Capitulo 5:
Radiacion y Antenas

En este capitulo discutiremos soluciones de las ecuaciones de Maxwell.
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1. Ecuacion de onda

Si utilizamos el Gauge de Lorenz, 0, A" = 0, tenemos que resolver 4 ecuaciones de onda

4
DAY = —
c
Separando los potenciales, podemos escribir
1 0%
- =—— = -4
4 2 ot P
1 0’°A 47
V2A - = = ——1J
2 ot c

1.1. Ecuacion de onda escalar en 1D para el espacio infinito

Si trabajamos este problema en coordenadas cartesianas, vemos que en realidad necesitamos resolver el
problema de onda escalar. Si expandimos el Laplaciano vectorial VZA en otro sistema de coordenadas, el
problema se torna un poco mas dificil y es un problema de ecuacién de onda vectorial que veremos mas
adelante.

Por lo tanto, comencemos con el problema de la ecuacién de ondas escalar en una dimensiéon. Y en particular
veamos el caso sin fuente

o 1%
o2 2 o2
U(z,0) = f(z) Ui(z,0) = g(z)

Que tiene solucién en el espacio infinito de la forma

s =3 s+ o [ oy

20 r—ct

Que implica que se generan dos ondas que se propagan hacia la derecha y hacia la izquierda.

1.2. Funcién de Green en coordenadas cartesianas para el espacio infinito

Para el problema general en el que estamos interesados, necesitamos resolver la ecuacién de ondas en varias
dimensiones con una fuente arbitraria

2y L0V _
2ap A f(z, 1)

Necesitamos construir la funcion de Green para la ecuacion de onda escalar en la base natural



1 2
V2G — g%G = —4nd® (x — &)5(t — 1)

tal que
Y(x,t) = /G(m,t,i,f)f(i,ﬂdaz?’dt

1.2.1. Solucion en el espacio x — w

Usamos el método de la transformada de Fourier para resolver esta ecuacién, donde

flz,t) = \/%/_ flz,w)e ™ dw

flr,w) = \/%/_ f(z, t)e™tdt

con las relaciones de completitud

1 B 1 oo
ot —t) = o /_ o e 0w = — [ e dw

2r J_o

En el caso de los problemas con condiciones iniciales, puede resultar mas 1util usar una transformacion de
Laplace.

Para el caso de la funciéon de Green podemos escribir

1 R :
G(x,t,xz,t) = —/ G(x,w,Z,t)e ™ dw
( =" . ( )

con lo que obtenemos

1 * _ _ A
Nir / (V2G + k2G) e ™dw = —4m6®) (x — 2)6(t — 1)

donde k, = w/c. Ahora aplicamos el proyector

[e.9]

vl

elwtdt
lo que nos permite encontrar

_ _ 1 -
V3G 4 k2G = ———4m6® (x — &)e' !
? V2T

Definamos

G(x,w, &, 1) = V2rG(x, T)e™"



Esta nueva funciéon satisface

ezk|x—m| —ik|x—E|

V3G + kG = —4m6¥) (x — &) — G=A

N |x — &| |x — Z|

(&

cuya solucién converge cuando k|x —&| — 0 (solucién electrostética), lo que implica A+ B = 1, e incluye la
funcién delta. Las dos soluciones implican dos condiciones de borde diferentes en el tiempo, i.e., (a)funcién
de Green retardada o causal con ondas de propagacion hacia el infinito y (b), funcién de Green avanzada
o no causal con ondas de propagaciéon desde el infinito. Generalmente tomamos la solucién

ezk|xf:i|

x— 2

Ahora debemos de volver a la forma G(x,t, &, 1)

o 22
1 00 i |x—&| ) c
G(x,t,&,t) = / =

% oo|X_:E‘ |X_:E‘

Vemos que si hubiéramos mantenido las dos soluciones, tendriamos soluciones de retardo o avance de-
pendiendo de la funcién de Green. En general, estamos interesados en la funcién retardada que garantiza
causalidad, donde la solucién general

B(x,t) = / —[ﬁf”_ﬂ;rt a?

con la definicion de retardo
_ — X
it 3) =t — X%
1

que garantiza que la fuente no contribuya antes que se vuelva activa. Esta ultima ecuacién puede tener
varias soluciones, dependiendo del problema.

1.2.2. Solucién en el espacio k — w

Como estamos interesados en el espacio infinito, hacemos una expansién de la funciéon de Green en funciones
propias de la ecuacién de onda sin bordes.

G(x,t,x,t) = (271r)2 /G_’(k,w, z, 1)e Xt g3k
SO (x—Z)5(t —1) = (271r)2 /eik'(x_i)e_iw(t_ﬂdwd?’k
Incluimos un término disipativo,
V3G — ciza;_tf — 6%—? = —4m6®) (x — E)S(t — 1)



con € > 0, que da la flecha en el tiempo que discutimos antes. Esto es equivalente a la disipacion en el
péndulo simple

0 + B0 + w?sinf = 0

Con esta expansion, obtenemos

2
= 4 N T
(-k’z + ucj_2 + i&)g) G = —#6_1(1(.%)6%”:

Primero hacemos la integracién en dk?® = k? sin dkd0dg

3 ~ 1 eiwf eik-(x—a_:)
G(x,w, &, t) = — /dk3 5

™ (2m)¥2 k2 — w_g — iwe
c
conk-(x—&) = k|x — Z|cosb
N 1 1 eiwf Bz'k|x—:7:| _ ez’k|x—a‘c|

G r,t) = — > kdk
(Xawam7-) iE‘ fO

7 (2m)1/2 i]x —

(k+ (w/c) + cie)(k — (w/c) — cie)
1 1 iwt - ik|x—|
= = e c :
m(2m)2ilx — x| ' (k+ (w/c) + cie)(k — (w/c) — cie)
Esta integral es hecha por una continuaciéon analitica del integrando al plano complejo, y seleccionando
los contornos apropiados. Un integrando requiere acercarse en el plano superior, y el otro en el inferior.

Recordemos que los contornos deben ser en el sentido de las agujas del reloj. La integral es par, asi que
puede ser extendida a menos infinito, entonces

*27T€iko|x7i|

11,
_ e
27 (2m)1/2 Ix — Z|

Desarrollamos la integral en el espacio w para obtener

G(x,w, T, 1)

L 5 (E_ ‘4 M)
G(X,t, :f:,ﬂ = /dwe—iw(t—ﬂeiko|x—:ﬁ| _ cC

x — &| 27 x — Z|

Y obtenemos el mismo resultado anterior, pero sin ningin argumento de causalidad, etc.

1.3. Campos producidos por una particula

Para el movimiento general de cargas, usaremos transformaciones de campos en una forma covariante cuando
estudiemos relatividad, pero por ahora podemos usar esta expresion para el caso de una particular

p(x,t) = ed® (x — r(t)) J(x,t) = ev(t)d® (x — r(t))

para lo que podemos escribir la solucién inmediatamente como



C —

I

Para integrar esta ecuacién debemos hacer un cambio de variables

o x—r()

T = t—1t+

dr = d£<1+%%c|x_r(z)|) = di [1_ <g({>. (liii%))} (1)

o x—r()
(5(t—t+—t>d

de esto, obtenemos, usando

R(t) =x —r(t) )
v(x,t)=e [%]
By = X0 -
¢ B
Ax,t)=e|—=
K(t) = R(t) — B(t) - R(t) ) bt [K Lt

evaluado (con el paréntesis cuadrado) en el tiempo retardado ¢(¢,x, &) que se resuelve de

_ x=r@)]

C

t=t

Esto significa que para un tiempo ¢ y una posicion x dada, tenemos que resolver esta ecuacion, con lo que
obtenemos t(t, X, Z).

Los campos pueden ser calculados de la manera usual, para obtener

I R-p ] e 1 Rx ((R-p) = B)

lRa-e Rp] e |E 08 By

ret
y el campo magnético es
B - |RxE|
reta
Notemos que el campo estd evaluado en la posicién retardada r(t), donde la particula estaba al momento
en que la onda fue emitida. Ademas, los campos radiados (~ R~!) se producen cuando aceleramos cargas.

. . . i .
Para una trayectoria dada, podemos calcular los campos inducidos por la carga en movimiento en el espacio
y el tiempo. Una forma de calcular esto es graficarlo en Mathematica y ver su evolucion.

Definamos la funcion



F,t,8) = elf — ) + [x — (D] = e — t) + /22 + (D) — 2x - (0)

para la cual tenemos que encontrar sus ceros ;. Si buscamos las soluciones causales, entonces la senal
partié antes de ser recibida, esto es t < t. Ademds, f(Z,t,t) > 0. Notemos que si § < 1 esta funcién tiende
a oo para t — oo, por lo tanto hay un cero por lo menos. Calculemos la derivada de esta ecuacién con
respecto a t,

Lof . @) —x)
cor kw0

Por lo tanto

= Sif < 1 entonces esta derivada es positiva, y existe una solucién causal ¢ < t y se utiliza las expresiones
de arriba para los campos

= si § > 1 pueden existir mas de una solucién para algiun z,t. Estas soluciones hay que tomarlas en
cuenta y sumar los campos producidas por ellas

E(x,t) = ZE[@(X, t),x, 1]

ya que al hacer la transformacién cr = ¢(t — t) + |x — r(f)| hay que considerar todos los ceros que se
obtienen de evaluar la funcién delta.

En particular, podemos calcular la energia radiada como

dP

P
_ = . 7 2 — _
5= (s &) — Prot /deQ

lejos de la fuente.

1.4. Caso: velocidad constante

En este caso tenemos

r(t) = Bot

donde hemos normalizado el tiempo y el espacio apropiadamente. Buscando soluciones fisicas escribimos

(1= B,)2 + 128, - x —2t) + (2 —2*) =0

que tiene solucion

(t—Bo-x) £ V/(Bo-x—1)> — (£ —2?)(1 - §2)

I= =)




Para el caso particular de 3, < 1 tenemos una solucién fisica t > ¢, que esta dada por

(t=Bo-x) = V(Bo-x—1)2 — (£ —2?)(1 — )
(1—62)

t=

donde el campo electromagnético esta dado por

E(X, t) _ 6’fL(t)(1 _ ?2)

R?|1 — [3?sin” 0|3/2
donde en este caso muy particular n(t) = x — r(¢), osea el campo apunta en todo el espacio a la direccién
instantdnea en tiempo t, y no en . Esto es como si no hubiera retardo, pero es consistente con la teorfa de
la relatividad. Esto solo se da para el caso particular de una aceleracion a = 0. Los patrones de radiacién se
ven en la Fig. 1 para diferentes velocidades donde podemos observar este efecto particular. Este resultado
va lo calculamos en relatividad.

ct=1.5 3=0.2 ct=1.5 3=0.9
3 \ 3
2 2
1 1
0 0
-1 -1
-2 -2
-3 / -3

73 2 1 0 1 2 3 73 2 71 0 1 2 3

Figura 1: E? en z = 1 para (a) $ = 0,2 (b) 8 = 0,9. Las unidades son en ¢ = 1. la linea roja es la trayectoria
de la particula.

Para el caso particular de 3, > 1 podemos tener dos soluciones fisicas ¢t > ¢

(t=B,x) = /By x— 1=~ )1 )

(1-62)
como es el caso en la Fig. 2a. Estas dos soluciones hay que tomarlas en cuenta y sumar los campos producidas
por ellas

t=




E@QZE:maxmxﬂ

Los patrones de radiacién se ven en la Fig. 2b, mostrando el patrén esperado. Este patron se denomina
patrén de Cherenkov, y se utiliza por ejemplo para medir un flujo de neutrinos.

t=0.5 B=1.2

Cos[6:1=1/3

c 0
2

-0.
1.5
1
0.5 1

-1 -0.5 § 1 1.5 2 ! -1.5 -1 -0. 0.5 1 1.5 2

Figura 2: (a) La diferencia t —t + |[x —r(f)]en z =1 y = z = 0 para 8 = 1,2. (b) Patrén de radiacién de
Cherenkov, dado por E?. La linea roja corresponde a la trayectoria de la particula.

1.5. Caso: radiacion para una particula acelerada
En este caso tenemos

N N . 2
o |1 [Rx (-0 x8)

~

[S-R]ret:4ﬂ_c V22 -8 R

ret

Notemos que esta formula solo funciona mientras v << ¢, osea para situaciones como movimiento acotado.

Notemos que si medimos la radiacién producida por una carga entre ¢; y t» (la radiacién fue emitida entre
t1 y ta respectivamente), medirfamos

) to R to R dt N
ret . Tetdt = S - R—dt
tl {1 dt

Entonces la potencia radiada por angulo solido es

10



y por lo tanto

R ((R-p)x )|
dQ  dwe |1_13.]3g|5

dP(t)  ¢?

Es importante notar que en principio R(x,t) = x —r[t(¢, x)] esta cambiando de direccién, y nosotros hemos
calculado S- R. Si queremos hacerlo con respecto a una direccion fija en el espacio, tendriamos que calcular

[S]ret T

1.5.1. Caso 3#0 con << 1

En este casol—,8~13l% 1, y por lo tanto
E:E[
c

c c
[S}ret = E ret E |:
Notemos que para velocidades pequenas comparadas con ¢, muy lejos de la fuente tenemos,

El vector de Poynting es

E x B |E|2R}

ret

R~r

y por lo tanto la potencia radiada por angulo solido es

dP R e? | A\ 2 e?
—=S-RR2:—‘R><<R>< > = ——|0|%, sin #*
dQ) dme p ret  4mwed [Olreq sin
Donde 6 es el angulo con respecto a la direccion de propagacion. Por lo tanto
2,
- @‘U ret

Que es la famosa formula de Larmor que se utiliza en astrofisica. Notemos que esta formula solo funciona
mientras v << ¢, osea para situaciones como movimiento acotado.

1.5.2. Movimiento colineal

El caso particular de una carga en movimiento con su velocidad y aceleracion (constante) paralela es

dP(t) e*o]*  sin®f
dQ  4ncd |1 — Beosfb

con lo que obtenemos

11



22 1

M= 5s oy

En la Fig. 3a se muestra este patrén de radiacion para diferentes velocidades. POr supuesto, este patrén
aplica mientras |v| < ¢, ya que entonces tendriamos que incluir una segunda solucién, como en el caso de
Cherenkov.

Figura 3: (a) Patrén de radiacién para situacion colineal.

ct=1a=0.45 5=0.225

ct=2 a=0.45 $=0.9
] S ——— T L Y T T T T T T 1

-2 [ L L L L 1 L L L L 1 L L L L 1 L L L L |

X X

Figura 4: E? con z =y =045 en (b) ¢t = 1, (c) ct = 2.

Quizas mas interesante aun es la situacion

0 t<0
pr— 1 .
r(®) 55K t>0

En la Fig. 3b-c se muestra el patron de radiacion

12



para r fijo.
para z =0, y con r = (x,y, z) desde el origen. Vemos claramente la propagacién hacia fuera de la onda.
1.5.3. Movimiento colineal relativsta

En este caso asumiremos, como lo hicimos en el problema de Gemelos, que la particula acelera en forma
constante en su sistema de referencia. Por lo tanto tenemos que resolver

. a .,

PV = =gt
c

. a .,

= =30
c

con la condiciones inicial

2°(0) = 2'(0) = &' (0) = 0 i’ =0

Luego de invertir la ecuacion ct = 2°(7) por 7(t), we can write

1 . 1
0= VIR M= 0= e

donde hemos normalized a unidades-luz (t — ¢t, © — x/c, 8 — B) con a, = a/c*. Asumiremos que la

particula esta en reposo para t < 0. Vemos que a medida que el tiempo aumenta, la velocidad tiende a
v —cC.

Bac p
1.0

0.8
0.6

0.4

0.2

L Il L L T L L L L L Il la/c
2 4 6 8 10

Figura 5: Velocidad de la particula

los campos radiados se muestra en la Fig. 6 para dos tiempos de interes.

13



ct=10 a=0.25 [3=0.928477 ct=20 a=0.25 [=0.980581

20 ‘ ‘ ‘ 1207
15 L5
> 10 | > 10
5 L5

-20 -10 0 10 20 -20 -10 0 10 20

Figura 6: E% con z =0y 8 = 0,25 en (b) ¢t = 10, (c) ct = 20.

1.5.4. Movimiento circular

El caso particular de una carga en movimiento en un circulo, tenemos la velocidad y la aceleraciéon perpen-
dicular

r(t) = r,[coswt,sinwt,0] = —r,F
B(t) = 7row[—sinwt,coswt,0] = Bot
B(t) = —w?r,[coswt,sinwt,0] = —w?r,#
Si el radio es suficientemente pequeno, tiene sentido promediar en ¢. Por lo tanto

2

dP(f)  eXwh? 1 T ‘R X ((R— Bot) x 'f‘)

= — — dt
ds) dwed T [, 1 — 5.t R|°

Este patron de radiacién se muestra en la Fig. 7a.

o R | ) 05 10 15

Figura 7: (a) Patrén de radiacién para movimiento circular, promediado en el tiempo para R ~ 7.

14



En la Fig. 8a-d se muestra el patron de radiacién

dP(t)

A
en las dos fases de rotacion y en los diferentes planos. Aqui no hemos hecho ninguna aproximacion. Vemos
una espiral propagandose hacia el infinito. Es posible construir el patrén de radiaciéon

=S - pr?

27 Jw
G(6, ) :@/{) dt S -t

Aveces es posible ver el tipo de radiacién que obtenemos por el espectro de la radiacion. Para esto podemos
estimar

S(w) = \/% / dte= 'S (1)

2. Vector de Hertz: otra formulacion

En el espacio vacio podemos definir un potencial de Hertz

J:a_Q ¢:_<V'H)
o\
4 lom
p=—(V-Q) T e ot
9 _1821_1__
V-1l 2E 47Q

y los campos son entonces

1 oIl
BZE{VXE]

E=(VxVXII —41Q

que pueden ser resueltos en el espacio de Fourier (tiempo y espacio) cuando p = 0, ya que J y Q se pueden
relacionar.

2.1. El caso de materiales

En la presencia de una material

15



wt=0ro=1 w=0.25 wt=3.14159 ro=1 w=0.25
10 T T .

Figura 8: Patrén de radiacién para movimiento circular en el plano z — y para (a) wt =0y (b) wt = m; y

en el plano z — z para (¢) wt =0y (d) wt =7

16



D=E-—47P

H=B - 4rM
tenemos
P = (V-
J:a—Q+a—+c(VxM) v (V-1L)
ot ot N
1011,
p=—(V-Q) —(V-P) A:E g +(V x I1,,,)
1 0°11
217 e _ _
V-II, 2 a0 Ar(P + Q)
1 0°11
2 - m_
V-Il,, 2 o0 47M
los campos son
1 OIl,
B—(EVX 8t)+(V><V><Hm)
E:(VXVXHE)—(%anl;—tm)—élﬁ(Q—i—P)

3. Ecuacién de onda: campo lejano

Sabemos que en general tenemos la solucién completa para ¥ y A,

(- 22)
plx,t ———
f ¢ dz?

[x — Z|

) J(a‘c,t—|x_x|>
A1) = —f R

|x — &

’QD(X, t) =

usando el Gauge de Lorenz, en el espacio-tiempo, para una distribucién localizada en carga y corriente.

En muchas situaciones donde tenemos una distribucién localizada de carga, es factible calcular la aproxi-
macion de campo lejano haciendo

|x —X| ~r

y por lo tanto tenemos

17



Y(x,t) = %fp(x,t—%) dz?

1 r
Ax,t) = —[J (X,t— —) dz?
(,2) cr J c
Hay que ser cuidadoso cuando hacemos esta expansion, en especial cuando hay variaciones temporales
importantes y tenemos efectos de propagacion dentro de la distribucién de carga (generalmente efectos
relativistas). Esto lo discutiremos abajo.
Cuando tenemos cargas microscopicas moviéndose, podemos escribir

p(x,t) =32, 40P (x — 1y (1))

J(x,t) = 32, 4aVa(t)0P) (x — 14(t))

con lo cual podemos escribir

¢(X7 t) = % Zn 4n

A(x,t) = % > o @V (t—1/c)

Si la carga total del sistema es cero y definimos el dipolo eléctrico como

p(t) = Z Qnrn(t) )
entonces obtenemos

Y(x,t) = 0

A ) — %p(t—r/c)

Podemos escribir los campos como

B=VxA= p(t—rfc)xi+O0(1)r)
cr

y
10A 1
_ - _ = t —
c Ot c2r (t=r/c)
Notemos que
B=-Exr7

con lo que podemos calcular

18



_ _ ¢ AN a2 s e
S = EE x B = —47TE X (Ex )= gy <c2r> [|p| 7 — (P r)pL:T/c
y por lo tanto
dp_ C q 2 12 a2
aQ  Ar <027“> [|p| (®-7) }

Vemos un resultado que va a ser importante mas adelante. La potencia radiada va como

P~ wt~Et

la frecuencia del sistema.

Problema: Tomemos unas particulas de carga ¢ y masa m que se mueve en un campo magnético uniforme
B,. Demuestre que la trayectoria es

r(t) = [% cos(Q + ), % Sin(Q + ¢), 2o + vyt]

donde v, es la velocidad inicial perpendicular al campo, v, es la velocidad inicial paralela al campo, ¢ es la
fase inicial de la particula, y Q = eB,/mc. Asumiendo que § << 1, encuentre los potenciales y los campos
radiados en la aproximacion de campo lejano para esta particula. Si tenemos N de estas particulas, con
la misma masa y carga, encuentre dP/df). Asuma que tenemos una distribucién termal definida por una
temperatura T, y T con respecto al campo magnético, tal que

1
§anvi = TJ_
1 2

Para estas particulas tenemos

p(x) =D 4u? (x = (1)) J() =) auvalt)d? (x —r,(t))

donde
Un, L Unp, L .
r,(t) = | Q cos(QUt + 9y), Q sin(Qt + 65), Zn,o + VU t]
Vn(t) = [—Un,18in(Qt + 6,), 015 cos(Q + 6,), U ]
a,(t) = [—v,1Qcos(Q+6,), —v) ,Qcos(2 +9,),0]

con ) = eB,/mec. En la aproximacién de campo lejano |x — X| = r tenemos
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1
¥ = = .
Tznq

1
A = =3 qva(t—r/c)
r
Por lo tanto los campos lejanos son

1
E = —— nnt_
— 2on Gda(t —1/c)

1 .
B = . Y onnt X ay(t —1/c)
Notemos que hemos asumido que ¥ = 0, que implica que existe un background de particulas de carga —q,

para neutralizar ) ¢,, tal que podemos usar

10A

c Ot

De lo contrario tendriamos un potencial escalar, y por lo tanto habria que usar
4. [ :
E=—=rx|(r— p)xp

para el campo radiado lejano. En ambos casos el campo magnetico es

B=7rxE.
El vector de Poynting es

2 ~ A A
r°S-r= 4 (EXB 47TCZZQan Ap c Ay — (an‘r)(am'r)>

Notemos que si 6, esta distributido uniformemente entre [0, 27|, entonces podemos definir

n An

con lo cual
N? N?
Z Z cos[Qt + 9y, cos[QU + 6, ] AnAm = e / doy /d¢2 cos[Qt + ¢1] cos[Qt + po] = —
m

y por lo tanto
2

S S0 cos[Qt + 0,) cos[QU + 0] = [ dgr [ dpa cos[Qt + 6,] cos[QU + 6] = E
S >0 cos[Qt + 0,] SIn[Q + 6] = [ doy [ dpa cos[Qt + 6,] sIn[Q + 6] =
o> sin[Qt + 0,] sin[Q + 6,,,) = [ doy [ dosin[Qt + 6,] sin[Q + 6] = i\:j
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Con lo cual vemos que es un proceso coherente. Usando las expresiones de arriba podemos escribir
2 2 2
1672¢

Con la definicién T, = m v? /2, podemos finalmente escribir

(3 4 cos 20)

22 N2 212
dp—ﬂ(i’»—kcos%) P:qQTL

dQ ~ Sm2me Tme

Problema Cual es el patron de radiacion de una sola particula? Si usamos esta expresion y promediamos
durante la duracion del movimiento ciclotronico At = 27/ obtenemos la misma expresion anterior?

En este caso tenemos el mismo caso anterior

P
OF _2g.i =2 S (B xB).

o0 47

-

T T T e S | T
-10 -10 -5 0

Figura 9: Patrén de radiacién para movimiento circular de una particular en el plano (a) t —y y (b) x — 2
para wt = 0.

El campo radiado se puede ver en la Fig. 9a-b. El patron de radiacion promediado en el tiempo

T 272 2()2
<Z_]§;>:l aPd q T (34 cos26) P:qQ—TL

T Jy o0 y:87rmc mme
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Figura 10: Patron promediado en el tiempo.

4. Ecuacidon de onda escalar: oscilaciones harmonicas

Podemos construir un teorema de Green para soluciones harmoénicas. Para este caso definimos

V3G + k2G = —47m6®) (x — R)

con k, = w/c. Vemos que el teorema de green para la electrostética funciona perfectamente y

o, (x) = /Q (%) G(x, %) dz® +—Jq§ ( 7 a—nmcp(@ @(i‘)aiﬁ(}(x,i)) dSs

Las condiciones de borde de Dirichlet se usan cuando ® esté definido en el borde, y las condiciones borde
de Neumann cuando 0®/0n estéd definido en el borde.

Nuevamente tenemos dos condiciones naturales

» especificar el potencial en el borde, ®(x)|,,

0P(x)

= especificar la carga en el borde,
on |y

Vemos inmediatamente que especificar los dos tipos de condiciones seria redundante, y generaria soluciones
no reales. Esto significa que dada un tipo de condicién de borde para ®, tenemos que hacer cero una de las
integrales de superficie de arriba, y para eso utilizamos la flexibilidad de G.

En el caso de las condiciones de borde de Dirichlet, forzamos G(x,Z) =|;.5, 0 para & en el borde, lo cual
es equivalente a encontrar la carga en la superficie

1 0

D, (x) = [)p(:j;) G(x,T) da3 — o b (I)(j)ﬁni

En el caso de las condiciones borde de Neumann, también se pueden definir.

G(x, %) dSs
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Notemos también que esta funcién de green también funciona para los campos eléctricos y magnéticos. Esto
se usara mas adelante.

4.1. Funcién de Green en coordenadas cartesianas para el espacio infinito
Es bastante trivial darse cuenta que la funcién de green en coordenadas cartesianas es

eiko |x—&|

G(x, &) =

x — |

Ahora enfrentaremos otros sistemas de coordenadas.

4.2. Funcién de Green en coordenadas esféricas para el espacio infinito

Supongamos que ahora expandamos la ecuaciéon de onda en termino de una expansion de Fourier en el
tiempo para obtener

VAU + k20 = 0

Si ahora expandimos esta ecuacion en coordenadas esféricas como

\IJZ m)

obtenemos la ecuacién

— - k2 =0
dr? + rdr + Ko 72 Y
Esta ecuacion define las funciones de Bessel esféricas
Je(x) = 4[5 Je+1/2( )
n(z) = 4 /3 Ne+1/2
De la misma forma podemos definir las funciones d
h(l) . . S\ O+1 1 ix
o () = je(x) + iny(x) r — 00 (—1) Ee
(2) : : AR
h,” (z) = je(x) — ing(x) r — 00 (—1) e

Por lo tanto la solucion general de la ecuacion de arriba es
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v = Z (Af,mjf(kor) + Bf,mnﬁ(kor)) }/é,m(ea ¢)

£m

Ahora podemos construir la funcién de green para el caso general, expandiendo

G = Z g@,m(ra T/)n,m(97 ¢)YZm<0/7 ¢/)

lm

que tiene una solucion

g(r,7") = Ajo(kor)BS (kors)

que tiene soluciones que se propagan hacia el infinito. Evaluando la discontinuidad para valores grandes,
podemos encontrar que

etko |x—&|

= ik, Y Amju(kor )y (kors) Yom (0, )V (6, 0)

lm

G(x,x) =

[x — |

Esta expansion sera 1til mas adelante cuando veamos problemas de radiacion.

5. Ecuacion de onda vectorial: oscilaciones harmonicas

Supongamos que tenemos que resolver la ecuacién de Maxwell (para una variacién harménica en el tiempo)

V.D = 4mp V xE=i B
C
V.B=0 Vil T5_:%p
C C

lo que da origen a una ecuacién de onda vectorial. Para el caso en que no tenemos fuentes (o materiales
homogéneos), la ecuacién para el campo eléctrico es

V2E + \/jiek?E = 0 V-E=0 B:—kiVxE

o

y para el campo magnético es

V2B + fiek?B = 0 V-B=0 E- —VxB

kopie
donde k, = w/c. Definamos k = k,/Jie.

Notemos que si ¥ es una solucion de la ecuacion escalar, VU es una solucién de la ecuacion de onda
vectorial, ya que

V3(VV) = V(V2V)

Definamos el operador
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L=—i(rxV)
Notemos que
Ly = —i(r x V) =iV X (ry)
por lo tanto la divergencia de este vector es nulo. Ademas
V2Ly = iV3(V x (r¥)) =iV x V3(ry)
y usando
V2(ry) = 2VV + rV20¥
podemos demostrar que

V2L + KLV =0

Por lo tanto L1 satisface la ecuacién de onda vectorial. En principio podriamos esperar que la solucién
(transversal eléctrico)

E=LV

es correcta, pero esta no esta completa. Esto se debe a que en principio B también se puede escribir de esta
forma, y por lo tanto la solucién deberia ser también

l
E=-VxB
k X

Por lo tanto la soluciéon completa es

E = aLUp+ %bV x (LWp)
i

kopie
Notemos también que precisamente el operador V x V x vuelve a dar algo proporcional LW. Por lo tanto
es una solucién completa.

B = bLYp—

aV X (L\I/E)

5.1. En coordenadas esféricas

Para el caso de coordenadas esféricas este operador es

<

o rsinqu

i |0 0 0
r2sinf | Or 00 0¢
rv 0 0

LU =iV x (r¢) =

0 en pocas palabras
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1 oV, 8_‘IIA

LY =4 —0 —
Hanaas! a0
Mientras que
7 rl 7 sin 9q3
i |2 9 9
V X LV = ang| O 99 B
r OV i
0 Sinea_gb —7 S1n 9%
0 en pocas palabras
o a O*(r\) 4 1 0*(rv) .
Vo= r [L v orod sinf O0rd¢ ¢

con la definicién

L =— L o sin@a—q) —i——l 82—(1)
~ |sinf o0 00 sin? @ >

Notemos que este operador L no tiene componente radial, por lo tanto

Lf(r)g(0,¢)] = f(r)Lg(0, ¢)

y en particula podemos demostrar que

L*Yem(0,¢) = €(L + 1)Yem(0, 0)

Por lo tanto podemos escribir la soluciéon general como
i
k
i
K

donde ay,, representa la cantidad de campo eléctrico multipolar y by, representa la cantidad de campo
magnético multipolar. Es interesante notar el termino ¢ = 0 no existe. Hemos definido el campo

E - Y, [ae,mfmr)xzw be,mvwgz(kmxg,m)]

B = >,. [bz,mgz(/ﬂr)xz,m agmV X (fe(kT)Xe,m)}

1
X, = —— LY, (f.
0 D (0, 0)

que nos permite establecer
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[ X X = 6,8

Para este caso particular podemos escribir

B 1 m s 0Yim(0,0) -
X (0.6) - | Yenl0.000 - )
i 1 )
EV X [gﬁ(kT)XE,m(9> ¢)] - f(ﬁ T 1)(1€7“) [ﬁ(f + 1)9@(]{74)1/&771"“
O(rge(kr)) OYem 5 im O(rge(kr)) N
o 00 T sme o Yf’m‘ﬁ]

Notemos que

Xen(®, )] - |19 x [0e(kr) X0, 6)]| = 0

Vemos que en principio podriamos escribir la solucién explicita
a&mfg(l{??") = fm sz - EdSQ?
bg}mgg(lﬂ”) = fm sz - BdQ2

para algin radio ry y 7s.

Problema: Supo gamos que tenemos una onda plana que es incidente sobre una esfera conductora. Asu-
mamos que i = € = 1. Encontrar los campos de escatering.

Partiendo con

61k|x—i| o

=ik Y Amjolkr )b (ko) Yem(0, )Y/, (0, )
lm

x — |

podemos expandir para grandes distancias r, lo que implica que

eil_c~x — Z 47rizjg(kr)m,m(97 Qa)YZm(gv Qg)
£m

donde k tiene componentes k, § y ¢. Tomemos una onda que se propaga en la direccién 2 (§ = ¢ = 0) con
un campo en la direccién x. Esto implica que

E; = E,zerestd = | eibreost (sin 0 cos ¢F + cos O cos pO — sin ¢q§)
B, = E,getrcost = [ eikrcost (sin 0 sin @7 + cos 0 sin gbé + cos ¢q§>
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donde

[e.9]

gk eost — 2(25 + 1) (kr) Py(cos 6)
=0

Esto implica que podemos escribir la solucién general como

E:ES+EI B:B5+BI

donde E; y By satisface la expansion de arriba

E. = Yo |atmhi (k)Xo + 1hinV % (hél)(kr)xg,mﬂ

By = Y |bemhl! (k1) X — —aemV x (hgl)(k;r)X&mﬂ

ko

para tener condiciones de borde de salida en el infinito. Notemos que las condiciones de borde de interés
son

Ey=E;=0 B, =0
sobre la superficie de la esfera. Notemos que

%eikr cosf _ —ikrsin eeikr cosf
y que

P
% = —P}(cosf)
Por lo tanto la condicién de borde para B,.(r = a,0, ¢) es
1
——E Z 20+ 1 je(ka) P} (cos #) sin ¢ — Z ap.m ae+ ) hél)(k:a)Yg’m(@, »)=0

(0 +1)(ka)
Inmediatamente vemos que sobreviven los términos m = £1, y que
1

[0m.—1 — Om.1] QWCg,m/ Pﬁ(m)P}(az‘)d:ﬁ

-1

T2+ DVUEH L) Ge(ka) T
0(+1) hél)(ka) 2i

Q¢m = _Eo

Ahora podemos evaluar

1 1 — T (+1)
2nCoa [y PH@)P}(@)dz = \/(ze+1)<e 1)
21Ce [1) P (2) Pl(z)da = +\/(%1 1) Eﬁ . 3:

Esto implica que
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g j@ ka 1
a&m = —EOZZ 1(2£ —l— 1) (1§ ) 2_7, [5m,—1 — 6m,1]

hy,” (ka)

Para encontrar by, podemos utilizar la condicién Ey,(r = a,6,¢) = 0. Por lo tanto podemos construir una
solucion completa al problema.

5.2. Fuente Localizada

Para expandir una fuente localizada, podriamos usar Eq. 2. Pero notemos que

lr'(VxA):l(rXV)-A:Lu&

7 7
con lo cual podemos encontrar

by m,

rBE =%, Tr- (V x [ge(kr)Xym(0, 0))

- _ Z&m % (LQ[gg(kT)XZ,m(ea ¢)D

a4 be.m
= - Ze,m %ge(kﬂyﬂm(ev ¢)

y por lo tanto

k

bomge(kr) = ————§ Y7 (r-E)dQ

emge(kr) Wﬂ)ﬁj (1 - E)
k

apmge(kr) = ———— ¢ Y7 (r-B)dQ

emge(kr) T ¢, Yim(r B)

En el caso de que V - E # 0 se pueden generar 3 vectores ortonormales (mirar el Arfken) a partir de LWy,
y V x L¥,,, que se pueden utilizar para expandir cualquier solucion.

Para el caso de una fuente localizada las ecuaciones de Maxwell son

V - (E + 47P) = 4mp V xE=i'B
C
4
V.-B=0 V x (B—4rM) = —~J —i’E
C &
y la continuidad
1
1w

Primero notemos que lejos de la fuente la expansién de arriba es
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ezk x—wt

B = sz( )€+1 [ é,mX&m + bf,m'f' X Xé,m]

E = #xB

por lo tanto tenemos que encontrar una expresion para los ag, y bem 0 T - E y r- B lejos de la fuente. Es
conveniente definir el campo

_ 471
E—-E+47P + 223
w

con lo que las ecuaciones son ahora

V-E=0 VxE=i"B+ v xJ14rV x P
., w
V-B=0 VXB:—i—E+47erM
c
lo que implica ecuaciones de onda
V2E +KE = —47V x 'y xJ+V XP—l—z'koM}
w
1
V2B+ kB = —41V x |=J+V xM —z'koP]
c
En términos de r - E y r - B podemos escribir
Vi(r-E)+ki(r-E) = —4miL- 'y xJ+V x P—i—ikoM]
w
1
V?B + k’B = —4AmL-|-J+V xM — ikoP}
c

Notemos que fuera de la fuente, E = E. La solucién general es entonces

ik|x—y]| ;
rB o= i L. [iVxJJrV ><P+z'k0M] dy?
x—y[  |w
etklx—yl 1
r-B = if/—L- {—J—i—V xM—ikoP} dy?
x—y[ Lc
Usando la expansion
i} eik\x—y| R ' i
[ 400,007 = A )ik 0,01)
y por lo tanto podemos ver de inmediato que
4k? '
A = \/ijg )Yy, (0 ¢)L-{1VXJ+VXP+H{:OM] dx?
w
4k? {1 ]
bow = — )Y (0,9)L- | =J+V x M —ik,P dx?
f, m f]f Y4 gb) c
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y con estas expresiones podemos calcular los coeficientes de la expansién multipolar.
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6. Ecuacién de onda escalar: campo lejano para oscilaciones
harmonicas

En general tenemos que resolver el siguiente problema escalar
102
2 _
(V - —5) V= —drf

con condiciones de borde, lo cual hace la situacién un poco complicada, y probablemente requiera una
solucién numérica.

Para el caso del espacio infinito, tenemos ya calculado la solucién usando la funcion de Green para el espacio
infinito

1 0°G _
VG — __2W = 476 (x — &)d(t — 1)
_ o(io |- x=2
Gx,t,3,7) = / O e g ‘
X = — _— =
R B - n x|

y por lo tanto tenemos la soluciéon

U(x,t) = // G(x,t, 1) f(Z,t) dz’dt

Donde k, = w/c. Debemos hacer esta integracién para J y p.

Asumamos que tenemos una fuente localizada J y p y estamos interesados en mirar los campos lejos de las
fuentes. En este caso tenemos una fuente arménica

p(x,t) = p(x)e™™"  J(x,t) = J(x)e ™"
necesitamos resolver la ecuacion de Helmoltz

(V2 +E)A(x,w) = —4%.]( )

Para este caso la funcion de Green es

1 etkolx—yl

G(x,y) = —mZZﬂfw (ko) Ym0y, 64) Yo (0, 6)

drlx—y]|

Esta expansion es en general complicada, a menos que las fuentes tengan una distribucion especifica, y por
lo tanto converja después de unos pocos términos.

Si estamos interesados en casos generales, es conveniente tratar con la solucién general
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. B=VxA
iko|x—y|
AGy = [HEC W

c | x—y|

E:%VXB

o

Notemos que no necesitamos integrar el potencial eléctrico, ya que tenemos la ley de Ampere para campos

harmoénicos.

6.1. Fuente localizada

En ciertas regiones del espacio podemos aproximar la soluciéon para una fuente localizada. Notemos que
la dificultad de integrar la expresion para A es debido a la dificultad de aproximar la fase de

eiko \x—yl

Notemos que

2
|X—y|—\/x2+y2—2x-y—x\/l+‘% — 2% -

y
T
Podemos usar

\ﬁI}:1+%x—§ik4wi%%f(n—;ﬂx"

para x < 1. El coeficiente en el paréntesis se muestra en la Fig. 11

n=2

001

0001

Figura 11: (a) Coeficiente de la aproximacion.

Vemos que para k,d > 1, donde d es el tamano de la fuente, la fase nos puede dar problemas ya que como
integramos sobre la fuente localizada la fase puede dar 27 algunas veces, entonces la aproximacion debe
ser hecha muy cuidadosamente. Usualmente las aproximaciones relevantes son posibles si el tamano de la

fuente d satisface
kod <1
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En esta aproximacién particular, hay tres regiones de interés:

1. Zona cercana (estdtica) d < x << A: En este caso podemos utilizar la aproximacion
67Lko|x—y| ~ 1

y la solucién es construida por los métodos descritos en capitulos anteriores para campos estaticos
con multiplos escalares.

2. Zomna intermedia d << x ~ ) : En este caso hay que hacer el calculo directamente con los multipolos
derivados en este capitulo.

3. Zona lejana d << A << z: En este caso podemos aproximar

2

Y . Y

kr/x? 2 —2x- = k\/l = 2=
\/SL‘ +y Xy T +x2 x .
Ly 1y

~ kx(l—&-—4+=-=5+...
x( T x+2x2+ )
2

k
ke — ki -y + 4
xr

Q

y por lo tanto vemos que los dos términos de la derecha son

2
LR ki -y < kod
xXr e

por lo tanto la serie converge rapidamente. En esta aproximacion podemos entonces escribir

iko|x—y| ikox
e €7 ikody

~ e
|x—y| T

y hay que hacer la integral de esta forma.

Problema: Tomemos una fuente de corriente infinitesimal

J(x,t) = J,00 (x)e L,

El vector potencial es
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Los campos pueden ser calculados

ikox [ R
B = ik, 2" (;&xL)(u,lﬂ
c x | tkox

J, etkor T 1 1 N 3 3 N
E = bko_o 1— L—1|1- L -3)a
- ( ikox * (ikox)Q) ( ikox T (ik:ox)Q) ( w) az}

Vemos que tenemos claramente campos cercanos, intermedios y lejanos.

Problema: Tomemos una distribucion de cargas muy cerca del origen. Asumiendo d << A
J= Z qivio® (x — x;)

nos da

eiko\xfxﬂ . eik’oaz
A = E GVi— = —iwp
clx — x|

i

Cx

y por lo tanto haciendo una transformada de Fourier inversa tenemos

B = #x (%—%hﬁ])

p o (BB By, (s e Y ]

3 cx? 3 cx? 2z

donde [ ] es el valor evaluado en el tiempo retardado t =t — |x — r(t)| /c. Notemos que acé esta el resultado
de Larmor que encontramos antes.

6.2. Zonas lejanas

En comunicacién y en astrofisica es de interés encontrar los campos radiados (zonas lejana). En el capitulo
3 encontramos como hacer el calculo exacto en cartesianas y en esféricas. Pero si nos reducimos a una fuente
pequena

kod < 1
podemos ir mas alla y calcular en la zona lejana
eikor o eikor (—Zk )n
A — J —zkow-yd 3 _ o /J . n dS
0= Iy = CESTEIE [awie vy dy

la cual converge rdapidamente si k,d << 1.
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6.2.1. Primer termino n =0

Es interesante notar que el termino monopolar n = 0 no contribuye a menos que w # 0, como ya habiamos
encontrado es magnetoestatica, ya que

/J(Y) d’y = — /y(V J(y)) &y = —iw/yp(y) d’y = —iwp

El vector potencial es

eikox

A(x) = —ik,p

y los campos
k? ko k2 ikox
B = ¢ (Z x p) E =" (Zxp)xa&
x x

Notemos que

E=Bx2

En la aproximacién lejana podemos calcular la potencia radiada

P ¢ . \ wh

Aqui es importante notar el término w* en la potencia radiada.

Problema: Como ejemplo, consideremos una antena alimentada desde su centro. Asumamos que la corriente
en la antena es

J=1,sin (% - k0|z|) d(z)o(y)2

Para esta corriente podemos calcular

-J koL, kod
p(x) = V = 4! cos ( - ko|z\)

lo que nos da el dipolo efectivo

k.d
I, sin? 1
p=4 12 zZ
La potencia radiada es entonces
16 k.d
P = ?I 2 gin? 1
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Esta expresién es solo aceptable para k,d < 1, ya que estamos usando la expresion para A en este limite.
También podemos integrar esto exactamente (en la zona lejana con k,d < 1) y nos da

kod o) _ kod
22106“%96 cos | — - cos cos | —,

ck,x sin’ @

/J(y)eiko:i-y dSy —

En general es bastante complicado describir la corriente en una antena para diferentes frecuencias, ya que
hay que incluir la impedancia del circuito y la impedancia de radiaciéon para diferentes frecuencias. Esto es
en general un tema complicado y requiere resolver un problema de condiciones de borde para la corriente
a lo largo de un cable conductor. Supongamos que tenemos un alambre con una corriente harmonica en 2,
Por lo tanto tenemos

E(x)=— [V(V-A)+klA]

7
ko
en el Gauge de Coulomb. Por lo tanto tenemos por un lado tenemos

i [0°A
EZ(X) = k}_ |:az2 + ]ng:|

lo que implica que sobre la superficie del alambre tenemos

62
[@—l—k’g] Alp=a,z)=0

Por otro lado
1 zo+L eiko|x—y\
A= [T I
Zo |X - y|
Estas ecuaciones tiene que se resueltas para J en la superficie del conductor. En general el resultado depende

de como es excitada la corriente sobre el conductor (centro, al final, etc.) y la condicién de borde de no
corriente en los extremos. Esto es en general dificil de resolver.

Problema: Resolver el problema de un cilindro finito (pero largo) conductor forzado por una diferencia de
potencial AV entre sus extremos

Problema: Primera Aproximacién: Potencia radiada para w variable.

En general el circuito que produce la corriente sobre la antena, tiene una resistencia, una capacitancia y

una inductancia por unidad de largo. Ademads hay que incluir el efecto de la potencia radiada P(w) por la
antena, a través de su impedancia Z4(k,d). Usando los resultados del capitulo 3, vemos que
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P(kd) /172 P (kd)
7 1
5

,oaN W

kd 2 0 20 o100 ¢
1 2 5 10 20 50 100 1 5 1 50 1

Figura 12: (a) Potencia radiada normalizada P/|I|* por un dipolo. (b) Potencia radiada por la antena con
R, =0,001,C, =1y L, =0.8.

1
= RI —ik,dL,] + ———1I| + Z I=2Z7I
V = RI — ik,dL, +_2.de0 | + Z4(kd)

Asumamos que corriente en la antena se puede describir como en el problema anterior aun para kL > 1.

Por lo tanto
bod N o (B [
AP (kd) 1 coS 5 coS coS 5
— 41
c

sin? 6

s

luego de integrar obtenemos

2
P(kod) = = |11°g(kod)

Todo esto deberia ser igual, a primera aproximacion, a la potencia que fuerza el circuito completo

1 1
P,=-VI*=-Z|I]
) o
Por lo tanto podemos estimar la potencia radiada como

P(k,d) = Re [|I|*g(kod)] = Re [%]

En la Fig. 12b vemos que la potencia radiada por esta antena tiene un méaximo cerca de

kod ~ 1

Claro esta que el patrén de corriente sobre la antena no es correcto para kd > 1, por lo tanto todo esto
hay que evaluarlo con cuidado, y por lo general se hace haciendo expansiones de la ecuaciéon de arriba en
funciones propias ttiles (Bessel para esta geometria).
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6.2.2. Segundo termino n =1

Es interesante notar que si incluimos los términos de primer orden n = 1 obtenemos

— 3 k2iko:c
p=[xp(x) d’x E="2" [z xp)x&—% x m]
1 ~ !
m:2—c (XXJ)d3l’ B=4#xE

donde hemos incluido la magnetizacion.

7. Escatering para k,d < 1
Para el caso general podemos suponer que tenemos campos incidentes (ondas planas) dadas por

~ tko®ox -
EZ‘:EOEZB oo BZ‘ZZIJOXEZ‘

mientras que los campos radiados por el medio son

k2€ik0x
E,=-2

>

>

=
Il

S
X

=

" (& xp) X & — & x m]

entonces necesitamos encontrar p y m.

La seccién eficaz de escatering podemos definirla como la potencia irradiada en la direccién &, normalizada
por el flujo incidente

do (B, xBY) @
s (E; x B}) - &,
Si estamos interesados en diferenciar diferentes polarizaciones, podemos definir la seccién diferencial de
escatering polarizada como la potencia irradiada en la direccién & con polarizacién € normalizada al flujo
incidente de la direccion &, con polarizaciéon €,
do, _ | B
ds? ’éo : E;k |2

Problema: Tomemos el campo producido por una particula en un campo electromagnético (una onda
plana)

% = gEoe—(kox—iwt)
m
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Si kx << 1 entonces podemos calcular

q2

P=gx=— E e ™!
mw
Para una particula los campos son
k2 ikox k? ikox
E="" (ixp)xa B=-2"_3xp
x

y la potencia radiada puede ser calculada con

dP ¢ 2\’ ¢

— = —Re[z?¢ - ExB=(— | —|E,*(1—(p-&)*

e - () SR 5

Asumiendo un campo incidente con polarizacion E,. La seccién eficaz diferencial de escatering es

do q 2 n A
(L) a-v#
Dada una direccién de propagacién, por ejemplo Z, este vector de campo puede tener cualquiera de las
direcciones de polarizacion en 27. Asumiendo una distribucién uniforme de polarizacién, debemos hacer un
promedio sobre la polarizacion incidente. Por lo tanto, si asumimos que tenemos una onda que se propaga
en z

2
p= < a )EO{COS U, sin¥, 0}

w?m

usando x = [cos 6 cos ¢, cos 6 sin ¢, cos §] podemos encontrar que

do q2 2 1 21 . ) ) ) ) .
y por lo tanto
Es interesante notar que

2
K
mc?

es denominada como la seccidén eficaz de un electron.
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Problema: Tomemos una pequena esfera dieléctrica (promediado sobre las polarizaciones). Notemos que
si ka << 1 entonces podemos utilizar el resultado estatico

y por lo tanto podemos encontrar

j—g 448 _; cos”
y también
2 e—1/
:—k46—
7= 3% 22

7.1. Coleccion de escateres

Si tenemos una coleccion de escateres, tenemos que incluir su dispersion espacial. Para el caso anterior
tenemos

o =k, ! % T tko(yi—y;)-&
<dﬂ>go_korEor2iZj(pf b, — (b #)(p, @)

donde y; es la posicién del escater i. Esto define el factor
F= Z <pi P — (pi : 53i)<pj . .’f}j»éo eiko(yl'*yg')'@
i,

Esto también tenemos que promediarlo por polarizacién incidente €,. La distribucién espacial de los dipolos
es fundamental, y can puede tener efectos profundos en la eficiencia de los radiadores. Si la posicion de
los radiadores es coherente (en el caso de un fractal), el efecto es del orden F' ~ N2, mientras que si la
distribucién no es coherente, tenemos F ~ Np?.

Problema: Compare el patrén de radiacion de un set uniforme y un set fractal de escateres

7.2. Escatering de Raleigh

Podemos generalizar este andlisis para estudiar el escatering de Raleigh, y podemos ver cémo obtener que
el efecto es proporcional a k?*, preferencialmente para frecuencias altas. Esto es una posible sugerencia del
porqué el cielo deberia ser azul. Podemos utilizar el resultado para una molécula

2

o

61—|—2
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donde \; = 4ma3(e; — 1) esta relacionado con el momento dipolar p; = A\ E de una molécula. Al considerar
al efecto colectivo de N moléculas donde

F ~ Np?
asumiendo no coherencia (random distribution). En esta analogia la constante dieléctrica efectiva es

N
6—127(81—1):47{')\

donde X es la polarizaciéon molecular efectiva en el aire, y por lo tanto podemos escribirla en termino del
indice de refraccién del aire (e ~ 1)

1 1
n—1:\/2—1:\/1+47rx\—1z5(4#)\):5(6—1)

Por lo tanto la seccion eficaz de escatering por molécula es

8 (V\® , )

donde N/V es el numero de moléculas por unidad de volumen. Notemos que n también depende de la
frecuencia w como vimos anteriormente.

Si enviamos un flujo de energia, al atravesar una distancia dz del aire, la intensidad sera atenuada

dl N 2
_ = —— = _f Cl{(T)dT
e v ol — I(z) =1(0)e Jo

y por lo tanto la distancia de atenuacion es

8 (V
a(z) = 77 (N) ki — 1

Gente ha sugerido que esta dependencia puede ser responsable del color azul de nuestro atmosfera, ya que
para frecuencias w més altas (azul) el escatering es més eficiente que para las frecuencias més bajas (rojo).
Otra contribucién interesante es el escatering preferencial producido por las perturbaciones de densidad en
nuestra atmosfera que cambian el indice de refraccién. En este caso

de; 1 0¢ V(e—1)0N/V
_:__5N% __
3~ 30N N 3 NV

ya que

e—1

N/V

donde 0N es la fluctuacién del numero de moléculas (o densidad si normalizamos por V) en un pequeno
volumen V = L3 tal que L << \. Esta estimacién solo funciona si € ~ 1. Usando los resultados anteriores

61—1:
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8 (V? ON; )V 8 (V\°
=— (=) K*le—1? =— (=) k'le— 1> NET
T (N) € |<<Z N/V)> 27 (N) e 1] &
con la definicién

Y ONiON; = NVNETB
2%

y con (3 como la compresibilidad termal

Obviamente, todo esto cambia si F' tiene términos coherentes (por ejemplo fractales, o turbulencia correla-
cionada, gravity waves, etc.)
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Figura 13: (a) geometria de la pantalla. (b) Fuente y punto de observacion.

8. Teoria de difraccion escalar k,d >> 1

En situaciones méas generales debemos recurrir a un método para calcular los campos de la radiaciéon que
satisfacen

(V24 )T =0
W(x) = — f[xm VG - Gh - VUdS
S

En general estamos interesados en aperturas, ver Fig. 13 en los cuales tenemos una pantalla y un hoyo en
ella. Debemos hacer dos suposiciones:

1. Para calcular G asumiremos que la pantalla es infinita y que los ¥ en el borde es cero.

2. En la abertura usaremos los campos incidentes.

Esta aproximacion significa que funciona siempre y cuando 6 < \/d, o en pocas palabras k,d >> 1. Esto
tiene sentido ya que implica que los bordes de la apertura no afectan en forma considerable lo que sucede
en la apertura

Usando la funcién de Dirichlet-Green

1 TeikoR  gikoR'
G=— —
Sand

donde

R=/(z =22+ (y —y)?+ (2 — 2')? R=+/(z =)+ (y—y)?+ (2 +2)°

Podemos encontrar

oG
U (x)=— v T
+(x) j{s o as
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con por ejemplo (ver Fig. 13b)

1 .
U =, ——elkox
2

Por lo tanto tenemos

ko . etkolx=yl i (x—y) m
U = — | ———U_ (1 Yd
A (o) i

iko|x—Y]| — .
oo g X=Y) "v4S, + O(1/r)

2mi 77 |x—y|  |x—Yy]

Hemos asumido que lejos de la pantalla (R tendiendo hacia el infinito) la contribucién de S tiende a cero,
lo que implica que hay que calcular la integral sélo sobre la apertura. También, r es la distancia desde el
punto en la apertura hasta el punto de observacion. Usualmente la radiacion entrante es perpendicular a la
pantalla.

Tomemos una apertura circular de radio a, tenemos

2
kols|
2|
con s como el vector en la apertura, y r desde el centro de la apertura al punto de observaciéon. Hemos
asumido que r — oo. Si botamos el tercer término, tenemos la difraccién de Fraunhofer

ko|X_y|:k0\/‘x|2+’8‘2_2X‘8Nko’$‘_kOS‘CE+ _'_

> o
r J—
8A

con a como el tamano de la antena. Si usamos la forma para ¥_, tenemos finalmente para el campo lejano

k etko |z|

U, =,
T omi ||

/(e”‘c"(‘f”"‘f”)'S cos 0,ds*

(e

donde @, es el vectores unitario para la fuente

1 .
U=, —ekox
2m

En el caso 6, ~ 0 tenemos que &, = 2, que es lo mas comun, obtenemos que cerca del eje de la antena el
campo radiado es la transformada de Fourier de la apertura de la antena

iko|z| L
IR
27i lz| /.,

Para el caso de un apertura circular, por simetria podemos considerar el vector & = (sinf, 0, cosf) y el
vector s = p(cos ¢,sin ¢, 0), y tenemos
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Figura 14: Gréfico de la radiacién producido por una apertura circular para (a) k,a = 10 y (b) k,a = 20.

k, _ etkolzl ra o _
U, = —,\IIO—/ pdp/ e~ thopsin0cosd o5 O dh
27 x| Jo 0
k eiko\x| a
= %\Powcosg/o pdp(QWJo(k:Opsing))
iholz] J1 (ko sin 6
Cikw, S 2 cos g1 00 S 0)
|| koasin 6
Vemos entonces que
etkolzl Ji(koasin 6)

U, =V, ———U,(k,a®) f(6) — f(0) = cos 0

|z]

k,asin 6

Notemos que en principio podemos usar esta apertura como un telescopio. Para este caso podemos obtener
el mismo resultado anterior, pero donde # ahora es con respecto a la linea definida por el vector Z. Esto
implica que un telescopio tiene la capacidad de resolver objetos separados por una resolucién angular A6
dada por el primer cero z; = 3,83 de Jy(x)/z, esto es

AG~ 42
a

Problema: El problema de simular numéricamente que pasa a una onda al cruzar una y varias aperturas
se dejara para la tarea.

Problema: El problema de interferencia entre dos aperturas ahora se puede calcular como un problema de
transformada de Fourier.

Para el caso en 2D, podemos asumir que la apertura tiene tamanos L, >> L,. La propagacién de la onda
incidente seria tal que
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Y tomando # = (z1,0,x3), podemos encontrar

k iko|z| o
UV, =—VY,L,cosb, S /e’ko(’""_")‘x * ds,
2mi lz| /.,

Osea, el resultado es el mismo que antes, y requiere hacer una transformacién de Fourier de la apertura en
una dimensioén.

Notemos que si utilizamos

la funcion de Green es

G = H" (kor/(x =22 + (2 — 2)2) — Hy" (ko/(x — 2)2 + (2 + 2)?)
Dado que

1 .
H(l) (.Z') ~ _elkz
NS

vemos que obtenemos soluciones similares.

9. Teoria de difraccién vectorial k,d > 1

Ahora queremos tener una estimacion de los resultados de difraccién, pero para los campos vectoriales E y
B. Supongamos que tenemos una apertura (con un conductor como pantalla) en el plano z = 0. El campo
se puede escribir como

E=E,+E;

donde E, es el campo producido por la fuente y E; por el obstaculo. Notemos que este campo es producido
por las corrientes y densidades de carga en la pantalla generadas para satisfacer las condiciones de borde.
Si la pantalla es muy delgada, podemos asumir que no hay corriente en 2, por lo tanto A; , = 0, mientras
que A; 5, A, y ® son funciones pares en z. Esto implica que

El,x; El,y7 BLZ

son pares en z, mientras que

ELZ7 BI,CE7 Bl,y

son impares en z, aunque no necesariamente cero en la pantalla dadas las discontinuidades. Estas discon-
tinuidades determinan que la densidad de carga es la misma a los dos lados de la pantalla (ya que Ej .
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es impar sobre la pantalla). Lo mismo aplica para la corriente tangencial. Mientras que en la apertura, la
continuidad de los campos requiere que £ ., B;,, B, sean cero en la apertura. Esto sugiere que

El,x; El,ya Bl,z

tiene tienen los valores que existirian en la apertura si la pantalla no estuviera alli (aqui es importante que
la apertura sea d >> \). Usando una funciéon de Green de Neumann

1 | etkoR eiko]_%
Gy=—
47

R TR

podemos escribir sobre la pantalla

1 R eikoR

ya que A, = 0. Esto se podria obtener de la corriente superficial

c .
Kl:_EBl Xn

usando

1
Al(X) = —/ GNKldS
& screen
Con lo cual podemos construir el campo magnético como
1 eikoR
B, =—V n x B ds
' 27T X /;0reen<n X 1) R

En una forma similar podemos construir una solucién para el campo eléctrico como

cikoR
R

para 2. Con esta definicién, los campos satisfacen las ecuaciones de Maxwell. Notemos que E; X 72 no es
cero en la pantalla, solo el campo total E x n = 0. Tratemos de relacionar este campo, con el campo sobre
la apertura. Dividamos

s

1
E1::l:—V></ (R x Ey)
2

screen

E,=E ;+E; 4
Si la pantalla no tuviera una apertura tendriamos campos E, y B,. Usando las simetrias ya discutidas
podemos, podemos sumarle para z > 0 los campos
E1—>E:E1—EO B1—>B:B1—BO
que tiene la simetria apropiada. Ahora podemos definir el campo eléctrico para z > 0 como

eikoR

1
Es(z>0):%V></ (% B) s
apertura
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donde E es el campo total en la pantalla (el resto no contribuye dado que E x 7o = 0 en la pantalla). Para
z < 0 podemos utilizar
E(x)=E, +E, — E;

donde E, es el campo reflejado por una pantalla infinita (los campos incidentes son E,).

Problema: Para el caso e una onda incidente sobre una apertura circular tenemos

E, = E,(& cosa — & sin a)etfo(cosaztsinaz)

Asumiendo que el campo en la apertura es el campo incidente, podemos escribir

~ - . . /
(A x E;).—g = E,&; cos aetesnor

donde 1 = €5. Por lo tanto

E;(x) = uko X / f x B(x)e %S’
A

27|z |
donde k, = x/|z|. En esta geometria

- iko|x| a 2
B, — ekl [ cosa(ko y é2>/ ,Odp/ (IBo sin s cos f—sinf cos(9-3))
2n|x| 0 0

Definiendo

&= \/sin2¢9—|—sin2a—QSinﬁsinacos¢

podemos encontrar

ietkltlg2 F cos J1(koaf)
E, — o k, X € V0™
|517| ( 8 62) koaf
Finalmente
dP CEg 2 2 2 ) 2J1(koa§) ’
ok { S T 08 “} S

Este resultado es una mejora consistente a los resultado de escatering escalar.

Notemos que tenemos un resultado simular al anterior. Este resultado solo tiene sentido si k,a >> 1, sino
las condiciones de borde son relevantes.

9.1. Que pasa en el limite k,d ~ 1

Para mas adelante.
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