables. Claramente si
las dos velocidades son pequeñas comparadas con la velocidad de la luz nos da la transformación galileana

u = ū+ v +O(ūv/c2)

3.6. Precesión de Thomas

Supongamos que hacemos dos “Boost.en direcciones perpendiculares. Esta composición también pertenece
al grupo de POLT y por lo tanto también se puede escribir como una rotación mas un “Boost”:

L = L(u)R(θ) = L(v2ê2)L(v1ê1) =


γ1γ2 −γ1γ2β1 −γ2β3 0
−γ1β1 γ1 0 0
−γ1γ2β2 γ1γ2β1β2 γ2 0

0 0 0 1


el valor de u se puede encontrar del teorema descrito arriba.

ui
c
→
{
β1
γ2
, β2, 0

}

tan θ =
β1β2(γ1γ2 − 1)

β2
1γ1 + β2

2γ2

 → R(θ) = L(−u)L =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


o también se puede obtener de las relaciones del teorema para POLT. Para pequeñas velocidades tenemos
tan θ = −β1β2/2. Es interesante darse cuenta que dos “Boost.en direcciones diferentes dan origen a una
rotación. Esto se denomina precesión de Thomas y se genera de la no-conmutación de los generadores
de los “Boost”. Supongamos que a tiempo t tenemos un sistema con velocidad v. Luego a tiempo t + dt
observaremos v + dv. Asumamos que a tiempo t hay un sistema inercial moviéndose con velocidad v
instantáneamente pegado al cuerpo. Luego a tiempo t+dt hay otro sistema inercial moviéndose con velocidad
v +dv instantáneamente pegado al cuerpo. Si el cuerpo tiene una dirección definida, como el spin, entonces
esta dirección se verá precesar con una frecuencia angular (para pequeñas velocidades como)

sin ∆θ ∼ ∆θ = −β∆β

2
ẑ → θ̇ = −v × a

2c2

Por lo tanto una distribucion de carga se ve “como” rotando la pasar a cierta velocidad
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4. Formulación abstracta de vectores, tensores y formas

Podemos mirar esto como un problema de álgebra diferencial abstracta. Ya definimos el vector

d~x

En un sistema de coordenadas K, podemos describir el vector

d~x = dxµêµ

en termino de sus componentes dxµ y la base êµ del sistema de coordenadas de K. Si queremos mirar este
vector en otro sistema de coordenadas K̄, tendremos

d~x = dx̄µˆ̄eµ

Notemos que el vector es el mismo en todos los sistemas de coordenadas, solo sus componentes cambian. Si
~A y ~B son vectores, y α y β son números, entonces α ~A+ β ~B también es vector, y tiene componentes

α ~A+ β ~B = (αAµ + βBµ) êµ

4.1. Transformaciones y Bases para vectores

Si ahora queremos mirar la transformación de los componentes de un vector en el espacio tangente
podemos definir la transformación como

Āµ = LµνA
ν

donde µ corresponde a la fila, y ν a la columna. También existe la transformación inversa

Aµ = (L−1)µνĀ
ν

que determinaremos mas adelante. Ahora definimos la sumatoria de Einstein solo cuando tenemos ı́ndices
repetidos arriba y abajo, a lo que llamaremos una contracción. Vemos como se transforman las bases,

Aµêµ = Āµˆ̄eµ
Aµêµ = LµνA

νˆ̄eµ
Aµêµ = AµLνµˆ̄eν

y por lo tanto las bases se transforman como

êµ = Lνµˆ̄eν

diferentes a los vectores. Notemos que esta transformación corresponde a la transpuesta. Utilizando la
inversa podemos escribir

Aµêµ = Āµˆ̄eµ
Āν(L−1)µν êµ = Āµˆ̄eµ
Āµ(L−1)νµêν = Āµˆ̄eµ
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y por lo tanto las bases se transforman como

ˆ̄eµ = (L−1)νµêν

Esto es completamente consistente con

Āµˆ̄eµ = Aν
[
(L−1)γµL

µ
ν

]
êγ = Aνδγν êγ = Aν êν

4.2. Tensores

Notemos el producto escalar que definimos arriba, vemos que es consistente con〈
~A| ~B

〉
= AµAν 〈êµ|êν〉 = AµAνgµ.ν

donde gµ.ν son los componentes de la métrica. Este producto es invariante de sistemas de coordenadas,
ya que el producto escalar lo es.

Notemos que esta propiedad nos permite definir el tensor de la métrica g como una función de dos
vectores que produce un numero

g( ~A, ~B) =
〈
~A| ~B

〉
Este objeto tiene la propiedad que

g(α ~A+ β ~B, ~C) = αg( ~A, ~C) + βg( ~B, ~C)

Notemos entonces que un tensor
(
0
2

)
es una regla que produce un numero a partir de dos vectores

independiente del sistema de coordenadas. Notemos que no hemos hecho ninguna referencia a los
componentes de estos objetos. De esta forma podemos definir tensores del tipo

(
0
n

)
como una función de n

vectores, lineal en sus argumentos, que produce un numero.

4.3. uno-formas o tensores
(
0
1

)
De particular interés, son los tensores

(
0
1

)
, denominados uno-formas p̃. Dado que es lineal en sus argumentos

p̃( ~A) = Aµp̃(êµ) = Aµpµ

donde pµ son los componentes de p̃ en el sistema K. Notemos que aqúı vemos la definición de una con-

tracción Aµpµ entre un vector ~A y una uno-forma p̃, sin referencia a otros tensores. Los componentes de
las uno-formas se transforman

pµ = p̃(êµ) = p̃(Lνµˆ̄eν) = Lνµp̄ν

o usando el inverso

p̄ν = (L−1)µν pµ
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por lo tanto los componentes de las uno formas se transforman como los vectores bases, garantizando la
invariancia de la contracción.

Podemos definir una base de uno-formas como

p̃ = pµω̃
µ

tal que

ω̃µ(êν) = δµν

Viendo lo anterior es mas o menos intuitivo que las bases de uno-formas se transforman como vectores.
Miremos

p̄µ ˜̄ω
µ

= pµω̃
µ

p̄µ ˜̄ω
µ

= p̄νL
ν
µω̃

µ

p̄µ ˜̄ω
µ

= p̄µL
µ
νω̃

ν

por lo tanto

˜̄ω
µ

= Lµνω̃
ν

Problema: Tomemos la derivada de una función escalar Ψ(x0(τ), x1(τ), x2(τ), x3(τ)) donde τ es el tiempo
propio (proper time) definido por

c2dτ 2 = ds2

La derivada es

dΨ

dτ
=
dxµ

dτ

∂Ψ

∂xµ

Dado que τ es un invariante, tenemos que los componentes[
dxµ

dτ

]
forman el vector ~U (que estudiaremos en detalle mas adelante). Por lo tanto los componentes

∂Ψ

∂xµ

describen la uno-forma d̃Ψ. Para estar seguro, veamos si se transforman como la base de vectores. Notemos

∂Ψ

∂xµ
=
∂Ψ

∂x̄ν
∂x̄ν

∂xµ
= Lνµ

∂Ψ

∂x̄ν
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Notemos que para la relatividad especial en la base estándar ahora podemos definir la uno-forma

d̃→
[
∂

∂x0
,∇
]

Para el caso general, ahora utilizaremos la notación

Ψ, µ =
∂Ψ

∂xµ

con lo cual obtenemos

xµ,ν = δµν

Podemos ahora mostrar que

d̃xµ = ω̃µ

porque

d̃xµ(êν) = δµν

Por lo tanto

d̃f = f,µ d̃x
µ

4.4. Subir y bajar ı́ndices

En particular la métrica se puede utilizar para construir uno-formas con

Ã = g( ~A, )

tal que

Ã( ~B) = g( ~A, ~B) =
〈
~A| ~B

〉
Notemos que los componentes de Ã son

Aµ = Ã(êµ) = g( ~A, êµ) = Aν g(êν , êµ) = gµνA
ν

Definamos el inverso

gµνg
να = δαµ

donde hemos asumido que el determinante es diferente a cero. Con esto podemos ver que

V µ = gµνVν Vµ = gµνV
ν
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por lo tanto g se puede utilizar para bajar ı́ndices, osea convertir vectores en uno-formas, y el inverso con
componentes gµν se puede utilizar para construir vectores a partir de uno-formas. Notemos que esto aplica
solo cuando hay una sumatoria impĺıcita.

Por eso que tiene sentido las definiciones anteriores que

d̃→
[
∂

∂x0
,∇
]

y en general

dµ = gµνdν

Para el caso de la relatividad especial, con la métrica η, podemos ver que

dµ = ηµνdν →
[
∂

∂x0
,−∇

]
como habiamos sugerido anteriormente.

Ahora podemos definir los tensores
(
M
N

)
, como funciones lineales en sus argumentos que mapean M uno-

formas y N vectores a un numero real (nuevamente esto implica que es independiente del sistema de
referencia).

4.5. Bases para tensores

Ahora podemos encontrar una base ω̃µν para todos los tensores
(
0
2

)
tal que

f = fµνω̃
µν = fµνω̃

µ ⊗ ω̃ν

donde ⊗ es el producto tensorial. Para dos vectores ~A y ~B, tenemos

f( ~A, ~B) = fµνω̃
µ(Aαêα)⊗ ω̃ν(Bβêβ) = fµνA

αBβδµαδ
ν
β = fαβA

αBβ

La transformación de los componentes de tensores entre sistemas de referencia es ahora estándar de definir.
Notemos que en un nuevo sistema de referencia tenemos

f̄µν = f
(
ˆ̄eµ, ˆ̄eν

)
= fαβ ω̃

α
(

(L−1)γµêγ

)
ω̃β
(
(L−1)ξν êξ

)
= fαβ (L−1)γµ(L−1)ξνδ

α
γδ
β
ξ

= fαβ(L−1)αµ(L−1)βν
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Finalmente, hay un producto tensorial que es importante tomar en cuenta, y es el producto tensorial
antisim’etrico de dos formas

Ã ∧ B̃ = Ã⊗ B̃ − B̃ ⊗ Ã

Requiere de dos vectores para producir un numero real.

4.6. Formulación tensorial de la transformaciones de Lorenz

En general tenemos una medida de distancia dada por

ds2 = dxµ gµν dx
ν

con los componentes dxµ → (dx0, dx1, dx2, dx3) del vector d~x. El producto escalar entre dos vectores es
entonces 〈

~A | ~B
〉

= Aµ gµν B
ν .

Es importante notar que la convención de Einstein de sumatoria impĺıcita solo la definimos cuando el ı́ndice
repetido esta arriba y abajo respectivamente. Podemos definir la inversa como

δµν = gµαgαν

Tenemos la transformación afina

dx µ = Lµνdx
ν

donde Lµν depende en general de las coordenadas. Notemos que aqúı hay una sumatoria de Einstein impĺıcita
para ν. Por lo tanto todo objeto que se transforma de esta manera se le denomina vector. Los componentes
de la 1-forma asociada es entonces

dxµ = gµνdx
ν

en la base estándar. Si queremos que la definición de distancia se mantenga invariante

dx µηµνdx
ν = Lµαdx

αgµνL
ν
βdx

β = dxα (LµαgµνL
ν
β) dxβ

por lo tanto necesitamos que las transformaciones de Lorenz satisfagan

Lµα gµν L
ν
β = gαβ

que es equivalente a la definición matricial que teńıamos anteriormente. Notemos que la sumatoria es sobre
µ y ν. El inverso queda definido como

(L−1)γµ = gγβ Lνβ gνµ

con una sumatoria impĺıcita en β y ν, tal que
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(
gνµL

ν
βg

γβ
)
Lµα = (Lµα gµνL

ν
β) gγβ = gαβ g

βγ = δγα

ya que g es un tensor simétrico. Con estas definiciones reproducimos nuestros resultados anteriores que gµν

sube un ı́ndice y que gµν baja un ı́ndice. Esto funciona para tensores de cualquier orden.

Los componentes de la uno-forma de primeras derivadas se define como

dµ =
∂

∂xµ

y por lo tanto los componentes del vector son

dµ = gµνdν

Por lo tanto la ecuación de onda

dµd
µ = 0

es también invariante en este formalismo. Antes de proseguir veamos porque las derivadas se definen al
contrario de una primera intuición. Usando la ley de la cadena tenemos que las derivadas transforman como

∂

∂xµ
=
∂x̄ν

∂xµ
∂

∂x̄ν
= Lνµ

∂

∂x̄ν

Tratemos de invertir esta relación. Si partimos de la relación

dµ = Lνµd̄ν

podemos ahora construir la transformación del vector

dα = gαµdµ = (gαµLνµgνβ) d̄β = (L−1)αβd̄
β

y por lo tanto

d̄µ = Lµν d
ν

Vimos arriba que un tensor se transforma como

f̄µν = (L−1)αµ (L−1)βν fαβ

Organizando los componentes en (L−1)µν con la fila µ y la columna ν, vemos que esta precisamente corre-
sponde a una transformación matricial de los componentes (cuando los arreglamos en la matriz fµν → f)

f̄ = (L−1)T f(L−1)

Hay que se cuidadoso, ya que tenemos la matriz inversa. Ahora si queremos mirar el tensor con los compo-
nentes
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F µν = gµαfαβg
αν → F = g−1 f g−1

vemos que sus componentes se transforman como

F̄ = g−1 (L−1)T f(L−1) g−1

= g−1
(
g−1 LT g

)T
f
(
g−1 LT g

)
g−1

= L g−1 f g−1 LT

= L F LT

donde hemos usado que L−1 = g−1 LT g y gT = g, ya que g es un tensor simétrico.

4.7. Caso particular: métrica de Minkowsky

En este caso la medida de distancia esta dada por

ds2 =
(
dx0
)2 − (dx1)2 − (dx2)2 − (dx3)2 = dxµ ηµν dx

ν

con los componentes dxµ → (dx0, dx1, dx2, dx3) del vector d~x en la base estándar. El producto escalar entre
dos vectores es entonces 〈

~A | ~B
〉

= Aµ ηµν B
ν

con la definición

ηνµ = ηµν →


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


lo que define la métrica de Minkowsky. Es importante notar que la convención de Einstein de sumatoria
impĺıcita solo la definimos cuando el ı́ndice repetido esta arriba y abajo respectivamente. Para este caso
particular tenemos

δµν = ηµαηαν

Si asumimos que Lµν no depende de las coordenadas, tenemos la transformación afina que define globalmente
la transformación de coordenadas

x̄µ = Lµνx
ν + aµ → dx µ = Lµνdx

ν

Notemos que aqúı hay una sumatoria de Einstein impĺıcita para ν. Por lo tanto todo objeto que se transforma
de esta manera se le denomina vector. Los componentes de la 1-forma asociada es entonces

dxµ = ηµνdx
ν → (dx0,−dr)

en la base estándar. Si queremos que la definición de distancia se mantenga invariante

dx µηµνdx
ν = Lµαdx

αηµνL
ν
βdx

β = dxα (LµαηµνL
ν
β) dxβ
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por lo tanto necesitamos que las transformaciones de Lorenz satisfagan

Lµα ηµν L
ν
β = ηαβ

que es equivalente a la definición matricial que teńıamos anteriormente. Notemos que la sumatoria es sobre
µ y ν. El inverso queda definido como

(L−1)γµ = ηµν L
ν
β η

βγ

con una sumatoria impĺıcita en β y ν, tal que

Lµα
(
ηµνL

ν
βη

βγ
)

= δγα

Con estas definiciones reproducimos nuestros resultados anteriores que ηµν sube un ı́ndice y que ηµν baja
un ı́ndice. Esto funciona para tensores de cualquier orden.

En esta métrica con la base estándar ya vimos que los componentes de la uno forma de primeras derivadas
se define como

∂µ →
(

∂

∂x0
,∇
)

y los componentes del vector asociado es entonces

∂µ →
(

∂

∂x0
,−∇

)
Por lo tanto la ecuación de onda es

∂µ∂
µ =

(
∇2 − 1

c2
∂2

∂t2

)
Antes de proseguir veamos porque las derivadas se definen al contrario de una primera intuición. Usando
la ley de la cadena tenemos que las derivadas transforman como

∂

∂xµ
=
∂x̄ν

∂xµ
∂

∂x̄ν
= Lνµ

∂

∂x̄ν

Tratemos de invertir esta relación. Si partimos de la relación

∂µ = Lνµ∂̄ν

podemos ahora construir la transformación del vector

∂α = ηαµ∂µ = (ηαµLνµηνβ) ∂̄β = (L−1)αβ∂̄
β

y por lo tanto

∂̄µ = Lµν ∂
ν
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5. Dinámica

Definimos que los componentes de un 4-vector se transforman como

dx
µ

= Lµνdx
ν

La posición de una part́ıcula se transforma como un 4-vector y por lo tanto es un 4-vector. Es muy útil
parametrizar las trayectorias en este espacio 4-D con un parámetro τ que es invariante

c2dτ 2 = dxµηµνdx
ν → dτ 2 = dt2

(
1− v2

)
=
dt2

γ2

Por lo tanto, τ representa el tiempo medido en el sistema inercial en el que la part́ıcula está momentánea-
mente en reposo (ct, 0, 0, 0). Este parámetro invariante se denomina “proper time”. Aqúı suponemos que
existen un número continuo de sistemas de referencia inerciales que se mueven momentáneamente con la
part́ıcula en reposo. Por ejemplo, la trayectoria se parametrizaŕıa entonces como xµ(τ). Ya que el proper
time es invariante podemos definir un 4-vector de velocidad de esta trayectoria

Uµ =
dxµ

dτ
→ (γc, γv)

Partamos por la siguiente observación. Supongamos que tenemos un cuerpo que se mueve con velocidad v
en el sistema K. El siguiente vector

Uµ → (γc, γv)

se transforma como 4-vector. En particular vemos que si calculamos

Ūµ = Lµν(v)Uν → (c, 0, 0, 0)

Además

UνUν = c2

lo que implica que L transforma algo con velocidad v a algo con velocidad 0, en este sistema de referencia
K̄ el cuerpo no se mueve. O sea que L(v) transforma al sistema en que el cuerpo está momentáneamente
con v̄ = 0, el sistema de referencia en reposo momentáneo con el cuerpo. Nuestra transformación se define
entre sistemas de referencia inercial, por lo tanto suponemos que existe un número continuo de sistemas
de referencia inerciales que se mueven momentáneamente con la part́ıcula en reposo. Como vimos anteri-
ormente la norma de este vector es un invariante UνUν = c2 y tiene el mismo valor en los dos sistemas de
referencia, como debeŕıa ser.

5.1. Transformación de fuerzas

En forma trivial podemos definir el 4-vector de momento como

P µ → (γmc, γmv)
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Ya que la masa m es invariante. En el ĺımite v→ 0 tenemos

ĺım
v→0

(γmc, γmv) = (mc,mv) +O(β2)

Es fácil darse cuenta que el momento definido de las leyes de Newton mv, el cual se conserva en el sistema
K, puede que no se conserve en el sistema K̄. Necesitamos escribir las ecuaciones de Newton en forma
invariante siguiendo el postulado del principio de relatividad (las ecuaciones de Maxwell, la ecuación de
onda, ya es invariante) con las siguientes reglas

la ecuación debe de ser invariante escrita en término de 4-vectores

en el ĺımite v→ 0, debemos recobrar la ecuación de Newton en su forma no relativista.

Una ecuación de movimiento que tiene forma invariante, que los dos lados de la ecuación se transforman de
la misma forma, se denominan ecuación co-variante.

En el sistema K tenemos

dP µ

dτ
= Fµ

donde F es un 4-vector también. Esta definición es razonable, ya que la parte espacial del 4-vector de
momento en el ĺımite v→ 0 converge al momento no-relativista. Usamos la segunda regla para transformar
al sistema de referencia donde la part́ıcula está instantáneamente en reposo. En este sistema tenemos

dP̄ µ

dτ
= m

(
d

dt̄
c,
d2x̄

dt̄2

)
= m(0, ẍ) = (0,F)

ya que la part́ıcula está en reposo (instantáneamente) con F como la fuerza de Newton en su forma no
relativista. Siendo que los componentes de la fuerza Fµ se transforma como un 4-vector tenemos (usando
L(−v))

F =


γ

1

c
(v · F)

F +
γ2

1 + γ

1

c2
(v · F)v

 =

 γ(β · F)

F +
γ − 1

β2
(β · F)β


donde β = v/c. Aśı, la fuerza F = (F0,F1,F2,F3) es la fuerza de Newton (0,F) con un “Boots”desde el
sistema de referencia momentáneamente en reposo con la part́ıcula.

Rápidamente nos damos cuenta de la dificultad de incluir campos electromagnéticos en esta descripción, la
parte espacial para una part́ıcula seŕıa

dmγv

dt
= qE + q

v

c
×B ,

ya que
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1

q
F =


E + β ×B +

γ2o
1 + γo

1

c2
(vo · E + vo · β ×B)vo

γo
1

c
(vo · E + vo · β ×B)


por lo tanto si queremos que las ecuaciones la fuerza de Lorentz sea invariante vamos a tener que transformar
también los campos.

5.2. La paradoja de los gemelos

Supongamos que tenemos dos gemelos. Mandamos a uno a la estrella mas cercana en un cohete que acelera
la mitad del camino con a = g y desacelera la segunda mitad del camino con a = −g. Lo mismo sucede de
vuelta de la estrella. ¿Que edad tienen los gemelos al encontrarse?

En el sistema K las ecuaciones de movimiento son

dU

dτ
=

U0(τ)

c
g → ẍ(τ) = ẋ0(τ)

g

c

dU0

dτ
=

U(τ)

c
g → ẍ0(τ) = ẋ(τ)

g

c

Podemos normalizar el tiempo τ → τg/c, las distancias x → xc2/g y las velocidades v → β = v/c. La
solucion general es

x(τ) = x(0) + [γ(0) (cosh(τ)− 1) + β(0) sinh(τ)]

t(τ) = t(0) + [β(0) (cosh(τ)− 1) + γ() sinh(τ)]

β(τ) =

[
β(0) cosh(τ) + γ(0) sinh(τ)

γ(0) cosh τ + β(0) sinh(τ)

]
γ(τ) = γ(0) cosh(τ) + β(0) sinh(τ)

En el primer cuarto de la trayectoria, τ = 0→ τ1 tenemos

x(0) = 0 t(0) = 0 γ(0) = 1 β(0) = 0

y tenemos que encontrar la edad de gemelo viajero τ1 donde x(τ1) = L es la mitad de la distancia a la
estrella. Obtenemos

eτ1 = 1 + L+
√
L(2 + L)

Con esta expresion podemos evaluar la edad del gemelo de la tierra

t(τ1) =
√
L(2 + L)
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Notemos que el limite clásico es t ≈
√

2L para L pequeño. Las otras variables son

β(τ1) =

√
L(2 + L)

1 + L
γ(τ1) = 1 + L =

1√
1− β(τ1)2

2 4 6 8 10
L

2

4

6

8

10

tHLL

0 2 4 6 8 10
L

0.5

1.0

1.5

2.0
ΒHLL

Figura 1: (a) La edad como funcion de la distancia recorrida L por una viajero clasico (punteada), el gemelo
de la tierra (azul) y el gemelo viajero (rojo). (b) La velocidad de viajero con respecto a la tierra.

Pregunta: Cuanta masa ( escriba la ecuación en el sistema del centro de momentum) se consumiŕıa si
nuestros motores convierten masa en enerǵıa con 100 % de eficiencia. Esta enerǵıa se utiliza para impulsar
la nave. Compare con lo que se consumiŕıa si el sistema no fuera relativistico.

5.3. Dinámica de una part́ıcula

Si tomamos la transformación

F =

 γ(β · F)

F +
γ − 1

β2
(β · F)β

 (1)

vemos que para el caso de una fuerza en la dirección de la velocidad tenemos (por ejemplo un problema en
una dimensión) la parte espacial nos da

m
dmγv

dτ
= γF

y por lo tanto tiene sentido que la ecuación de movimiento para una part́ıcula bajo la fuerza de Lorenz sea
en el ĺımite relativista

dmγv

dt
= qE + q

v

c
×B .
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Este resultado no depende de si v es paralelo a F, ya que aplica para el caso de una transformación general,
ya que precisamente el segundo termino v · (v ×B) = 0.

En el caso de una fuerza que se deriva de un potencial, podemos escribir

dmγv

dt
= −∇Φ , (2)

aun cuando técnicamente, esto debeŕıa funcionar solo para problemas en una dimensión (fuerzas donde v
es paralelo a F). La expresión correcta para re-escribir en forma relativista una fuerza clásica
no-relativista debeŕıa ser Eq.1.

Desde un punto de vista Lagrangiano vemos que podemos recuperar la ecuación para una part́ıcula libre a
través de las ecuaciones de Euler-Lagrange si usamos

L = −mc2
√

1−
(v

c

)2
De hecho si aceptamos el Lagrangiano

L = −mc2
√

1−
(v

c

)2
− Φ

y aplicando las ecuaciones de Euler-Lagrange, obtenemos

d

dt
(mγv) = −∇Φ

aun cuando no estemos de acuerdo que esta expresión es correcta.

De esta formulación es trivial encontrar la formulación canónica y el Hamiltoniano. Hay tres cosas impor-
tantes de considerar:

Primero, la enerǵıa cinética no aparece en el Lagrangiano. Es importante recordar que necesitamos un
escalar para poder transformar el Lagrangiano a un sistema de variables generalizadas donde podemos
aplicar las ecuaciones de Euler-Lagrange.

Segundo, la formulación es estrictamente no covariante ya que el tiempo aparece con un carácter
especial. La idea es formular este sistema desde un punto de vista covariante en el que el tiempo y el
espacio adquieren la misma relevancia.

Tercero, este Lagrangiano no tiene ninguna propiedad de transformación especifica con respecto a las
transformaciones de Lorentz. El principio de Hamilton debe de ser, en forma fundamental, covariante
lo que implica que la integral de acción debe de ser un escalar invariante. Esto además implica que las
derivadas deben de ser con respecto a un parámetro invariante. En nuestro caso usaremos τ “proper
time”.

δ

∫ τ2

τ1

L(xµ, ẋµ)dτ → d

dτ

∂L

∂ẋµ
=

∂L

∂xµ
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Para el caso de una part́ıcula libre, podemos escribir

L = −mc2
√

1−
(v

c

)2
Notemos que si re-escribimos la acción en termino de τ∫

Ldt =

∫
(γL)dτ

vemos que

(γL) = −mc2 → (γL)→ 1

2
mẋµẋµ

Por lo tanto si

L =
1

2
mẋµẋµ

pµ = mẋµ


podemos construir el Hamiltoniano para una part́ıcula libre como

H =
pµpµ
2m

,

Para el caso de un potencial demos construir un Lagrangiano que de la ecuación de movimiento

dP µ

dτ
= Ku

para el caso de la fuerza de Lorenz, una forma relativamente trivial de escribir el Lagrangiano en forma
covariante es usando formas covariantes, productos escalares de 4-vectores.

L =
1

2
mẋµẋµ +

q

c
ẋµAµ

Aµ = (Φ, A)

 → d

dτ

(
mẋv +

q

c
Av

)
=
q

c
ẋµ
∂Aµ
∂xv

El resultado de este análisis es la ecuación de movimiento en un campo electromagnético. De estas ecuaciones
podemos derivar el momento canónico y su relación a la enerǵıa cinética

pµ =
∂L

∂ẋµ
= Pµ +

q

c
Aµ → T 2 =

(
pµ −

q

c
Aµ

)2
+m2c4

y por lo tanto podemos construir

H =
1

2
mẋµẋµ +

q

c
Ȧµxµ

pµ = mẋµ +
q

c
Aµ

→ H =

(
pµ − q

c
Aµ
)(

pµ −
q

c
Aµ

)
2m
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con

dxµ

dτ
=

dH
dpµ

dpµ

dτ
= − dH

dxµ

Este es el caso del Lagrangiano para una part́ıcula. Cuando ponemos varias que se afectan entre si, se vuelve
un problema complicado ya que entonces es dif́ıcil definir un “proper time”τ para todas las part́ıculas. Este
problema de definir una formulación Lagrangiana, principio de Hamilton, para varias part́ıculas resulta muy
complicado. Hay forma de manejar esto desde el punto de vista de los campos en una descripción cuántica
de la dinámica.

5.4. Dinámica de varias part́ıculas

Hay un gran problema al describir más de una part́ıcula en este formalismo ya que no queda claro cual es
el tiempo propio a usar. Al usar varias part́ıculas el tiempo propio no es un parámetro apropiado para la
descripción Lagrangiana. Este problema se resuelve en la mecánica cuántica al pasar a una teoŕıa de campo
donde el parámetro de los campos es el dx4, el cual śı es un invariante de la dinámica.

δ

∫ τ2

τ1

L(xµ, ẋµ)dτ → δ

∫
L(Ψ, ∂µΨ, . . . )dx4

Pensemos en el Hamiltoniano

H =
√

(P − A)µ(P − A)µ +m2

que ecuaciones da.

5.5. Enerǵıa y momento

Si tomamos la transformación

F =


γ

1

c
(v · F)

F +
γ2

1 + γ

1

c2
(v · F)v


vemos que para todo caso el componente temporal de esta ecuación es

m
dmγc2

dτ
= γv · F

lo cual ya sugiere que ε = mγc2 tiene algo que ver con la enerǵıa de la part́ıcula. Tomemos la ecuación

dP µ

dτ
= Fµ
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con la transformación de F a F . Vemos que para pequeñas velocidades tenemos

d2x

dt2
' F

dε

dt
' ẋ · F

Hemos usado nuevamente el continuo de sistemas inerciales para expresar v = dx/dt. En analoǵıa con el
caso Newtoniano, vemos que podemos asociar el componente P 0 con la enerǵıa de una part́ıcula ε,

ε = γmc2 → P µ →
(ε
c
, γp

)
P µPµ = m2c2 → ε2 = p2c2 + (mc2)2

ya que la norma de un 4-vector es invariante. Si expandimos esta forma de la enerǵıa para pequeñas
velocidades tenemos

ε = γmc2 ' mc2 +
1

2
mv2 +O(v4)

Por lo tanto definimos mc2 como la enerǵıa de un cuerpo en reposo. Hay dos temas fundamentales en esto:

Otro tema interesante es que en el ĺımite m → 0 las part́ıculas también transportan momentum y
enerǵıa P ν → (pc,p), se mueven con velocidad v = c, pero no tienen un sistema de referencia inercial
momentáneamente en reposo con ellas.

Es muy interesante que la masa y la enerǵıa son intercambiables. En una colisión completamente
inelastica dos part́ıculas con enerǵıa inicial ε quedan en reposo después de chocar, lo que implica que
la enerǵıa cinética fue convertida en un aumento de la masa inercial. La enerǵıa que debemos gastar
en devolverles la enerǵıa cinética inicial a las part́ıculas es

M = 2m+ ∆M
2ε = Mc2

}
→ ∆E = 2(T −mc2) = ∆Mc2

Esta es la famosa relación de Einstein.

5.6. Colisiones

En una colisión donde hay creación de otras part́ıculas tenemos que mantenerla totalidad de la enerǵıa,
cinética e inercial, en cuenta. En una colisión sabemos que el momento y la enerǵıa se conservan, por lo
tanto el 4-vector también se conserva. El centro de momento (COM ya que masa no es algo que se conserva
en relatividad) se define como el sistema de referencia donde la suma de todos los momentos (parte espacial
de (P 1, P 2, P 3)) es cero. El laboratorio K y el COM K̄ se conectan con una transformación de Lorentz.
Para resolver problemas de colisiones, tenemos dos alternativas.

1. Usar escalares. como P µPµ, que tienen el mismo valor en todos los sistemas de referencia inerciales.

2. Resolver el problema en el COM y transformar los 4-vectores al laboratorio K usando un “Boost”.
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Usaremos el primer método. Supongamos que tenemos una part́ıcula de masa m1 que choca con una part́ıcu-
la de masa m2 en reposo. Relacionemos los ángulos de escatering (θ1, θ2) en el laboratorio con el ángulo de
escatering en el COM (φ).

Para calcular el ángulo de escatering tenemos que conservar el momento y la enerǵıa, esto implica conservar el
4-vector de momento en todos los sistemas de referencia. Es conveniente multiplicar el 4-vector de momento
por c y calcular todas las variables en término de enerǵıa. Convertir todas las masas a enerǵıa, mc2 y
las velocidades de los momentos a β, aśı la velocidad de la luz desaparece de nuestro problema. Usaremos
mayúsculas para describir los componentes de 4 vectores P = (P 0, P 1, P 2, P 3) y minúsculas para describir los
componentes de 3 vectores p = (P 1, P 2, P 3). Ahora, P representa un vector de 4-momento en el laboratorio
y P̄ el mismo vector en el COM. Por lo tanto tenemos los siguientes invariantes

r = (P1,o + P2,o)
2 = (P1,f + P2,f )

2

= (P̄1,o + P̄2,o)
2 = (P̄1,f + P̄2,f )

2

s = (P1,o −P1,f )
2 = (P2,o −P2,f )

2

= (P̄1,o − P̄1,f )
2 = (P̄2,o − P̄2,f )

2

Estos invariantes relacionan P y P̄ en los dos sistemas de referencia y también la conservación del 4-
momento.

En el laboratorio

P1,o =
(√

m2
1 + p2o,po

)
→ P1,f =

(√
m2

1 + p21,p1

)
P2,o = (m2, 0, 0, 0) → P2,f =

(√
m2

2 + p22,p2

)
La conservación de enerǵıa en este sistema de referencia es

m2 +
√
m2

1 + p2o =
√
m2

1 + p21 +
√
m2

2 + p22

En el COM

32



P̄1,o =
(√

m2
1 + p̄2o, p̄o

)
→ P̄1,f =

(√
m2

1 + p̄2f , p̄f

)
P̄2,o =

(√
m2

2 + p̄2o,−p̄o
)
→ P̄2,f =

(√
m2

2 + p̄2f ,−p̄f
)

La conservación de enerǵıa en este sistema de referencia es√
m2

1 + p̄2o +
√
m2

2 + p̄2o =
√
m2

1 + p̄2f +
√
m2

2 + p̄2f

Notemos que podemos transformar entre estos dos sistemas de referencia. Asumamos que po = pox̂1.
Debemos encontrar la transformación de Lorenz

P̄1 + P̄2 = L(vx̂1)(P1 + P2)

que fuerza

p̄1 + p̄2 = {0, 0, 0}

con lo cual podemos resolver

v =
po

m2 +
√
m2

1 + p2o

Ahora queremos calcular los factores r y s de la colisión, para lo cual notamos que

(P1 + P2)
2 = P 2

1 + P 2
2 + 2P µ

1 P2,µ = m2
1 +m2

2 + 2ε1ε2 − 2p1 · p2

Por lo tanto tenemos

r = m2
1 +m2

2 + 2m2

√
m2

1 + p2o

= m2
1 +m2

2 + 2
√
m2

1 + p21
√
m2

2 + p22 − 2p1p2 cos(θ1 + θ2)

s = 2m2
1 − 2

√
m2

1 + p2o
√
m2

1 + p21 + 2pop1 cos(θ1)

= 2m2
2 − 2m2

√
m2

2 + p22
y

r = m2
1 +m2

2 + 2
√
m2

1 + p̄2o
√
m2

2 + p̄2o + 2p̄2o

= m2
1 +m2

2 + 2
√
m2

1 + p̄2f

√
m2

2 + p̄2f + 2p̄2f

s = 2m2
1 − 2

√
m2

1 + p̄2o

√
m2

1 + p̄2f + 2p̄op̄f cos(θ̄1)

= 2m2
2 − 2

√
m2

2 + p̄2o

√
m2

2 + p̄2f + 2p̄op̄f cos(θ̄2)

Asumamos que m1 = m2 = m, y normalicemos todos los momentos a m. Notemos que en el CEM, tenemos
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p̄o = p̄f = m

√
−1 +

√
1 + p2o

Por la misma razón que en mecánica clásica no se puede resolver completamente una colisión entre part́ıculas
puntuales sin información extra sobre la interacción.
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6. Electromagnetismo

La parte espacial de la parte de Lorentz es

mγ
d(γv)

dt
= γe

(
E +

v

c
×B

)
mγ

d(γc)

dt
= γ

e

c
E · v

la segunda relación se puede obtener multiplicando la primera por v. La parte izquierda de esta relación se
puede escribir con 4-vector y por lo tanto es invariante en todos los sistemas de referencia. La parte de la
derecha es mas dif́ıcil como vimos arriba. Esto implica que los campos también deben transformarse en una
transformación de coordenadas. Si definimos el tensor electromagnético,

F µν →


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


podemos definir la ecuación de movimiento en forma covariante como

dP µ

dτ
=

q

mc
F µνPν

Es importante notar que es necesario definir los campos electromagnéticos como un tensor, no como un
vector, ya que estos también se transforman en una transformación de Lorentz. Note que la última expresión
es una contracción y por lo tanto es invariante en todos los sistemas inerciales. Esto implica que los campos
eléctricos y magnéticos se transforman entre si (ver Jackson 1974). Notemos que este tensor lo podemos
escribir en forma invariante como

F = Fµ,νω̃µ ⊗ ω̃ν =
1

2
Fµ,νω̃µ ∧ ω̃ν

ya que es antisimetrico. Los componentes de del tensor se transforman como vimos anteriormente

F̄ = L F LT

Notemos que esto tiene sentido ya que en forma matricial

dU

dτ
=

q

mc
F η U

y dado que Ū = L U y LT η L = η, vemos que

dŪ

dτ
=

q

mc
L F LT η L U =

q

mc
F̄ η Ū .

Esto solo tiene sentido porque L es constante. Con esta transformación podemos resolver problemas com-
plejos, transformando a un sistema de referencia donde la formulación resulte fácil, por ejemplo, al sistema
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de referencia donde la part́ıcula está en reposo. Una transformación general a un sistema de referencia K̄
moviéndose con velocidad v con respecto al sistema K, transforma los campos como

Ē = γ(E + β ×B)− γ2

γ + 1
β(β · E)

B̄ = γ(B− β × E)− γ2

γ + 1
β(β ·B)

Esta transformación transforma solo los campos, además es necesario transformar la dependencia expĺıcita
de las variables entre los dos sistemas de coordenadas. O sea

x̄ = L(vo)x → x = L−1x̄ = L(−vo)x̄

Los campos son entonces

Ē(x̄) = γo(E[x] + βo ×B[x])− γ2o
γo + 1

βo(βo · E[x])

= γo(E[x = L−1x̄] + βo ×B[x = L−1x̄])− γ2o
γo + 1

βo(βo · E[x = L−1x̄])

B̄(x̄) = γo(B[x] + βo × E[x])− γ2o
γo + 1

βo(βo ·B[x])

= γo(B[x = L−1x̄] + βo × E[x = L−1x̄])− γ2o
γo + 1

βo(βo ·B[x = L−1x̄])

La transformación inversa se obtiene de v→ −v, y para pequeñas velocidades tenemos

Ē ' (E + β ×B)
B̄ ' (B− β × E)

Ejemplo: Calcular los campos producidos por una part́ıcula en movimiento con velocidad uniforme vo en
la dirección x̂.

En el sistema en reposo de la part́ıcula con espacio-tiempo (ct̄, x̄, ȳ, z̄) tenemos

Ē = − q

r̄3
{x̄, ȳ, z̄} B̄ = 0

Mientras que en el sistema del laboratorio con espacio tiempo (ct, x, y, z) la part́ıcula se mueve con velocidad
v = vox̂, por lo tanto

ct̄
x̄
ȳ
z̄

 = L(vox̂)


ct
x
y
z

 =


γ0 −βoγo 0 0
−βoγo γ0 0 0

0 0 1 0
0 0 0 1




ct
x
y
z

 =


ctγo − βoγox
−ctβoγo + γox

y
z


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Ahora,
r̄2 = x̄2 + ȳ2 + z̄2 = γ2o(x− vot)2 + y2 + z2

con los campos transformados como

E = γoĒ −
γ2o

γo + 1
x̂β2

o Ēx = {Ēx, γoĒy, γoĒz}

B = γoβox̂× Ē = γoβo{0,−Ēz, Ēx}
por lo tanto, los campos en término de las variables del laboratorio están dados por

E = {Ēx, γoĒy, γoĒz} =
qγo

(γ2o(x− vot)2 + y2 + z2)3/2
{x− vot, y, z}

B = γoβo{0,−Ēz, Ēx} =
qγoβo

(γ2o(x− vot)2 + y2 + z2)3/2
{0,−z.y}

Los campos se puede escribir en forma mas estandard como

E =
q(1− β2

o)

R2(1− β2 sin2 θ)3/2
R̂

B = β × E

donde R = r − r(t), y cos θ = β̂ · R̂. Vemos que el campo eléctrico es en la dirección radial instantánea,
como si no hubiera retardo.

Ejemplo: Supongamos que tenemos un campo eléctrico E que es perpendicular a un campo magnético B,
ambos constantes en el tiempo y espacio. Que condiciones deben satisfacer estos campos para producir una
ganancia ilimitada de enerǵıa en las part́ıculas cargadas?

Primero encontraremos un sistema de referencia donde los campos son paralelos. Existe una multitud de
sistemas en los cuales Ē y B̄ son paralelos. Utilizaremos el sistema que simplifica la transformación de los
campos. Buscaremos una solución

Ē× B̄ = 0

con

Ē = γ (E + β ×B)− γ2

γ + 1
β(β · E)

B̄ = γ (B− β × E)− γ2

γ + 1
β(β ·B)

Dado que tenemos la restricción, E ·B = 0, y también

E ·B = Ē · B̄
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podemos ver que Ē = 0 o B̄ = 0.

Esta claro que podemos simplificar si asumimos que

β = α E×B → β · E = β ·B = 0 ,

con lo cual

Ē = γ (E + β ×B) = γ (E(1− αB2) + α(E ·B)B)

B̄ = γ (B− β × E) = γ (B(1− αE2) + α(E ·B)E)

Para el caso particular de E ·B = 0, tenemos que

Ē = γ (E + β ×B) = γE(1− αB2)

B̄ = γ (B− β × E) = γB(1− αE2)

y por lo tanto

0 = (E + β ×B)× (B− β × E) = (E×B)
[
1− αB2

] [
1− αE2

]
con lo cual tenemos dos soluciones

α1 =
1

E2
α2 =

1

B2
.

Por lo tanto si B > E, dado que β ≤ 1, tenemos que

α =
1

B2
→


β =

E

B
ê⊥

γ =
|B|√

B2 − E2

con

Ē = 0

B̄ = B̂
√
B2 − E2

Por lo tanto no hay ganancia de enerǵıa.

Mientras que si E > B tenemos

α =
1

E2
→


β =

B

E
ê⊥

γ =
|E|√

E2 −B2

con
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Ē = Ê
√
E2 −B2

B̄ = 0

Por lo tanto tenemos ganancia de enerǵıa.

Otra posibilidad, es mirar las ecuaciones de movimiento. Si normalizamos el tiempo propio con la girofre-
cuencia Ω = eB/mc y los campos con α = E/B, podemos escribir

d

dτ

 U0

U1

U2

 =

 0 α 0
α 0 1
0 −1 0

 U0

U1

U2


Ahora podemos buscar soluciones del tipo UoExp[λt], con lo cual tenemos que calcular los valores propios
de la matriz A de arriba. La ecuación a resolver es

λ
[
λ2 − (α2 − 1)

]
= 0

con lo cual vemos que

λ0 = 0 λ± = ±
√
α2 − 1

Si α > 1, lo que implica que E > B, tenemos soluciones reales, y por lo tanto la enerǵıa puede aumentar
ilimitadamente. En el caso contrario, no es aśı. Los vectores propios son

V0 =

 −1
0
α

 V± =

 α

∓
√
α2 − 1

1


La solución completa

U(τ) =
3∑
n

anVne
λnτ = V eΛτ a

se puede construir con estos vectores y valores propios, donde construimos la matriz V = [V0,V+,V−], la
lista de coeficientes a = [a0, a+, a−], y la matriz Λ diagonal con lo valores propios. Usando las condiciones
iniciales

U(0) = V a

vemos que

a = V−1 U(0)

y por lo tanto

U(τ) = V eΛτ V−1 U(0)
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Esto es lo mismo que obtendŕıamos exponenciando la matriz A,

U(τ) = e(Aτ)U(0)

Efecto Doppler: Una onda plana electromagnética de frecuencia ω̄, viaja en la dirección x̂ a través del
vaćıo en el sistema K̄. Los campos son

Ē(x̄, t) = Ē0 cos(k̄x̄− ω̄t̄)ŷ B̄(x̄, t̄) = B̄0 cos(k̄x̄− ω̄t̄)ẑ

Para satisfacer las ecuaciones de Maxwell en el vaćıo necesitamos que k̄ = ω̄/c y B̄0 = Ē0. El sistema K̄
se mueve a una velocidad vx̂ con respecto a nuestro sistema K. La transformación de los campos es por lo
tanto

E = Ē0γ(1 + β) cos(k̄x̄− ω̄t̄)ŷ
B = Ē0γ(1 + β) cos(k̄x̄− ω̄t̄)ẑ

Tenemos que transformar las coordenadas
ct̄
x̄
ȳ
z̄

 = L(vx̂)


ct
x
y
z

 =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z

 =


cγt− βγx
−cβγt+ γx

y
z


y por lo tanto

k̄x̄− ω̄t̄ = kx− ωt = γ
(
k̄ − β ω̄

c

)
x− γ

(
ω̄ − βk̄c

)
t

En este caso tememos

ω = γ (1− β) ω̄ =

√
1− β
1 + β

ω̄

que representa el efecto Doppler. Por lo tanto si un emisor se aleja de nosotros este implica que la frecuencia
disminuye y vemos un corrimiento al rojo mientras que si se acerca vemos un corrimiento al azul. Es
interesante notar que la mayoŕıa de las estrellas se alejan de nuestro sistema solar, lo cual es un argumento
para la teoŕıa del Big-Bang. Además

k = γ (1− β) k̄ =

√
1− β
1 + β

k̄

que es equivalente a

λ =

√
1 + β

1− β
λ̄
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Por lo tanto la velocidad de la luz queda invariante

c̄ =
ω̄

k̄
=
ω

k
= c

Notemos que en limite β → 0 la

λ→∞ ω → 0

En termino de la intensidad de la radiacion

S · x̂
S̄ · x̂

=
1 + β

1− β
esta diverge cuando β →∞.

Problema Derivar el efecto Doppler cuando el ángulo entre k̂ · β = β cos θ.

ω̄ = γ(1− β cos θ) ω

Que implicancias tiene el ángulo θ?

6.1. Descripción de las ecuaciones de Maxwell

Definamos los 4-vectores

Jα → (cρ, J) Aα → (Φ, A)

La continuidad se puede expresar como

∂αJ
α = 0

El 4-Tensor de segundo rango se puede reescribir como

Fαβ = ∂αAβ − ∂βAα

o en forma tensorial como

F = Fµνd̃x
µ ⊗ d̃xν =

1

2
Fµνd̃x

µ ∧ d̃xν

mostrando expĺıcitamente la antisimetria del tensor. Con esta descripción, podemos escribir las ecuaciones
de Maxwell en forma covariante

∂αF
αβ =

4π

c
Jβ

Supongamos que utilizamos el Gauge de Lorentz
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∂αA
α = 0

entonces vemos que esta ecuación es la ecuación de onda

∂α∂
αAµ =

4π

c
Jµ

Utilicemos la notación

Aα,β =
∂Aα
∂xβ

Aα,βγ =
∂2Aα
∂xγ∂xβ

A,β =
∂A

∂xβ

Podemos tratar de definir el Lagrangiano de los campos como∫
L(Aµ, Aµ,ν , x

λ)dxµ → ∂

∂xα
∂L

∂Aβ,α
− ∂L

∂Aβ
= 0

donde es factible definir en tensor de stress-enerǵıa

dL

dxµ
=
∂L

∂Aα
Aα,µ +

∂L

∂Aα,ν
Aα,µν +

∂L

∂xµ

→ d

dxν

[
∂L

∂Aα,ν
Aα,µ − L δµν

]
= − ∂L

∂xµ

y si L no depende de xu, entonces definimos

Tµ
ν =

∂L

∂Aα,ν
Aα,µ − L δµν → Tµ

ν ,ν = 0

En el caso de electromagnetismo, en su formulación de la relatividad especial, podemos escribir la forma
invariante, integrado sobre dx4,

L = − 1

16π
FαβF

αβ − 1

c
JαA

α → 1

4π
∂βFβα = −1

c
Jα

que dan las ecuaciones de arriba.

Notemos que las ecuaciones homogéneas de Maxwell se puede expresar como

∂αF βγ + ∂βF γα + ∂γFαβ = 0

Para el caso de materiales, el tensor F (E,B) → G(D,H). Es muy instructivo mostrar que las ecuaciones
de Maxwell se puede expresar en formulación geométrica como

∇F = 0 ∇ · F =
4π

c
J
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La ley de Ohm en el sistema en reposo con el fluido se puede escribir como

J = σE

La cual podemos escribir en forma covariante como

Jµ − 1

c

2

(JνUν)U
µ =

σ

c
F µνUν
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7. La métrica de Riemann g

Notemos que todo el análisis que hemos realizado hasta ahora funciona perfectamente para un espacio
donde la métrica g depende del espacio-tiempo. La única diferencia esta en que hemos usado un sistema de
coordenadas que tienen una base constante en el espacio-tiempo, y por lo tanto

d

dxi
êj = 0

Ahora veremos que pasa cuando este no es el caso.

7.1. Derivadas covariantes

Notemos que es muy importante darse cuenta que las leyes de la f́ısica están escritas en termino de derivadas
de campos, por lo tanto se hace necesario escribirlas en una forma que sea invariante en todos los sistemas
de coordenadas. Esto implica escribir las leyes f́ısicas en términos de tensores y sus derivadas.

Por ejemplo, un vector cualquiera en un sistema coordenado tiene componentes ~V → {~V 0, ~V 1, ~V 2, ~V 3}, y
su derivada es

~V;µ =
∂~V

∂xµ
=

∂

∂xµ
(V ν êν) =

∂V ν

∂xµ
êν + V ν ∂êν

∂xµ
=
∂V ν

∂xµ
êµ + V νΓανµ êα

que define los śımbolos de Chistoffel y la derivada covariante. La derivada covariante es la forma de
incluir la curvatura en las leyes f́ısicas cuando estas están descritas por vectores. Notemos que la última
expresión tiene sentido porque los êi forman una base. Con un poco de trabajo es posible demostrar:

Γijk = gim
∑
i

[
∂yi

∂xm
∂2yi

∂xk∂xj

]
=

1

2
gim
(
∂gmj
∂xk

+
∂gmk
∂xj

− ∂gjk
∂xm

)
Note que los śımbolos de Chistoffel

∂êν
∂xµ

= Γανµ êα

se calculan de una vez para una métrica dada.

Problema: construya los śımbolos de Christoffel para bases polares (esto es aun un espacio plano):

Vamos a representar una trayectoria en el sistema cartesiano de coordenadas polares. Definimos

x = r cos θ
y = r sin θ

lo que define la transformación

Λ =

(
cos θ −r sin θ
sin θ r cos θ

) (
dx
dy

)
= Λ

(
dr
dθ

)
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Definamos el inverso

Ω =

(
cos θ sin θ

−1

r
sin θ

1

r
cos θ

) (
dr
dθ

)
= Ω

(
dx
dy

)
con ΛΩ = 1.

Dada una transformación

dx = Λdx

podemos relacionar

ds2 = dxTgdx = dx
T [

ΛT g Λ
]
dx

y por lo tanto en esta base polar tenemos la métrica

ḡ→ ΛT g Λ =

(
1 0
0 r2

)
Las bases se transforman como

ˆ̄eµ = Λν
µêν

diferentes a los vectores, podemos encontrar

êr = Λ1
1ê1 + Λ2

1ê2 = cos θx̂+ sin θŷ

êθ = Λ1
2ê1 + Λ2

2ê2 = −r sin θx̂+ r cos θŷ

Notemos que la nueva métrica se puede calcular a partir de

ḡµν = g(ˆ̄eµ, ˆ̄eν) = ˆ̄e
T
µ g ˆ̄eν →

(
1 0
0 r2

)
Las derivas de las bases se pueden evaluar como

∂rêr = 0

∂θêr = êθ/r

∂rêθ = êθ/r

∂θêθ = −rêr

Un vector general en este sistema de coordenadas es (V r, V θ), y su derivada es
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∂~V

∂r
=

∂

∂r
(V iêi)

=
∂

∂r
(V rêr + V θêθ)

=
∂V r

∂r
êr +

∂V θ

∂r
êθ + V r ∂êr

∂r
+ V θ ∂êθ

∂r

y de la misma manera para la derivada θ. Los śımbolos de Chistoffel son:

Γrrr = 0 Γθrr = 0

Γrrθ = 0 Γθrθ =
1

r

Γrθr = 0 Γθθr =
1

r

Γrθθ = −r Γθθθ = 0

También, podemos construir bases para las uno-formas. En la base estándar tenemos

d̃x = {1, 0} d̃y = {0, 1}

mientras que los componentes de las uno-formas se transforman como

p̄µ = Ων
µpν

Por lo tanto en la base polar podemos escribir

d̃r = Ω1
1d̃x+ Ω2

1d̃y = cos θd̃x+ sin θd̃y

d̃θ = Ω1
2d̃x+ Ω2

2d̃y = −1

r
sin θd̃x+

1

r
cos θd̃y

Dado que la uno-forma tiene componentes

dµ →


∂

∂r

∂

∂θ


podemos calcular el vector

dµ = gµν dν →


∂

∂r

1

r2
∂

∂θ


donde hemos usado el inverso de g.
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Problema: Demostrar que los simbolos de Chistoffel para el caso polar se pueden derivar de la metrica
con la expresion escrita arriba.

Notemos que las derivadas covariantes se pueden escribir como

~V ;µ =
∂~V

∂xµ
=

(
∂V ν

∂xµ
+ V αΓναµ

)
êν

por lo tanto podemos definir

V ν
;µ = V ν

,µ + V α Γναµ

con lo cual encontramos

~V ;µ = V ν
;µ êν

lo cual es un resultado important́ısimo, ya que dice que en el nuevo sistema de referencia, donde las bases
no son constantes, esta expresión permite tratar los componentes como si fueran invariantes.

Nota: uno de los postulados de la relatividad general es que siempre existe una base, al menos localmente,
donde la métrica es constante e igual a la de Minkowsky. Esto implica que en esta base K̄, tenemos

V ν
;µ = V̄ ν

,µ

Vemos inmediatamente como se puede transformar una ley f́ısica descrita en el sistema de Minkowsky local,
para que funcione en el sistema de coordenadas general, con o sin curvatura.

Notemos que podemos definir el tensor
(
1
1

)
, denominado la derivada covariante ∇~V del vector ~V, que mapea

el vector êν en el vector ~V;µ, y tiene componentes(
∇~V

)ν
µ

=
(
∇µ
~V
)ν

= V ν
;µ

Notemos que en una base tipo Minkowsky (aveces denominada cartesiana donde la métrica es constante),
tenemos que los componentes de este tensor son V µ

,ν . Asimismo, para el caso de un escalar, vemos que la
definición de la derivada covariante es

∇Φ = d̃Φ

ya que un escalar no depende de la base.
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Notemos que podemos definir la divergencia haciendo una contracción, la cual es independiente del sistema
de coordenadas

V µ
;µ

Por ejemplo, en coordenadas polares tenemos la divergencia

V µ
;µ = V r,r +V θ,θ +V r

[
Γrrr + Γθrθ

]
+ V θ

[
Γrθr + Γθθθ

]
= V r,r +V θ,θ +V r

[
1

r

]

=
1

r

∂(rV r)

∂r
+
∂V θ

∂θ

Esta es la formula que estamos acostumbrado, excepto por el hecho que en nuestra definición el vector de
la base r̂θ no es unitario en la forma que estamos acostumbrado. En libros de calculo, es costumbre forzar
a que las bases sean unitarias, con lo cual la divergencia quedaŕıa

∇ ·V→ 1

r

∂(rV r)

∂r
+

1

r

∂V θ

∂θ

Nosotros mantendremos la notación que hemos estado usando aqúı.

Ahora queremos construir el Laplaciano de un escalar. Usando ~dΦ = g−1 d̃Φ, podemos escribir en forma
invariante, usando la derivada covariante,

∇ · (~dΦ) =
((
~dΦ
)µ)

;µ
=

1

r

∂

∂r

(
r
∂Φ

∂r

)
+

1

r2
∂2Φ

∂θ2

la cual es igual a

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2

como debeŕıa ser.

Que pasa con las derivadas de uno-formas. Calculemos la derivada del escalar Φ = pµV
µ,

∇βΦ = Φ,β =
∂pµ
∂xβ

V µ + pµ
∂V µ

∂xβ

=
∂pµ
∂xβ

V µ + pµV
µ
;β − pµV µΓµµβ

=

(
∂pµ
∂xβ
− pαΓαµβ

)
V µ + (pµV

µ
;β)

por lo tanto dada la ley de la cadena para las derivadas, podemos definir (∇βp̃)α = (∇p̃)αβ = pα;β, donde
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pα;β = pα,β − pµΓµαβ

y aśı tenemos

∇β(pαV
α) = pα;βV

α + pαV
α
;β

De la misma forma podemos demostrar que

∇βTµν = Tµν,β − TανΓαµβ − TµαΓανβ

∇βT
µν = T µν,β + TανΓµαβ + T µαΓναβ

∇βT
µ
ν = T µν,β + TανΓ

µ
αβ − T µαΓανβ

con lo cual podemos escribir las ecuación de Maxwell en cualquier base, partiendo de su representación en
el sistema local de Minkowsky, como

∂µF
µ,ν =

4π

c
Jν → ∇µF̄

µ,ν =
4π

c
J̄ν

donde J̄ν y F̄ µ,ν representan los componentes del vector de corriente y el tensor electromagnético en el
sistema descrito por la métrica g. Notemos que escribir es ahora simple en el nuevo sistema J̄ν y F̄ µ,ν .

Problema: Calcular las ecuaciones de Maxwell en Polares.

Problema: Calcular las ecuaciones de Maxwell en Esfericas y Cilindricas.

7.2. Posibles axiomas para la f́ısica en el espacio curvo

1. El espacio–tiempo es un sistema múltiple de 4-D con una métrica.

2. La métrica es medible por rods y relojes.

3. La métrica se puede poner en la forma de Lorentz η localmente por una opción particular de coorde-
nadas. Esto significa que el espacio es localmente plano y que la ecuación de movimiento puede ser
escrito como antes en notación de tensores, pero con la posibilidad de una métrica curva.

4. Part́ıculas en cáıda libre siguen (time-like) geodésicas.

5. Cualquier ley f́ısica que se pueda expresar en notación tensorial en relatividad especial tiene exac-
tamente la misma forma en un sistema inercial local. En general este sistema de referencia no es
global. Para describir la f́ısica en forma global, tenemos que cambiar solamente todas las derivadas en
derivadas covariantes para hacer las ecuaciones del movimiento válidas en todos los sistemas coorde-
nados
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Por ejemplo, podemos notar que todos los términos se transforman en forma apropiada bajo una transfor-
mación de coordenadas, lo que implica que seria bueno mapear las ecuaciones de Newton en estos términos.
Partimos en un sistema Cartesiano y una ley de fuerza como función de x y derivadas con respecto a x.
Luego transformamos a un sistema curvo para escribir la ley general. La misma idea aplica a las ecuaciones
de Maxwell, pero reformuladas en termino de derivadas covariantes.

Finalmente, ponemos como referencia la ecuación dinámica para la métrica

Gαβ + λgαβ = 8πTαβ

con

Gαβ = Rµ
αµβ −

1

2
gαβR

como el tensor de Einstein. Además

1. λ es la constante cosmológica que incluye enerǵıas en el background.

2. Tαβ = (P + ρ)UαUβ + pgαβ + TαβEM (para un fluido perfecto) corresponde al tensor enerǵıa-stress

3. Rα
βµν = Γαβν,µ − Γαβµ,ν + ΓασµΓσβν − ΓασνΓ

σ
βµ es el tensor de curvatura Riemanniana

4. R = gµνRµν = gµνgαβRαµβν es el escalar de Ricci

8. Formulación Lagrangiana

-part́ıculas
-campos

9. Termodinámica y fluidos

-fluidos perfectos
-termodinámica
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