


Capitulo 4:
Principio de la Relatividad

En este capitulo estudiaremos las consecuencias de la invariancia de la velocidad de la luz en el vacio.
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1. Teoria de la relatividad

Las ecuaciones de Newton son invariantes con respecto a las transformaciones de Galileo

Rx +v,t+x,
= t+4+1,

R
|

donde R es una rotacién que satisface RTR = 1. Estas transformaciones definen los sistemas inerciales de
referencia, en donde las ecuaciones de Newton son satisfechas. Que sea invariante no significa que tenga el
mismo valor, significa que las ecuaciones tienen la misma forma. Esta definicién funcionaria muy bien, ex-
cepto que las ecuaciones de Maxwell (1éase la ecuacién de onda) no son invariantes bajo una transformacion
galileana, ya que es experimentalmente observado que la velocidad de la luz ¢ es una constante universal
independiente del sistema de referencia inercial.

Postulado I de la universalidad de la luz: En el vacio, la luz se propaga con la velocidad universal
c = 299792458[m/s| en todos los sistemas inerciales de referencia.

Postulado II del principio de relatividad especial: Las leyes de la naturaleza son invariantes (tienen la
misma forma) bajo el grupo de transformaciones de Lorentz L que mantienen la constancia de la velocidad
de la luz en todos los sistemas de referencia inerciales.

Postulado III del principio de relatividad especial: Siempre existe un sistema de referencia universal
que esta instantaneamente en reposo con un sistema dado, aunque este este acelerando.

2. Transformaciones

Definamos dos sistemas de referencia, K(x) y K(Z). Supongamos que tenemos una transformacion entre
estos dos sistemas de referencia,

X = A(x)

Notemos que aunque A(x) puede no ser lineal, la transformacién de los diferenciales, que viven en el espacio
tangente,

dx = DAdx
si lo es, donde
OA;(x)
ﬁxj

con D como el Jacobiano de la transformacion. Las derivadas se transforman como

L= [DA] — Li,j =

0 o1 0 0N(x) 5

A-1(z) 97,

X=



y por lo tanto

Vi=L"(x=A""(T)) Vs
Las transformaciones apropiadas deben satisfacer que el determinante del Jacobiano sea diferente de cero,

en x.

En principio las relaciones dindmicas incluyen campos (como las ecuaciones de Maxwell) que también en
principio deberian transformarse como
F,=G[Fk] — Fzx)=G[Fx (X = A*I()_c))}

Por ejemplo, supongamos que tenemos una relacién dindmica H = 0 (que depende del espacio, derivadas y
campos) en el sistema K, esta relacién dindmica en el sistema K se veria como

H[x,V,Fy...] = E[A‘l(i),LT(x:A_l(a_;))Vg—J, E(2)],. ]

= [z, Vs, Fax(),...]

H es denominado invariante, o su forma es independiente del sistema elegido, si el resultado de estas dos
transformaciones deja

H(Q_T,Vj,) :H(a_;',Vj,)
Para el caso de las ecuaciones de Maxwell veremos mas adelante que los campos también requieren trans-
formarse para que tengan la misma forma en diferentes sistemas de referencia.

Por ejemplo, miremos la ecuacion de Newton, para la particular ,

dVl'
S = =9 S V(i x)
J

y le aplicamos una transformacién galileana de la trayectoria de x(t) a ()

vV, = (RT) (’l_JZ — Vo)

dv; dv;
i RT —f
a — B
0 0z; 0 0 0
= 4 —— jk__:(RT) N
Ox, Oz, 0T "0z ki 0T ;
Ademss, |x; — x;| = |&; — &;|. Por lo tanto, las ecuaciones de Newton son claramente invariantes si R es
una rotacion
m %~ (RRT) W, S V(|7 - 7))
dt i : J

J



Miremos las ecuaciones de Maxwell entre sistemas de coordenadas (x,t) y (Z,t). Lo primero que nos damos
cuenta es que las Leyes de Maxwell, o sea la ecuacién de onda, para un escalar W

1 0
Vie —— | U =0
( 2 0t? )
Bajo una transformacion galileana, asumamos que

U(Z,1) = U(RX + Vot + X, t +1,) = U(x,1)

Por lo tanto

o o OV
om — Rugg

o OU 0T, 0 OV o ov _
Q\If — N, _— = — Ty, 7k~ T~ — . ™. 7 = — 2_111
Vi (R )”axia@ (R )”axi 0%, 0z, Rii(R )”a—ka@ Va
oV _ oV om0y _ov 0¥
ot ot | otom ot | oz
G a®+ 9T\ QU ) '62@+ T
oz~ ot\ot  or,) or " “anor ' " oz0,

Por lo tanto la ecuaciéon de onda no es invariante

2 20 927 a2
13\11]:[V2\I1 la\ll}_zvo,zﬁ‘ll Vi Voj OV

2
\Ij — Q= = — — e - —
{VX c o0t? ¥ c? ot? 2 0z;0t ¢ c 0%;0%;

bajo una transformacion galileana. Notemos que el el limite v,/c << 1, es casi invariante.

Si en un sistema de referencia U satisface la ecuacién de ondas, vemos que en el otro ¥ no la satisface. Note
que asumimos que ¥ no requiere transformarse en el nuevo sistema de referencia. Este es extremadamente
relevante, ya que implicaria que si en un sistema de referencia se satisfacen las ecuaciones de Maxwell,
entonces en el otro sistema de referencia habria que escribir otra forma para estas ecuaciones. Uno podria
tratar de exigir que el campo ¥ podria requerir una transformacién, pero esto tampoco es factible, ya que
la transformacién depende de derivadas cruzadas. Veremos mas adelante que resulta mas 1til pensar en
transformaciones de Lorentz, que en el limite v,/c << 1 son equivalentes a una transformacién Galileana,
ya que sabemos que en el limite de pequenas velocidades las transformaciones Galileanas parecen estar
correctas.

3. La métrica para la relatividad especial

Supongamos que una onda de luz se genera en el punto (s, x;). En el sistema de referencia K tenemos que
los puntos (¢,x) del el frente de la onda de luz satisfacen

(x —x,)° = At —t,)>=0



Esta relacion debe ser invariante en los dos sistemas de coordenadas con la misma velocidad c. Esta relacién
define una métrica. Notemos, como veremos mas adelante, esto es equivalente a hacer invariante la ecuacion
de onda.

Hay dos métodos de desarrollar la teoria. Uno es usar una métrica Euclidiana lo que implica definir el tiem-
po como un numero imaginario (ict,x). El otro método es usar una métrica Riemanniana en 4 dimensiones
reales con ¢t como una coordenada. En este capitulo vamos a tomar la segunda alternativa, ya que es mas
util en fisica moderna, como la mecanica cuantica.

3.1. Formulacién matricial y el espacio de Minkowsky

Ordenemos un poco nuestra formulacién y definamos que nuestro espacio tiempo esta caracterizado por el
vector diferencial dz de la posicién que puede ser representado por la lista que representa a sus componentes
dx = (dz° dx!, dx? dz?®) en la base estandar, donde 2° = ct. Notemos que hay una diferencia entre el
vector y su representacion. Veremos mas adelante la importancia de poner el indice de los componentes
arriba para los vectores.

En general tenemos una medida de distancia dada por

ds® = (dx0)2 — (dx1)2 — (dx2)2 — (d$3)2 = dx” n dx

donde hemos hemos definido la matriz

1 0 0 0

o -1 0 o0 e

™10 0 -1 o0 no=n
00 0 -1

que define la métrica de Minkowsky. En general, es 1itil describir este espacio, como un espacio Pseudo-
Riemanniano, ya que en un espacio de Riemann la métrica da valores positivos para la magnitud de
vectores. Cuando los componentes del tensor de la métrica en la base estandar esta descrito por i, tenemos
la relatividad espacial, y un espacio de Minkowsky.

Nota: Notemos que técnicamente 1) no es un tensor, es la matriz de componentes que representa a un
tensor en la base que estamos usando. Por ahora seremos bastante vagos al respecto, pero mas adelante
aclararemos esto. El producto escalar entre vectores (palabra que definiremos en forma precisa mas adelante)
queda entonces definido como el producto

< dx | dr > = den dx = (dx0)2 - (da:l)2 - (dx2)2 — (dx3)2

Ahora podemos definir el vector de derivadas como

0-(7%)



Nuevamente, & no es un vector, es una representacion de un vector en el sistema estandar de coordenadas
en que estamos trabajando.

Mas adelante veremos por que el vector se define con el signo negativo para la derivada temporal. La
ecuacion de onda se puede escribir como

1 0%
(;ﬁ — Vg) = BT’I’] 8

3.2. Transformacién de Lorenz (grupo de Poincare)

Asumamos que los componentes de las coordenadas se transforman como

T = A(x)
donde los diferenciales se transforman como

Y

- Oxd

donde DetLl # 0 en el espacio. hemos re-definido L con los componentes arriba y abajo. Esta notacién
serd 1til mas abajo. Notemos que da es la representacién (sus componentes) de un vector en una base, que
en este caso es la estandar. Este vector vive en el espacio tangente donde los componentes de los vectores
se transforman linealmente entre los sistema de coordenadas K y K. Notemos que el vector dz es el mismo
vector en los dos sistemas de coordenadas, solos sus componentes cambian dx — da al cambiar el sistema
de coordenadas (o bases) del sistema K al K. La distincién de indices arriba y abajo sera mas clara pronto.
En el caso de una transformacién afina (que utilizaremos en la relatividad especial), tenemos que

dr =L dx — L

r=Lx+a

Los vectores, que transforman sus componentes como lo hace d?v, se denominan 4-vectores.
Notemos que tenemos que forzar el producto interno
(do|dv) —»  do'nde—dx(L'nL)dx

a ser un invariante en todas las bases. Por lo tanto vemos que si queremos que la distancia ds? sea invariante
en los dos sistemas de referencia (o una solucién de la ecuacién de onda), necesitamos que

L'nL=nq

lo que define el grupo G de transformaciones de Lorenz (grupo de Poincare), ya que

1. si Ly y Ly pertenecen a G, entonces L = L;L, también pertenecen a G.

2. la identidad pertenece G



3. el inverso

L—l — ,',’LT,',’

también pertenece a G

Notemos que

L'L=nL'pL=1
Multiplicando L L=! = 1, vemos que
LnLY=n

y por lo tanto LT también pertenece al grupo.

Veamos que pasa con la ecuacién de onda. Las derivadas se transforman como

0 080 _ ;0 oy 0

—_— f— . — TZ‘_
Oxt  Oxt %I 'Oxd ( )Jajj

Notemos la representacion del vector de derivadas satisface

o~ ()%

o lo que es equivalente
d=nL"no
Notemos que esto demuestra que los componentes de 9 se transforman como un vector, ya que
0=L2d
La ecuacion de onda transforma entonces como
O'no=0"1L"ygLO=0"7n0d

y por lo tanto también es invariante si los sistemas de coordenadas se relacionan por una transformacion
de Lorenz.



3.3. Construccion del Grupo

La transformacién de Lorentz forma el grupo de transformaciones de Poincare y automaticamente satisface
la invariancia de la ecuacién de onda y del frente de la onda.

Notemos que el determinante (det L) = +1. Las transformaciones se clasifican dependiendo del signo del
determinante det L = 1 (Proper) o det L = —1 (Improper) y del valor de L% > 1 (orthochronous o mape-
ando hacia adelante en el tiempo) o L% < —1. Nos interesa el subgrupo de las proper orthochronous
Lorentz transformations (POLT) (detL = 1, L% > 1). Estas son las transformaciones que nos interesan
porque preservan la causalidad (el antes y el después son preservados) y en el limite de pequenas velocidades
tendremos las transformaciones Galileanas.

Claramente, rotaciones de la parte espacial R € SO(3) (con det R = 1) pertenecen a este grupo

Pero, también estan las transformaciones permiten mezclar el tiempo y el espacio.

Tomemos los dos sistemas de referencia, con el sistema K moviéndose con velocidad v respecto al sistema
K en la direccion z;. Asumamos que la transformacién no afecta los ejes perpendiculares a esta direccién
dx? = dz?, dx® = dz>. El frente de la onda debe ser un invariante, por lo cual tenemos

()’ — (dr)" = (da® + o) (da® — o) = (@ * + ) (@ 0 ) = (@)’ ~ (@)’

lo que debe de ser invariante en los dos sistemas de referencia. Por lo tanto, cada término en el paréntesis
solo puede ser una funcion de la velocidad

dc® +dz ' = f(v) (da® + da) B fetopo1
@ e

_ —, 1 drl ) 9 dxt

dxo—dxl—f(v>(dx0—dx1) f—% f—l—%

pero, el origen del sistema de referencia K se mueve con velocidad v en el sistema K, lo que implica que el
origen del sistema K estd dado por dx = (dz°, dzv/c,0,0) y por d& = (dz °,0,0,0) en los dos sistemas de
referencia, con lo cual tenemos

\

flo)r= 115;2 dz © dz° vy =By dz°
o lE) e Cn) - (0 ) G

10



con la definicién 8 = v/c/ La transformacién definida en una direccién més general es

) Y _7ﬁ1 _’YﬁQ —”)/53
v - —yB 1+ (v - >§; (o -1)° BB ;53
—y— 1,7 + v — 1 )
C G (- 1>5;§1 (- >ﬁgfz . >§2

Es facil probar que en el limv/c — 0, esta transformacién se reduce a una simple transformacién Galileana.
Ademas el inverso estd dado por L(—v), ya que

L' (v) =nL" n=L(-v)
Esta transformacién se denomina un Boost para diferenciarlo de una rotacion espacial que también satis-
face el requisito de una transformacién de Lorentz.

Una conclusion importante es que el tiempo y las distancias medidas dependen del sistema de referencia
que se use.

3.3.1. Dilatacion del tiempo

Supongamos que tenemos dos sistemas de referencia, el K y el K. En el sistema K el reloj marca At (con
Az = 0 el reloj no se mueve). ;Cudnto marca en el sistema K7 La transformacién dictamina (usando

L(=v))

cAt = cyAt + ByAx
Los intervalos de tiempo son finalmente o
At = yAt

ya que v > 1, el intervalo del tiempo en el sistema K es mas chico que en el sistema K para el mismo
evento. Esto se denomina dilatacion del tiempo.

3.3.2. Contraccién de las distancias

Otro problema interesante en el cual se producen dos mediciones al mismo tiempo en un sistema K
(Az, At = 0) en la misma direccién del movimiento (v = {v,0,0}). En este sistema K las dos mediciones
se producen en tiempos diferentes, pero las dos mediciones se relacionan como

(20 7)) (=)

Por lo tanto en el sistema K medimos la distancia

A A2
Y

Esta no es la forma mas adecuada de probar la contraccion de las distancias en los sistemas en movimiento.

11



3.3.3. Efecto doppler relativista

Problema: Si la ecuacion de onda es invariante, entonces la fase de una onda plana debe de ser invariante.
Por lo tanto podemos escribir los componentes del vector de onda k = {w/c, k1, k2, k3} en la base estandar,
con lo cual tenemos que

<Euﬁ>:ETnEi:Hﬁdx

y por lo tanto los componentes del vector de onda, representado por k, se transforma como los componentes
de un vector en este espacio de 4 dimensiones.

3.4. Descomposicion de POLT

Es posible probar que toda POLT se puede escribir en forma tnica como el producto de una rotaciéon L(R)
y una transformacién “Boost” L(v), con

V; . Lio
Cc N Llo
L =L(v)L(R) —
i i 1 1 70
RYj =L = g Lol

Probar esto, implica demostrar que
= v < ¢ usando las propiedades de una transformaciéon de Lorentz.
= La relacién de v/c permite la formulacién de L(v) en término de algunos componentes de L.

» L(R) = L(—Vv)L es una rotacién con la definicién del punto anterior permite establecer los compo-
nentes de R

= Probar que la descomposicién es tinica

El orden de la descomposicién no es demasiado relevante, ya que L = L(R)L(v;) también pertenece a
POLT con la misma relacién anterior, pero v = Rvj.

Este grupo de POLT es un algebra de Lie que contiene a SO(3) que depende de seis parametros, tres
angulos y tres velocidades y por lo tanto requiere de seis generadores. Los tres generadores correspondientes
a los tres angulos de rotacién los denominaremos como

000 0 0 0 0 0 00 0 0
000 0 0 0 01 00 —1 0
Ji = 000 —1 J2 = 0 0 00 Js = 01 0 0
001 0 0 —1 0 0 00 0 0

12



Para definir los generadores de los Boost podemos definir la funcién rapidity

flv) = e

Con esta definicion tenemos que el boost en x es

tanh A\ = M coshA —sinh A

00
cC o

S L) = sinhA  coshA 0 O

0 0 10

et = —1+ﬁ 0 0 01

=\15
Por lo tanto el generador de la transformacion lo podemos escribir como

0100 0010 0001
1 000 0000 0000
Ki=1000 0 K2=1100 0 Ks=1000 0
0000 0000 1000

y la transformacién la podemos escribir finalmente como
L = exp(—¢¢ - J) exp(—A0 - K)
Una forma de probar esta expresién es componiendo un nimero n de transformaciones infinitesimales.

Cuales son las relaciones de conmutacion?

{Ji, JJ] = €i,j,k']k
[Jiv K]] = [sz J]] = Ei»j»kKk
K, K;] = —e K

3.5. Adicion de velocidades

Supongamos que tenemos un cuerpo que se mueve con velocidad u’ en el sistema de coordenadas K. ;

Cual es la velocidad u en el sistema de referencia K? Hay dos formas de ver este resultado. Uno es tomar
variaciones en el tiempo en los respectivos sistemas de referencia

Az® = vyAx ° Ax! _

" + By L Azt ufc+ B

c Az 14 pu/ec

Azt =yAz '+ ByAz ©
la otra es componer dos “Boost”

L(u) = L(aé;)L(vé;) = exp(—\K7) exp(—A\Kj) = exp(— (A + \2)K;)

13



u Azl ufe+p

c Az 1+ pu/c
Transformaciones en direcciones méas generales requieren mas algebra, pero son trabajables. Claramente si
las dos velocidades son pequenas comparadas con la velocidad de la luz nos da la transformacion galileana

u=u+v+O(uv/c*

3.6. Precesion de Thomas

Supongamos que hacemos dos “Boost.®® direcciones perpendiculares. Esta composicion también pertenece
al grupo de POLT y por lo tanto también se puede escribir como una rotaciéon mas un “Boost”:

Y172 Y7281 —7pPs 0

. . b1 g 0 0

(w)R(0) (v282)L(v1€1) 717202 M1720152 V2 0
0 0 0 1

el valor de u se puede encontrar del teorema descrito arriba.

% — {&7/8270}
¢ Y2

5152(7172 - 1)
Bim + B3

0 0
cos) —sinf
sind  cosf

0 0

o O O
_ o O O

tanf =

o también se puede obtener de las relaciones del teorema para POLT. Para pequenas velocidades tenemos
tanf = —f;02/2. Es interesante darse cuenta que dos “Boost.®® direcciones diferentes dan origen a una
rotacién. Esto se denomina precesion de Thomas y se genera de la no-conmutacion de los generadores
de los “Boost”. Supongamos que a tiempo ¢ tenemos un sistema con velocidad v. Luego a tiempo t + dt
observaremos v + dv. Asumamos que a tiempo t hay un sistema inercial moviéndose con velocidad v
instantaneamente pegado al cuerpo. Luego a tiempo t+dt hay otro sistema inercial moviéndose con velocidad
v + dv instantaneamente pegado al cuerpo. Si el cuerpo tiene una direccion definida, como el spin, entonces
esta direccion se verd precesar con una frecuencia angular (para pequenas velocidades como)
BAﬁi . v Xa

— 0=—
2 2c2

Por lo tanto una distribucion de carga se ve “como” rotando la pasar a cierta velocidad

sin Af ~ A =

14



4. Formulacién abstracta de vectores, tensores y formas

Podemos mirar esto como un problema de algebra diferencial abstracta. Ya definimos el vector
dx
En un sistema de coordenadas K, podemos describir el vector
dx = dz"é,

en termino de sus componentes dz* y la base €, del sistema de coordenadas de K. Si queremos mirar este
vector en otro sistema de coordenadas K, tendremos

dz = dz'é,

Notemos que el vector es el mismo en todos los 51stemas de coordenadas solo sus componentes cambian. Si
A y B son vectores, y a y [ son numeros, entonces oA + ﬂB también es vector, y tiene componentes

aA + BB = (A" + fB") é

4.1. Transformaciones y Bases para vectores

Si ahora queremos mirar la transformacion de los componentes de un vector en el espacio tangente
podemos definir la transformacion como

A = [, A7
donde p corresponde a la fila, y v a la columna. También existe la transformaciéon inversa
1 T
At = (L7H)m A

que determinaremos mas adelante. Ahora definimos la sumatoria de Einstein solo cuando tenemos indices
repetidos arriba y abajo, a lo que llamaremos una contraccién. Vemos como se transforman las bases,

¥ —  AMZ
Are, = Ale, )
Are,, = Lt A€,
Are, = A'LY e,

y por lo tanto las bases se transforman como

A

~ v
ée,=1L",e,

diferentes a los vectores. Notemos que esta transformacion corresponde a la transpuesta. Utilizando la
inversa podemos escribir

Arg, - A,
f‘_lV(L_l)uyéu = f‘_luéu
A“(Lil)l’uéy = Are,



y por lo tanto las bases se transforman como

Esto es completamente consistente con
A, = A7 (L), 10| &y = A707,8, = A%,

4.2. Tensores

Notemos el producto escalar que definimos arriba, vemos que es consistente con
(A|B) = a4 (e le,) = A*a‘,,

donde g,,, son los componentes de la métrica. Este producto es invariante de sistemas de coordenadas,
ya que el producto escalar lo es.

Notemos que esta propiedad nos permite definir el tensor de la métrica g como una funcién de dos
vectores que produce un numero

g(4,B) = (A|B)
Este objeto tiene la propiedad que

g(aA + 3B,C) = ag(A,C) + pg(B,C)

2) es una regla que produce un numero a partir de dos vectores
independiente del sistema de coordenadas. Notemos que no hemos hecho ninguna referencia a los
componentes de estos objetos. De esta forma podemos definir tensores del tipo (2) como una funcién de n
vectores, lineal en sus argumentos, que produce un numero.

Notemos entonces que un tensor (O

4.3. uno-formas o tensores ((1))

De particular interés, son los tensores ((1)), denominados uno-formas p. Dado que es lineal en sus argumentos

- —

P(A) = A*p(é,) = A'p,
donde p,, son los componentes de p en el sistema K. Notemos que aqui vemos la definicién de una con-

traccién A"p,, entre un vector A y una uno-forma p, sin referencia a otros tensores. Los componentes de
las uno-formas se transforman

pp=D(&u) = p(LUuéu> = L".py

o usando el inverso



por lo tanto los componentes de las uno formas se transforman como los vectores bases, garantizando la

invariancia de la contraccidn.

Podemos definir una base de uno-formas como
_ w
D = puw

tal que
wh(é,) =,
que las bases de uno-formas se transforman como vectores.

Viendo lo anterior es mas o menos intuitivo

Miremos
_ =p ~
D@ = puwt
_ = _ ~
puw = p,LY,wH
p." = puLt,@Y

por lo tanto
ot = Lr,&"

Problema: Tomemos la derivada de una funcién escalar W(z°(7), z!(7), 2%(7), 23(7)) donde 7 es el tiempo

propio (proper time) definido por
Adr? = ds?

La derivada es
dv  dzt 0¥
dr  dr Oz*

Dado que 7 es un invariante, tenemos que los componentes

dxt
dr

forman el vector U (que estudiaremos en detalle mas adelante). Por lo tanto los componentes

ov
oxH
describen la uno-forma d¥. Para estar seguro, veamos si se transforman como la base de vectores. Notemos
ov 8\1165”_LV o
" ozv

Oxt — Oxv Ozr

17



Notemos que para la relatividad especial en la base estandar ahora podemos definir la uno-forma

d%{av}

0z0’

Para el caso general, ahora utilizaremos la notacion

ov
U pu=—
H= Ban
con lo cual obtenemos
at,, = o"y
Podemos ahora mostrar que
dz" = o

porque
dz"(é,) = 6",
Por lo tanto

df = f,, dz"

4.4. Subir y bajar indices

En particular la métrica se puede utilizar para construir uno-formas con

tal que

Notemos que los componentes de A son

—

A, =A(e,) =g(A é,) = A" g(é,,é,) = guA”
Definamos el inverso

glwgua — 604“

donde hemos asumido que el determinante es diferente a cero. Con esto podemos ver que

VH = gV, V# = gWV”

18



por lo tanto g se puede utilizar para bajar indices, osea convertir vectores en uno-formas, y el inverso con
componentes g se puede utilizar para construir vectores a partir de uno-formas. Notemos que esto aplica
solo cuando hay una sumatoria implicita.

Por eso que tiene sentido las definiciones anteriores que

d’%[av}

0x0’

y en general

# =5

Para el caso de la relatividad especial, con la métrica n, podemos ver que

0
T F I

como habiamos sugerido anteriormente.

Ahora podemos definir los tensores (%), como funciones lineales en sus argumentos que mapean M uno-
formas y N vectores a un numero real (nuevamente esto implica que es independiente del sistema de
referencia).

4.5. Bases para tensores

Ahora podemos encontrar una base @"” para todos los tensores (g) tal que
f = foh = fLof®o”
donde ® es el producto tensorial. Para dos vectores A y ﬁ, tenemos

f(A, B) = f,,0"(A%,) ® &"(B%ég) = f, A“B6" 8" 5 = fo3A®B?

La transformacion de los componentes de tensores entre sistemas de referencia es ahora estandar de definir.
Notemos que en un nuevo sistema de referencia tenemos

fw = f(én.8)
= fap @ ((L71),85) & (7)), )
= fap (L), (L7100, 0%
= fas( L)LY,
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Finalmente, hay un producto tensorial que es importante tomar en cuenta, y es el producto tensorial
antisim’etrico de dos formas

ANB=A@B-B®A

Requiere de dos vectores para producir un numero real.

4.6. Formulaciéon tensorial de la transformaciones de Lorenz

En general tenemos una medida de distancia dada por

ds* = dz" g, dz”

con los componentes dz* — (dx°,dx',dx?, dz?) del vector d¥. El producto escalar entre dos vectores es
entonces

(A5 =4 g5
Es importante notar que la convencién de Einstein de sumatoria implicita solo la definimos cuando el indice
repetido esta arriba y abajo respectivamente. Podemos definir la inversa como

5“1/ = guagau
Tenemos la transformacion afina

de* = L*, dx”
donde L*, depende en general de las coordenadas. Notemos que aqui hay una sumatoria de Einstein implicita
para v. Por lo tanto todo objeto que se transforma de esta manera se le denomina vector. Los componentes
de la 1-forma asociada es entonces

dz,, = gudz”

en la base estdndar. Si queremos que la definicién de distancia se mantenga invariante

dz ', de ¥ = LMo dz®g,, LY sda® = dx® (LF 49, L ) da”

por lo tanto necesitamos que las transformaciones de Lorenz satisfagan

L#a Guv LVB = Jap

que es equivalente a la definicién matricial que teniamos anteriormente. Notemos que la sumatoria es sobre
1y v. El inverso queda definido como

(L_l)’yu = g’Yﬁ LVB gl/u

con una sumatoria implicita en S y v, tal que

20



(gV,ULVBLqVﬁ) L, = (Lﬂa guuLVﬁ) gvﬁ = GJap gﬁ7 =07,

ya que ¢ es un tensor simétrico. Con estas definiciones reproducimos nuestros resultados anteriores que g"”
sube un indice y que g,, baja un indice. Esto funciona para tensores de cualquier orden.

Los componentes de la uno-forma de primeras derivadas se define como

0
B Oge
y por lo tanto los componentes del vector son
dr = g"d,
Por lo tanto la ecuacién de onda
d,d" =0

es también invariante en este formalismo. Antes de proseguir veamos porque las derivadas se definen al
contrario de una primera intuicién. Usando la ley de la cadena tenemos que las derivadas transforman como
0 ox¥ o0 , 0
Oxt  OJxt Oxv " oxv

Tratemos de invertir esta relacion. Si partimos de la relacion

d,=L" ch,,
podemos ahora construir la transformacion del vector
d* = g*d, = (§""L" ugup) d° = (L7")" 4d”

y por lo tanto

d" =L+, d"

Vimos arriba que un tensor se transforma como

- -1 ~1

fuu = (L )Ol'u, (L )By faIB
Organizando los componentes en (L~')* con la fila p y la columna v, vemos que esta precisamente corre-
sponde a una transformacién matricial de los componentes (cuando los arreglamos en la matriz f,, — f)

f= (L HTfL™Y

Hay que se cuidadoso, ya que tenemos la matriz inversa. Ahora si queremos mirar el tensor con los compo-
nentes
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P =g fapg™ >  F=glfg’

Velos que sus componentes se transforman como

Fo= g W)L g™

= g ' (g'L7g) f(g'Lllg) g
= L g—l f g—l LT

— LFL7

donde hemos usado que L™! =g ' LT g y g’ = g, ya que g es un tensor simétrico.

4.7. Caso particular: métrica de Minkowsky

En este caso la medida de distancia esta dada por

ds?® = (da:o)2 — (alaz:l)2 — (dx2)2 — (dx3)2 = dz" 1y, dx”

con los componentes dz* — (dz°, dx!, da?, dx?) del vector d en la base estdndar. El producto escalar entre
dos vectores es entonces

(1B =y, 5

con la definicién

1 0 0 0
o 0 -1 0 0
e =7 g 0 -1 0
00 0 -1

lo que define la métrica de Minkowsky. Es importante notar que la convencién de Einstein de sumatoria
implicita solo la definimos cuando el indice repetido esta arriba y abajo respectivamente. Para este caso
particular tenemos

5”1/ = 77#04770”/

Si asumimos que L*, no depende de las coordenadas, tenemos la transformacion afina que define globalmente
la transformacion de coordenadas

zt = L', 2" + a* — dx " = L*,dx”

Notemos que aqui hay una sumatoria de Einstein implicita para v. Por lo tanto todo objeto que se transforma
de esta manera se le denomina vector. Los componentes de la 1-forma asociada es entonces

dx,, = n.dz” — (dz°, —dr)

en la base estdandar. Si queremos que la definicién de distancia se mantenga invariante
dz "y, de ¥ = L* odz®n,, LY sda® = de® (L o0, L 5) dz”
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por lo tanto necesitamos que las transformaciones de Lorenz satisfagan

LFo M LY g = Magp

que es equivalente a la definicion matricial que tenfamos anteriormente. Notemos que la sumatoria es sobre
w1y v. El inverso queda definido como

(L), = L5 0™

con una sumatoria implicita en 5 y v, tal que

LM, (UWLVBUM) =4,
Con estas definiciones reproducimos nuestros resultados anteriores que n*” sube un indice y que 7,, baja

un indice. Esto funciona para tensores de cualquier orden.

En esta métrica con la base estandar ya vimos que los componentes de la uno forma de primeras derivadas

se define como
0
8M — <@, V)

y los componentes del vector asociado es entonces

0
1 3 - _‘7
0 <8x07 )

1 9
&La“ - (V2 - g@)

Antes de proseguir veamos porque las derivadas se definen al contrario de una primera intuicion. Usando
la ley de la cadena tenemos que las derivadas transforman como
o oo  _, 0
ozt Oxr oz Mozv

Tratemos de invertir esta relacion. Si partimos de la relacion

Por lo tanto la ecuacién de onda es

9, = L"),

podemos ahora construir la transformacion del vector

y por lo tanto

=1Lk,
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5. Dinamica
Definimos que los componentes de un 4-vector se transforman como

d7" = ", dz”

La posicion de una particula se transforma como un 4-vector y por lo tanto es un 4-vector. Es muy til
parametrizar las trayectorias en este espacio 4-D con un parametro 7 que es invariante

dr?* = datn,,dz” — dr? = dt? (1 — v2) = —
Y
Por lo tanto, 7 representa el tiempo medido en el sistema inercial en el que la particula estd momentanea-
mente en reposo (ct,0,0,0). Este pardmetro invariante se denomina “proper time”. Aqui suponemos que
existen un numero continuo de sistemas de referencia inerciales que se mueven momentaneamente con la
particula en reposo. Por ejemplo, la trayectoria se parametrizaria entonces como x*(7). Ya que el proper

time es invariante podemos definir un 4-vector de velocidad de esta trayectoria

m
Ut = % — (ye,vv)

Partamos por la siguiente observacién. Supongamos que tenemos un cuerpo que se mueve con velocidad v

en el sistema K. El siguiente vector
U = (ye,7v)

se transforma como 4-vector. En particular vemos que si calculamos

0" = L*,(v)U” = (c,0,0,0)

Adem3s

U U, = ¢

lo que implica que L transforma algo con velocidad v a algo con velocidad 0, en este sistema de referencia
K el cuerpo no se mueve. O sea que L(v) transforma al sistema en que el cuerpo estd momentdneamente
con v = 0, el sistema de referencia en reposo momentaneo con el cuerpo. Nuestra transformacion se define
entre sistemas de referencia inercial, por lo tanto suponemos que existe un nimero continuo de sistemas
de referencia inerciales que se mueven momentaneamente con la particula en reposo. Como vimos anteri-
ormente la norma de este vector es un invariante UYU, = ¢? y tiene el mismo valor en los dos sistemas de
referencia, como deberia ser.

5.1. Transformacién de fuerzas

En forma trivial podemos definir el 4-vector de momento como

P — (yme,ymv)
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Ya que la masa m es invariante. En el limite v — 0 tenemos
lim (yme, ymv) = (me, mv) + O(5%)
v—r

Es facil darse cuenta que el momento definido de las leyes de Newton mv, el cual se conserva en el sistema
K, puede que no se conserve en el sistema K. Necesitamos escribir las ecuaciones de Newton en forma
invariante siguiendo el postulado del principio de relatividad (las ecuaciones de Maxwell, la ecuacién de
onda, ya es invariante) con las siguientes reglas

= ]la ecuacion debe de ser invariante escrita en término de 4-vectores
= en el limite v — 0, debemos recobrar la ecuacién de Newton en su forma no relativista.

Una ecuacién de movimiento que tiene forma invariante, que los dos lados de la ecuacion se transforman de
la misma forma, se denominan ecuaciéon co-variante.

En el sistema K tenemos

dP*
dr

donde F es un 4-vector también. Esta definicién es razonable, ya que la parte espacial del 4-vector de
momento en el limite v.— 0 converge al momento no-relativista. Usamos la segunda regla para transformar
al sistema de referencia donde la particula estd instantaneamente en reposo. En este sistema tenemos

:‘FM

d P+ d d*z

= m —,C, —_—
dr dt  dt?
ya que la particula estd en reposo (instantaneamente) con F como la fuerza de Newton en su forma no

relativista. Siendo que los componentes de la fuerza F* se transforma como un 4-vector tenemos (usando
L(-v))

) = (0.8 = (0.F)

1oV F) 18- F)
F= . - o
F+1Z_70—(V-F)V F+—7-(B-F)8

donde 3 = v/c. Asi, la fuerza F = (F°, F', F2 F3) es la fuerza de Newton (0, F) con un “Boots”desde el
sistema de referencia momentaneamente en reposo con la particula.

Rapidamente nos damos cuenta de la dificultad de incluir campos electromagnéticos en esta descripcién, la
parte espacial para una particula seria

dmyv
dt

—¢E + ¢~ x B,
C

ya que
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o1
)

E x B
+ 3 +1+%c

(vo - E+4 v, 8 xB)v,

1
Yo— (Vo - E+ v, - 3 x B)
c

por lo tanto si queremos que las ecuaciones la fuerza de Lorentz sea invariante vamos a tener que transformar
también los campos.

5.2. La paradoja de los gemelos

Supongamos que tenemos dos gemelos. Mandamos a uno a la estrella mas cercana en un cohete que acelera
la mitad del camino con a = g y desacelera la segunda mitad del camino con a = —g. Lo mismo sucede de
vuelta de la estrella. ;Que edad tienen los gemelos al encontrarse?

En el sistema K las ecuaciones de movimiento son

N R )
N

Podemos normalizar el tiempo 7 — 7g/c, las distancias © — xc?/g y las velocidades v — 3 = v/c. La
solucion general es

z(r) = x(0)+ [v(0) (cosh(r) — 1) + B(0) sinh(7)]
t(r) = t(0)+ [B(0) (cosh(T) — 1) + () sinh(7)]

£(0) cosh(7) + (0) sinh(7)
~(0) cosh 7 4+ 5(0) sinh(7)

v(1) = 7(0)cosh(r) + B(0) sinh(r)

En el primer cuarto de la trayectoria, 7 = 0 — 7 tenemos

2(0)=0  t0)=0 ~A0)=1  B0)=0

y tenemos que encontrar la edad de gemelo viajero 71 donde z(71) = L es la mitad de la distancia a la
estrella. Obtenemos

" =1+L++L2+1L)

Con esta expresion podemos evaluar la edad del gemelo de la tierra

t(T1) = L(2 + L)

26



Notemos que el limite clasico es t &~ v/2L para L pequeno. Las otras variables son

5(@—% 7(71)—1+L—m

AL
20r

15r
101 / [

0.5 /

I I I I Lo I I I I Lo
2 4 6 8 10 0 2 4 6 8 10

Figura 1: (a) La edad como funcion de la distancia recorrida L por una viajero clasico (punteada), el gemelo
de la tierra (azul) y el gemelo viajero (rojo). (b) La velocidad de viajero con respecto a la tierra.

Pregunta: Cuanta masa ( escriba la ecuacién en el sistema del centro de momentum) se consumiria si
nuestros motores convierten masa en energia con 100 % de eficiencia. Esta energia se utiliza para impulsar
la nave. Compare con lo que se consumiria si el sistema no fuera relativistico.

5.3. Dinamica de una particula

Si tomamos la transformacion

V(8- F)
F = v—1 (1)
B (8 )P
vemos que para el caso de una fuerza en la direccién de la velocidad tenemos (por ejemplo un problema en
una dimensién) la parte espacial nos da

dmyv
dr

y por lo tanto tiene sentido que la ecuacién de movimiento para una particula bajo la fuerza de Lorenz sea
en el limite relativista

m

dm~yv
dt

:qE—i—qsz.
c
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Este resultado no depende de si v es paralelo a F, ya que aplica para el caso de una transformacion general,

ya que precisamente el segundo termino v - (v x B) = 0.

En el caso de una fuerza que se deriva de un potencial, podemos escribir

dm~yv

=-Vo
dt ’

(2)

aun cuando técnicamente, esto deberia funcionar solo para problemas en una dimensién (fuerzas donde v
es paralelo a F'). La expresién correcta para re-escribir en forma relativista una fuerza clasica

no-relativista deberia ser Eq.1.

Desde un punto de vista Lagrangiano vemos que podemos recuperar la ecuacién para una particula libre a

través de las ecuaciones de Euler-Lagrange si usamos

De hecho si aceptamos el Lagrangiano

y aplicando las ecuaciones de Euler-Lagrange, obtenemos

d
hd — VO
o (myv)

aun cuando no estemos de acuerdo que esta expresion es correcta.

De esta formulacién es trivial encontrar la formulaciéon canénica y el Hamiltoniano. Hay tres cosas impor-

tantes de considerar:

= Primero, la energia cinética no aparece en el Lagrangiano. Es importante recordar que necesitamos un
escalar para poder transformar el Lagrangiano a un sistema de variables generalizadas donde podemos

aplicar las ecuaciones de Euler-Lagrange.

= Segundo, la formulacién es estrictamente no covariante ya que el tiempo aparece con un caracter
especial. La idea es formular este sistema desde un punto de vista covariante en el que el tiempo y el

espacio adquieren la misma relevancia.

= Tercero, este Lagrangiano no tiene ninguna propiedad de transformacion especifica con respecto a las
transformaciones de Lorentz. El principio de Hamilton debe de ser, en forma fundamental, covariante
lo que implica que la integral de acciéon debe de ser un escalar invariante. Esto ademds implica que las
derivadas deben de ser con respecto a un parametro invariante. En nuestro caso usaremos 7 “proper

time”.

1
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Para el caso de una particula libre, podemos escribir

2
L=—mc/1— <X>
C

Notemos que si re-escribimos la accién en termino de 7

/ Ldt — / (vL)dr

1
(yL) = —mc? — (vL) — §m:i:“:tu

vemos que

Por lo tanto si

1
L= smits,

Pt = mit

podemos construir el Hamiltoniano para una particula libre como

_ Py

H = 2ok

2m

Para el caso de un potencial demos construir un Lagrangiano que de la ecuacién de movimiento
dpP*

dr

para el caso de la fuerza de Lorenz, una forma relativamente trivial de escribir el Lagrangiano en forma
covariante es usando formas covariantes, productos escalares de 4-vectores.

)

u

1
L = Smiti, + %x’“A#

04,

d . q q .
L (i, + 44, = Lo
— dT(mx +C CSC Gy

Al = (D, A)

El resultado de este anélisis es la ecuaciéon de movimiento en un campo electromagnético. De estas ecuaciones
podemos derivar el momento candnico y su relacion a la energia cinética

oL 4 2 q 2 2 4
pﬂ_@_PH_‘_EAN — T_<pﬂ_EAU> +m-c
y por lo tanto podemos construir
_ 1 e qA# q q
’H—émx ZUM—FE z, <pu__Au) <pu__Au>
—H = & c

C
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con

bt an
dr — dp*
ap - dH
dr dxt

Este es el caso del Lagrangiano para una particula. Cuando ponemos varias que se afectan entre si, se vuelve
un problema complicado ya que entonces es dificil definir un “proper time”r para todas las particulas. Este
problema de definir una formulacion Lagrangiana, principio de Hamilton, para varias particulas resulta muy
complicado. Hay forma de manejar esto desde el punto de vista de los campos en una descripcion cuantica
de la dindmica.

5.4. Dinamica de varias particulas

Hay un gran problema al describir mas de una particula en este formalismo ya que no queda claro cual es
el tiempo propio a usar. Al usar varias particulas el tiempo propio no es un parametro apropiado para la
descripcion Lagrangiana. Este problema se resuelve en la mecanica cuantica al pasar a una teoria de campo
donde el pardmetro de los campos es el dz?, el cual si es un invariante de la dindmica.

5/ L(z", i")dr — 6/L(\If,8ullf,...)dx4

Pensemos en el Hamiltoniano

H = \/(P— (P — A),, +m?

que ecuaciones da.

5.5. Energia y momento

Si tomamos la transformacién

1
—(v-F
v, (v F)
F = )
1
2 —(v-F)v
14+vyc?
vemos que para todo caso el componente temporal de esta ecuacién es
dm~yc?
mIC yv - F
dr
lo cual ya sugiere que € = m~yc? tiene algo que ver con la energfa de la particula. Tomemos la ecuacién
dP* _
dr
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con la transformacion de F a F. Vemos que para pequenas velocidades tenemos

d*x

— ~ F
dt?

de

= ~ %-F
at

Hemos usado nuevamente el continuo de sistemas inerciales para expresar v = dx/dt. En analogia con el
caso Newtoniano, vemos que podemos asociar el componente P° con la energia de una particula e,

E:fymc2 — Pt — <E,’yp>
c
PrP, =m*? — € =p?’c®+ (mc?)?

ya que la norma de un 4-vector es invariante. Si expandimos esta forma de la energia para pequenas

velocidades tenemos

1
€ = ymc® ~ mc* + §mv2 + O(v*)

Por lo tanto definimos mc? como la energia de un cuerpo en reposo. Hay dos temas fundamentales en esto:

= Otro tema interesante es que en el limite m — 0 las particulas también transportan momentum y
energia P¥ — (pc, p), se mueven con velocidad v = ¢, pero no tienen un sistema de referencia inercial
momentaneamente en reposo con ellas.

= Es muy interesante que la masa y la energia son intercambiables. En una colisién completamente
inelastica dos particulas con energia inicial € quedan en reposo después de chocar, lo que implica que
la energia cinética fue convertida en un aumento de la masa inercial. La energia que debemos gastar
en devolverles la energia cinética inicial a las particulas es

M =2m+AM

o — M2 } — AE =2(T —mc*) = AMJ?

Esta es la famosa relacion de Einstein.

5.6. Colisiones

En una colision donde hay creacion de otras particulas tenemos que mantenerla totalidad de la energia,
cinética e inercial, en cuenta. En una colisién sabemos que el momento y la energia se conservan, por lo
tanto el 4-vector también se conserva. El centro de momento (COM ya que masa no es algo que se conserva
en relatividad) se define como el sistema de referencia donde la suma de todos los momentos (parte espacial
de (P, P%, P?)) es cero. El laboratorio K y el COM K se conectan con una transformacién de Lorentz.
Para resolver problemas de colisiones, tenemos dos alternativas.

1. Usar escalares. como P*P,, que tienen el mismo valor en todos los sistemas de referencia inerciales.

2. Resolver el problema en el COM y transformar los 4-vectores al laboratorio K usando un “Boost”.
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Usaremos el primer método. Supongamos que tenemos una particula de masa m; que choca con una particu-
la de masa my en reposo. Relacionemos los dngulos de escatering (61, 65) en el laboratorio con el dngulo de

escatering en el COM (¢).

Para calcular el &ngulo de escatering tenemos que conservar el momento y la energia, esto implica conservar el
4-vector de momento en todos los sistemas de referencia. Es conveniente multiplicar el 4-vector de momento
por ¢ y calcular todas las variables en término de energia. Convertir todas las masas a energia, mc? y
las velocidades de los momentos a 3, asi la velocidad de la luz desaparece de nuestro problema. Usaremos
maytsculas para describir los componentes de 4 vectores P = (P°, P!, P2, P3) y mintisculas para describir los
componentes de 3 vectores p = (P!, P?, P3). Ahora, P representa un vector de 4-momento en el laboratorio
y P el mismo vector en el COM. Por lo tanto tenemos los siguientes invariantes

1 = (Pio+Py,)? = (Pry+Pyy)’
= (Pio+ Py,)* = (Pyy+ Pyy)?

s = (Pl,o - Pl,f) = (P2,o - P2,f)2
= (Pio—Piy)’ = (Poo— Poy)

Estos invariantes relacionan P y P en los dos sistemas de referencia y también la conservaciéon del 4-
momento.

En el laboratorio

P,,= (\/ mi +p§,po> — Piy= <\/ m3 +pf,p1>
P2,0 - <m2707070) — P27f - <\/ m% +pgap2>

La conservacién de energia en este sistema de referencia es

m2+\/m%+p?,:\/m%+p%+\/m§+p%

En el COM
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Pl,o: (\/ m%"’ﬁgﬁa) — pl,f: <\/m%+ﬁ§7ﬁf>
pQ,o: <\/m%+ﬁga_ﬁo> — pZ,f: (\/m%—i_p?”)_ﬁf)
La conservacién de energia en este sistema de referencia es

\/m%+15§+ \/m§+233 = \/mi + D} + \/m3 + P}

Notemos que podemos transformar entre estos dos sistemas de referencia. Asumamos que p, = po&i.
Debemos encontrar la transformacion de Lorenz

Pl + PQ == L(Uﬁ?l)(Pl + Pg)

que fuerza

ﬁl +ﬁ2 = {07070}

con lo cual podemos resolver

v

N Po
me + \/m% +p(2)

Ahora queremos calcular los factores r y s de la colisién, para lo cual notamos que

(P +Py)? = PP+ Py +2P!'Py,, = m} + m3 + 26162 — 2P; - P2

Por lo tanto tenemos

ro= mi—+mi+2ma\/m? + p?

= m?+m3+ 2\/m% +p%\/m§ + p3 — 2p1pe cos(0y + 6-)

s = 2m? —2y/m}+ p2\/m?} + p? + 2p,p; cos(6;)

= 2m2 — 2mo/m3 + p3

ro= mi+mi+2y/mi+piy/mi+p; + 20,

- m%+m§+2\/m§+p}\/m§+p§+2p§
s = 2mi—2y/mi+ p2\/m}+ p% + 2pepy cos(6y)
= 2m3 — 2y/m3 + p2\/m3 + p% + 2Popy cos(62)

Asumamos que m; = mo = m, y normalicemos todos los momentos a m. Notemos que en el CEM, tenemos
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T 2
po—pf—m\/—1+\/1+po
Por la misma razén que en mecénica clasica no se puede resolver completamente una colisién entre particulas
puntuales sin informacién extra sobre la interaccion.
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6. Electromagnetismo

La parte espacial de la parte de Lorentz es

d(yv) v
d(~yc e
m’y% = v-E-v

la segunda relacion se puede obtener multiplicando la primera por v. La parte izquierda de esta relacion se
puede escribir con 4-vector y por lo tanto es invariante en todos los sistemas de referencia. La parte de la
derecha es mas dificil como vimos arriba. Esto implica que los campos también deben transformarse en una
transformacion de coordenadas. Si definimos el tensor electromagnético,

0 -E, —-E, —E.
E, 0 -B. B,
E, B. 0 -B,
E. =B, B, 0

Y —

podemos definir la ecuacion de movimiento en forma covariante como

dpP* q

dr  mec
Es importante notar que es necesario definir los campos electromagnéticos como un tensor, no como un
vector, ya que estos también se transforman en una transformacion de Lorentz. Note que la tltima expresion
es una contraccion y por lo tanto es invariante en todos los sistemas inerciales. Esto implica que los campos
eléctricos y magnéticos se transforman entre si (ver Jackson 197/). Notemos que este tensor lo podemos
escribir en forma invariante como

Frp,

- -~ 1 - -
F=F,, wQuw= 3 pr@WH A wv

ya que es antisimetrico. Los componentes de del tensor se transforman como vimos anteriormente

F=LFL”

Notemos que esto tiene sentido ya que en forma matricial

dU
—:iFnU
dr me

y dado que U =L U y LT n L = 1, vemos que

dU L

oL Lr"gLu= L FyU.

dr  mc mc
Esto solo tiene sentido porque L es constante. Con esta transformaciéon podemos resolver problemas com-
plejos, transformando a un sistema de referencia donde la formulacion resulte facil, por ejemplo, al sistema
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de referencia donde la particula estd en reposo. Una transformacién general a un sistema de referencia K
moviéndose con velocidad v con respecto al sistema K, transforma los campos como

— . _ /}/2 )
E = yE+p8xB) 7tlﬁ(ﬂ E)
— i _ _ ’Y ]
B = 4(B-pBxE) pon lﬁ(ﬁ B)

Esta transformacién transforma solo los campos, ademas es necesario transformar la dependencia explicita
de las variables entre los dos sistemas de coordenadas. O sea

T = L(v,)x — x=L"'Z2=L(-v,)x

Los campos son entonces

E(Z) = 7(EX+8, x Bx]) - —°—3,(8, - E[x))

Yo+ 1
1= _ —1= ’73 o -1
= %Ex=L"Z+8,xBjx=L :c})—70+150(50.E[X_L Z))
5 Ta
B(@) — 7(BIX + 4, x BX) ~ - 8,(, BIx)
o

— (Blx =L '&|+ 8, x Elx = L '&]) - —2—4,(4, - Blx = L ')

Yo+ 1

La transformacion inversa se obtiene de v — —v, y para pequenas velocidades tenemos

E~(E+3xB)

B~ (B-p8xE)

Ejemplo: Calcular los campos producidos por una particula en movimiento con velocidad uniforme v, en
la direccién &.

En el sistema en reposo de la particula con espacio-tiempo (ct, T, ¥, Z) tenemos
E——i@‘z} B=0
- 773 ) ?]; -

Mientras que en el sistema del laboratorio con espacio tiempo (ct, z, y, z) la particula se mueve con velocidad
v = v,Z, por lo tanto

CZ ct Yo _5070 0 0 ct Ct70 - 507037
X i R i . —Bo’}/o Yo 0 0 € o _Ct5070 + YoZ
g | = Lwer = 0 0 10 y |~ y

z z 0 0 01 z Z
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Ahora,

P =4 P+ =7 —vt) +y+ 2

con los campos transformados como

Y2

BB
T

ngEx = {Exa /yoE_’ya IVOEZ}
B = 70/60:% X E = 70/80{07 _Ez> E:c}

por lo tanto, los campos en término de las variables del laboratorio estan dados por

q%o

E = {Ee,0by, 10k:} = (ve(w — vot)* + > + 2%)

3/2 {l‘ - Uota Y, Z}

P 9ol
B =10010, o B} = o iy w0 2

Los campos se puede escribir en forma mas estandard como

q(1-53) R
R2(1 — 32sin? 0)3/2
B = BxE

E =

donde R =r —r(t), y cosf = B . R. Vemos que el campo eléctrico es en la direccion radial instantanea,
como si no hubiera retardo.

Ejemplo: Supongamos que tenemos un campo eléctrico E que es perpendicular a un campo magnético B,
ambos constantes en el tiempo y espacio. Que condiciones deben satisfacer estos campos para producir una
ganancia ilimitada de energia en las particulas cargadas?

Primero encontraremos un sistema de referencia donde los campos son paralelos. Existe una multitud de
sistemas en los cuales E y B son paralelos. Utilizaremos el sistema que simplifica la transformacion de los
campos. Buscaremos una solucién

ExB=0
con

_ 72
E = 7(E+8xB)- B(B-E)

v+1
B = B-38xE)-— -B
V(BB xE) - —_p(8-B)
Dado que tenemos la restriccion, E - B = 0, y también
E-B=E-B
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podemos ver que E=00 B = 0.
Esta claro que podemos simplificar si asumimos que

B=aExB — B-E=08-B=0,

con lo cual

=

= v(E+8xB) = ~v(E(1-aB? +aE-B)B)
= y(B-BxE) = v(B(1l—-aFE? +a(E-B)E)

Para el caso particular de E - B = 0, tenemos que

ool

E = y(E+8xB) = 7E(1—aB?
= vy(B-BxE) = 7B(l —aFE?

ool

y por lo tanto

0=(E+B8xB)x (B-B8xE)=(ExB)[l1-aB’|[l-aF?]

con lo cual tenemos dos soluciones

1 1
a1 = ﬁ Qg = ﬁ .
Por lo tanto si B > F, dado que § < 1, tenemos que
b,
] B = EeJ_
o = 2 —
B o 1B
VB2 _ L2
con
E =0
B = BVB?-E2
Por lo tanto no hay ganancia de energia.
Mientras que si £ > B tenemos
B,
1 B = EeL
o = —2 —
E o B
VE? — B2

con
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E = EVE? - B2

we]]
Il
o

Por lo tanto tenemos ganancia de energia.

Otra posibilidad, es mirar las ecuaciones de movimiento. Si normalizamos el tiempo propio con la girofre-
cuencia ) = eB/mc y los campos con a = E/B, podemos escribir

d Uo 0 a 0 Uo
d_ Ul = (8] 0 1 Ul
T U2 0 —1 0 U2

Ahora podemos buscar soluciones del tipo U,Exp[At], con lo cual tenemos que calcular los valores propios
de la matriz A de arriba. La ecuacién a resolver es

AN = (02— 1)] =0
con lo cual vemos que

)\OIO )\i::I:\/oﬂ—l

Si a > 1, lo que implica que E > B, tenemos soluciones reales, y por lo tanto la energia puede aumentar
ilimitadamente. En el caso contrario, no es asi. Los vectores propios son

-1 o’
Vo = 0 Vi = :F\/m

Q 1

La solucion completa

3
U(r) = Z a, Ve =V A a

se puede construir con estos vectores y valores propios, donde construimos la matriz V.= [V, V, , V_]| la
lista de coeficientes a = [ag, a4, a_], y la matriz A diagonal con lo valores propios. Usando las condiciones
iniciales

U(0)=V a

Vemos que

a=V1U(0)

y por lo tanto

U(1) =V e V7 U(0)
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Esto es lo mismo que obtendriamos exponenciando la matriz A,

U(r) = eA7U(0)

Efecto Doppler: Una onda plana electromagnética de frecuencia w, viaja en la direccién X a través del
vacio en el sistema K. Los campos son

E(X,t) = Eycos(kz — ot)y B(X,t) = Bycos(kz — wt)z

Para satisfacer las ecuaciones de Maxwell en el vacio necesitamos que k = w/cy By = FEy. El sistema K
se mueve a una velocidad v& con respecto a nuestro sistema K. La transformacion de los campos es por lo
tanto

E = Eyy(1+ ) cos(kz — wt)y
B = Eyy(1+ p)cos(kx —wt)z

ct ct v =By 0 0 ct eyt — Byx
A . x| | =By ~ 00 x | | —cByt+x
/) Bzl I el R R S N I y

z z 0 0 01 z z

y por lo tanto

En este caso tememos

wzy(l—ﬁ)@z“%@

que representa el efecto Doppler. Por lo tanto si un emisor se aleja de nosotros este implica que la frecuencia
disminuye y vemos un corrimiento al rojo mientras que si se acerca vemos un corrimiento al azul. Es
interesante notar que la mayoria de las estrellas se alejan de nuestro sistema solar, lo cual es un argumento
para la teoria del Big-Bang. Ademas

_ 1-8 -
k=~(1—8)k= k
v (1—5) 175
que es equivalente a
1+ 5 .
A=, —2 X
1-p



Por lo tanto la velocidad de la luz queda invariante

W w
C= — = — = ¢C
k k
Notemos que en limite 5 — 0 la
A — 00 w—0
En termino de la intensidad de la radiacion
S-x 1+p8
S-x 1-8

esta diverge cuando § — oo.

Problema Derivar el efecto Doppler cuando el dngulo entre k- B = [Bcosh.

w="y(1—pcosh) w

Que implicancias tiene el angulo 07

6.1. Descripcién de las ecuaciones de Maxwell

Definamos los 4-vectores

JY = (ep, J) AY — (D, A)

La continuidad se puede expresar como

0 J* =0

El 4-Tensor de segundo rango se puede reescribir como
FoP =92 AP — 9P A
o en forma tensorial como
i dat — L Tl A dr
F =F,di"®ds" = §F;wdx ANdzx

mostrando explicitamente la antisimetria del tensor. Con esta descripcién, podemos escribir las ecuaciones
de Maxwell en forma covariante

D Fo8 = 2T 8
C

Supongamos que utilizamos el Gauge de Lorentz

41



0, A =0

entonces vemos que esta ecuacion es la ecuacién de onda

0, 0% Al = 4—7TJ ’
c
Utilicemos la notacion

0A 0*A 0A
A, 5= e P P i
B DB P 921028 P Db

Podemos tratar de definir el Lagrangiano de los campos como
0 0L oL

=0

A H -
/ L(A’u,, Ay,ua x )dl’ — afﬂa aAB,a aAﬁ

donde es factible definir en tensor de stress-energia

dL 0L n oL A n oL
der 0As 0Aa, G Ogm
d oL oL
——A,,— LY, | =——
dxv [8Aa7,, o K OxH
y si L no depende de z*, entonces definimos
14 aL v 14
T,u :aA—MAa”u_L(S'u — TN ,VZO

En el caso de electromagnetismo, en su formulacion de la relatividad especial, podemos escribir la forma
invariante, integrado sobre da?,

1 1 1 1
= af _ o —9f = _Z
L 67 ok’ CJaA — 47T(9 Fgo cJa

que dan las ecuaciones de arriba.

Notemos que las ecuaciones homogéneas de Maxwell se puede expresar como

OYFPY L 9P 4 Y FB =

Para el caso de materiales, el tensor F'(E, B) — G(D, H). Es muy instructivo mostrar que las ecuaciones
de Maxwell se puede expresar en formulaciéon geométrica como

VF =0 V~F—4§J
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La ley de Ohm en el sistema en reposo con el fluido se puede escribir como

J=0cF

La cual podemos escribir en forma covariante como

12
Tt~ (JUUH = %F’“’Uy
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7. La métrica de Riemann g

Notemos que todo el analisis que hemos realizado hasta ahora funciona perfectamente para un espacio
donde la métrica g depende del espacio-tiempo. La tnica diferencia esta en que hemos usado un sistema de
coordenadas que tienen una base constante en el espacio-tiempo, y por lo tanto

d |
da}iej =0

Ahora veremos que pasa cuando este no es el caso.

7.1. Derivadas covariantes

Notemos que es muy importante darse cuenta que las leyes de la fisica estan escritas en termino de derivadas
de campos, por lo tanto se hace necesario escribirlas en una forma que sea invariante en todos los sistemas
de coordenadas. Esto implica escribir las leyes fisicas en términos de tensores y sus derivadas.

Por ejemplo, un vector cualquiera en un sistema coordenado tiene componentes V — {VO V1 V2 V3} vy
su derivada es

A A vy 0e, VY
AP P
’ Oxt  OxH Oxt oxt  OJxt

que define los simbolos de Chistoffel y la derivada covariante. La derivada covariante es la forma de

incluir la curvatura en las leyes fisicas cuando estas estan descritas por vectores. Notemos que la tltima

expresion tiene sentido porque los é; forman una base. Con un poco de trabajo es posible demostrar:

i _ im oyt 0%y’ L O9mj | Ogmr  Ogjr
k=9 Z L?xm 81"“83:1} N 59 (835’“ + oxi  Oxm

Note que los simbolos de Chistoffel

A~

é,+V'Ir*,, éa

0é,
oxH

se calculan de una vez para una métrica dada.

— @ 5
=1, éq

Problema: construya los simbolos de Christoffel para bases polares (esto es aun un espacio plano):

Vamos a representar una trayectoria en el sistema cartesiano de coordenadas polares. Definimos

T =r7rcosf
y=rsind

lo que define la transformacién

cosf —rsinf dx dr
A:(sme rcos9> (dy):A(de)
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Definamos el inverso

cos sin @
dr dz
= 1 1 =
{2 (——sin9 —cos@) (d@) Q(dy
r r
con AQQ =1.

Dada una transformacion
dx = Adx
podemos relacionar
ds® = dx"gdx = dx [A” g A]dx

y por lo tanto en esta base polar tenemos la métrica

_ 1 0
g — AT g A = ( O T'Q )
Las bases se transforman como

o ~

= v
e, =N ,é,
diferentes a los vectores, podemos encontrar

~

é, = A,é,+AN*éy = cosOi+sinby

éog = ANoéy+A%é; = —rsinfi+rcosfi

Notemos que la nueva métrica se puede calcular a partir de

_ A A ~T ~ 1 0
G = &(€p, e) = €, 8¢€ — 0 r2

Las derivas de las bases se pueden evaluar como

oé = 0

(%ér = ég/?”
arég = ég/T‘
agég = —Tér

Un vector general en este sistema de coordenadas es (V", V), y su derivada es
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ov

o = e
_ 9 (Vré, + V%)
- a/r (a 7]
ovr ov? 0é 0ég
= — &+ —ég+ V' Vi =
8r6+87’66+ 8r+ or
y de la misma manera para la derivada 6. Los simbolos de Chistoffel son:
Frrr =0 Fe'r'r =0
1
[y =0 F0r9 = -
r
1
FTGT =0 FQQT = -
r
["gp = —r [ =0

También, podemos construir bases para las uno-formas. En la base estandar tenemos

dz = {1,0} dy = {0,1}
mientras que los componentes de las uno-formas se transforman como

Pu = Qy,upu

Por lo tanto en la base polar podemos escribir

dr = QYdz + Q0% dy = cosfdz + sin 0dy

~ ~ ~ 1 ~ 1 =
df = Qlodr + O%dy = ——sinfdx + = cosOdy
r r
Dado que la uno-forma tiene componentes
0
or
d, —
a0
podemos calcular el vector
0
or
=g d, —
10
r2 00

donde hemos usado el inverso de g.
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Problema: Demostrar que los simbolos de Chistoffel para el caso polar se pueden derivar de la metrica
con la expresion escrita arriba.

Notemos que las derivadas covariantes se pueden escribir como

Viu=gm =\ om

. ov oV
— —( +varvw) é,

por lo tanto podemos definir

Vi =V + Vo Iy,

con lo cual encontramos

— v ~
Viu=Viié

lo cual es un resultado importantisimo, ya que dice que en el nuevo sistema de referencia, donde las bases
no son constantes, esta expresion permite tratar los componentes como si fueran invariantes.

Nota: uno de los postulados de la relatividad general es que siempre existe una base, al menos localmente,
donde la métrica es constante e igual a la de Minkowsky. Esto implica que en esta base K, tenemos

v _ /v
V ;M_V S

Vemos inmediatamente como se puede transformar una ley fisica descrita en el sistema de Minkowsky local,
para que funcione en el sistema de coordenadas general, con o sin curvatura.

Notemos que podemos definir el tensor (}), denominado la derivada covariante VV del vector \7, que mapea
el vector é, en el vector ‘_/’;;w y tiene componentes
—\V —\ VY v
(vv) = (VaV) =V,
Notemos que en una base tipo Minkowsky (aveces denominada cartesiana donde la métrica es constante),

tenemos que los componentes de este tensor son V* . Asimismo, para el caso de un escalar, vemos que la
definicion de la derivada covariante es

Vo = dd

ya que un escalar no depende de la base.
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Notemos que podemos definir la divergencia haciendo una contraccién, la cual es independiente del sistema
de coordenadas

i
V;N

Por ejemplo, en coordenadas polares tenemos la divergencia

V“'u = Vryr +V9a9 +Vr [FT’V‘T‘ + Fere} + VH [FTGT + FHGG}

1
= Vrar +V079 +Vr |:;:|

19(rvr)y  oV?

v or o9

Esta es la formula que estamos acostumbrado, excepto por el hecho que en nuestra definicién el vector de
la base ¢ no es unitario en la forma que estamos acostumbrado. En libros de calculo, es costumbre forzar
a que las bases sean unitarias, con lo cual la divergencia quedaria

1o(rvr)y 10V?
VoV e T

Nosotros mantendremos la notacion que hemos estado usando aqui.

Ahora queremos construir el Laplaciano de un escalar. Usando d® = g=! d®, podemos escribir en forma
invariante, usando la derivada covariante,

o= (o), 15 () 552

*e 9P
2 —_— —,——— —
Ve = 0x? * 0y?

la cual es igual a

como deberia ser.

Que pasa con las derivadas de uno-formas. Calculemos la derivada del escalar ® = p,V*#,

Op, oVH
Vet =205 = - GVi+po g
0
= aig VE+p VFg —pVETH 6
dp N
<—8x’; — Pal’ uﬁ) V4 (puV"55)

por lo tanto dada la ley de la cadena para las derivadas, podemos definir (Vsp)a = (VP)as = Pays, donde

48



Po;g = Pa,g — pul—waﬁ

y asi tenemos

vﬁ(pava) = pa;/jva + pavaﬂ

)

De la misma forma podemos demostrar que
VBTW = Tuv,ﬂ - Twrauﬁ - TWFQVB
VT = T%” + TTH 5+ TH TV 4
VBT“,, = T'u,,’g + T“,,F“ag — TMQFO‘VB

con lo cual podemos escribir las ecuacion de Maxwell en cualquier base, partiendo de su representacion en
el sistema local de Minkowsky, como

4 o am
QM =g V= L

Cc C

donde J” y F™" representan los componentes del vector de corriente y el tensor electromagnético en el
sistema descrito por la métrica g. Notemos que escribir es ahora simple en el nuevo sistema J” y F*".

Problema: Calcular las ecuaciones de Maxwell en Polares.

Problema: Calcular las ecuaciones de Maxwell en Esfericas y Cilindricas.

7.2. Posibles axiomas para la fisica en el espacio curvo
1. El espacio-tiempo es un sistema multiple de 4-D con una métrica.
2. La métrica es medible por rods y relojes.

3. La métrica se puede poner en la forma de Lorentz n localmente por una opcioén particular de coorde-
nadas. Esto significa que el espacio es localmente plano y que la ecuacién de movimiento puede ser
escrito como antes en notacién de tensores, pero con la posibilidad de una métrica curva.

4. Particulas en caida libre siguen (time-like) geodésicas.

5. Cualquier ley fisica que se pueda expresar en notacion tensorial en relatividad especial tiene exac-
tamente la misma forma en un sistema inercial local. En general este sistema de referencia no es
global. Para describir la fisica en forma global, tenemos que cambiar solamente todas las derivadas en
derivadas covariantes para hacer las ecuaciones del movimiento validas en todos los sistemas coorde-
nados
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Por ejemplo, podemos notar que todos los términos se transforman en forma apropiada bajo una transfor-
macién de coordenadas, lo que implica que seria bueno mapear las ecuaciones de Newton en estos términos.
Partimos en un sistema Cartesiano y una ley de fuerza como funcién de x y derivadas con respecto a x.
Luego transformamos a un sistema curvo para escribir la ley general. La misma idea aplica a las ecuaciones
de Maxwell, pero reformuladas en termino de derivadas covariantes.

Finalmente, ponemos como referencia la ecuacion dindmica para la métrica

G’ + \g*? = 87T°P
con

1
Gaﬁ — Rﬂa,uﬁ . 5gocBR

como el tensor de Einstein. Ademés

1. X es la constante cosmolégica que incluye energias en el background.
2. T = (P + p) UUP + pg®# + Tg]@ (para un fluido perfecto) corresponde al tensor energia-stress
3. R =1, — 10 + 19,178, — '*;, 173, es el tensor de curvatura Riemanniana

4. R=g¢g"R,, = g™ P Roup0 es el escalar de Ricci

8. Formulacién Lagrangiana

-particulas
-campos

9. Termodinamica y fluidos

-fluidos perfectos
-termodinamica
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