
Capitulo 5:
Radiación y Antenas

En este caṕıtulo discutiremos soluciones de las ecuaciones de Maxwell.
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1. Ecuación de onda

Si utilizamos el Gauge de Lorenz, ∂µA
µ = 0, tenemos que resolver 4 ecuaciones de onda

∂µ∂
µAν =

4π

c
jν

Separando los potenciales, podemos escribir

∇2ψ − 1

c2

∂2ψ

∂t
= −4πρ

∇2A− 1

c2

∂2A

∂t
= −4π

c
J

1.1. Ecuación de onda escalar en 1D para el espacio infinito

Si trabajamos este problema en coordenadas cartesianas, vemos que en realidad necesitamos resolver el
problema de onda escalar. Si expandimos el Laplaciano vectorial ∇2A en otro sistema de coordenadas, el
problema se torna un poco mas dif́ıcil y es un problema de ecuación de onda vectorial que veremos mas
adelante.

Por lo tanto, comencemos con el problema de la ecuación de ondas escalar en una dimensión. Y en particular
veamos el caso sin fuente

∂2ψ

∂x2
− 1

c2

∂2ψ

∂t2
= 0

ψ(x, 0) = f(x) ψt(x, 0) = g(x)

Que tiene solución en el espacio infinito de la forma

ψ(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(y)dy

Que implica que se generan dos ondas que se propagan hacia la derecha y hacia la izquierda.

1.2. Función de Green en coordenadas cartesianas para el espacio infinito

Para el problema general en el que estamos interesados, necesitamos resolver la ecuación de ondas en varias
dimensiones con una fuente arbitraria

∇2ψ − 1

c2

∂2ψ

∂t2
= −4πf(x, t)

Necesitamos construir la función de Green para la ecuación de onda escalar en la base natural
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∇2G− 1

c2

∂2ψ

∂t2
G = −4πδ(3)(x− x̄)δ(t− t̄)

tal que

ψ(x, t) =

∫
G(x, t, x̄, t̄)f(x̄, t̄)dx̄3dt̄

1.2.1. Solución en el espacio x− ω

Usamos el método de la transformada de Fourier para resolver esta ecuación, donde

f(x, t) =
1√
2π

∫ ∞
−∞

f̄(x, ω)e−iωtdω

f̄(x, ω) =
1√
2π

∫ ∞
−∞

f(x, t)eiωtdt

con las relaciones de completitud

δ(t− t̄) =
1

2π

∫ ∞
−∞

eiω(t−t̄)dω =
1

2π

∫ ∞
−∞

eiω(t̄−t)dω

En el caso de los problemas con condiciones iniciales, puede resultar más útil usar una transformación de
Laplace.

Para el caso de la función de Green podemos escribir

G(x, t, x̄, t̄) =
1√
2π

∫ ∞
−∞

Ḡ(x, ω, x̄, t̄)e−iωtdω

con lo que obtenemos

1√
2π

∫ ∞
−∞

(
∇2Ḡ+ k2

oḠ
)
e−iωtdω = −4πδ(3)(x− x̄)δ(t− t̄)

donde ko = ω/c. Ahora aplicamos el proyector

1√
2π

∫ ∞
−∞

eiω̄tdt

lo que nos permite encontrar

∇2Ḡ+ k2
oḠ = − 1√

2π
4πδ(3)(x− x̄)ei ωt̄

Definamos

Ḡ(x, ω, x̄, t̄) =
√

2π ¯̄G(x, x̄)eiωt̄
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Esta nueva función satisface

∇2 ¯̄G+ k2 ¯̄G = −4πδ(3)(x− x̄) → ¯̄G = A
eik|x−x̄|

|x− x̄|
+B

e−ik|x−x̄|

|x− x̄|
cuya solución converge cuando k|x− x̄| → 0 (solución electrostática), lo que implica A+B = 1, e incluye la
función delta. Las dos soluciones implican dos condiciones de borde diferentes en el tiempo, i.e., (a)función
de Green retardada o causal con ondas de propagación hacia el infinito y (b), función de Green avanzada
o no causal con ondas de propagación desde el infinito. Generalmente tomamos la solución

¯̄G(x, x̄) =
eik|x−x̄|

|x− x̄|
Ahora debemos de volver a la forma G(x, t, x̄, t̄)

G(x, t, x̄, t̄) =
1

2π

∫ ∞
−∞

eik|x−x̄|

|x− x̄|
e−iω(t−t̄)dω =

δ

[
t̄−
(
t− |x− x̄|

c

)]
|x− x̄|

Vemos que si hubiéramos mantenido las dos soluciones, tendŕıamos soluciones de retardo o avance de-
pendiendo de la función de Green. En general, estamos interesados en la función retardada que garantiza
causalidad, donde la solución general

ψ(x, t) =

∫
[f(x̄, t̄)]ret
|x− x̄|

dx̄3

con la definición de retardo

t̄(x, t, x̄) = t− |x− x̄|
c

que garantiza que la fuente no contribuya antes que se vuelva activa. Esta ultima ecuación puede tener
varias soluciones, dependiendo del problema.

1.2.2. Solución en el espacio k− ω

Como estamos interesados en el espacio infinito, hacemos una expansión de la función de Green en funciones
propias de la ecuación de onda sin bordes.

G(x, t, x̄, t̄) =
1

(2π)2

∫
¯̄G(k, ω, x̄, t̄)ei((k·x−ωt)dωd3k

δ(3)(x− x̄)δ(t− t̄) =
1

(2π)2

∫
eik·(x−x̄)e−iω(t−t̄)dωd3k

Incluimos un término disipativo,

∇2G− 1

c2

∂2G

∂t2
− ε∂G

∂t
= −4πδ(3)(x− x̄)δ(t− t̄)
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con ε > 0, que da la flecha en el tiempo que discutimos antes. Esto es equivalente a la disipación en el
péndulo simple

θ̈ + βθ̇ + ω2
o sin θ = 0

Con esta expansión, obtenemos (
−k2 +

ω2

c2
+ iωε

)
¯̄G = − 4π

(2π)2
e−i(k·x̄)eiωt̄

Primero hacemos la integración en dk3 = k2 sin θdkdθdφ

Ḡ(x, ω, x̄, t̄) =
1

π

eiωt̄

(2π)3/2

∫
dk3 eik·(x−x̄)

k2 − ω2

c2
− iωε

con k · (x− x̄) = k|x− x̄| cos θ

Ḡ(x, ω, x̄, t̄) =
1

π

1

(2π)1/2

eiωt̄

i|x− x̄|
∫∞

0
kdk

eik|x−x̄| − eik|x−x̄|

(k + (ω/c) + ciε)(k − (ω/c)− ciε)

=
1

π

1

(2π)1/2

eiωt̄

i|x− x̄|
∫∞
−∞ kdk

eik|x−x̄|

(k + (ω/c) + ciε)(k − (ω/c)− ciε)
Esta integral es hecha por una continuación anaĺıtica del integrando al plano complejo, y seleccionando
los contornos apropiados. Un integrando requiere acercarse en el plano superior, y el otro en el inferior.
Recordemos que los contornos deben ser en el sentido de las agujas del reloj. La integral es par, aśı que
puede ser extendida a menos infinito, entonces

Ḡ(x, ω, x̄, t̄) =
1

2π

1

(2π)1/2
eiωt̄

2πeiko|x−x̄|

|x− x̄|
Desarrollamos la integral en el espacio ω para obtener

Ḡ(x, t, x̄, t̄) =
1

|x− x̄|
1

2π

∫
dωe−iω(t−t̄)eiko|x−x̄| =

δ

(
t̄− t+

|x− x̄|
c

)
|x− x̄|

Y obtenemos el mismo resultado anterior, pero sin ningún argumento de causalidad, etc.

1.3. Campos producidos por una part́ıcula

Para el movimiento general de cargas, usaremos transformaciones de campos en una forma covariante cuando
estudiemos relatividad, pero por ahora podemos usar esta expresión para el caso de una particular

ρ(x, t) = eδ(3)(x− r(t)) J(x, t) = ev(t)δ(3)(x− r(t))

para lo que podemos escribir la solución inmediatamente como
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ψ(x, t) = e

∫ δ

(
t̄− t+

|x− r(t̄)|
c

)
|x− r(t̄)|

dt̄

Para integrar esta ecuación debemos hacer un cambio de variables

τ = t̄− t+
|x− r(t̄)|

c

dτ = dt̄

(
1 +

1

c

d

dt̄
|x− r(t̄)|

)
= dt̄

[
1−

(
β(t̄) · (x− r(t̄))

|x− r(t̄)|

)] (1)

de esto, obtenemos, usando

R(t) = x− r(t)

β(t) =
v(t)

c

K(t) = R(t)− β(t) ·R(t)


→

ψ(x, t) = e

[
1

K

]
ret

A(x, t) = e

[
β

K

]
ret

evaluado (con el paréntesis cuadrado) en el tiempo retardado t̄(t,x, x̄) que se resuelve de

t̄ = t− |x− r(t̄)|
c

Esto significa que para un tiempo t y una posición x dada, tenemos que resolver esta ecuación, con lo que
obtenemos t̄(t,x, x̄).

Los campos pueden ser calculados de la manera usual, para obtener

E = e

[
1

γ2R2

R̂− β
(1− β · R̂)3

]
ret

+
e

c

 1

R

R̂×
(

(R̂− β)× β̇
)

(1− β · R̂)3


ret

y el campo magnético es

B =
[
R̂× E

]
reta

Notemos que el campo está evaluado en la posición retardada r(̄t), donde la part́ıcula estaba al momento
en que la onda fue emitida. Además, los campos radiados (∼ R−1) se producen cuando aceleramos cargas.
Para una trayectoria dada, podemos calcular los campos inducidos por la carga en movimiento en el espacio
y el tiempo. Una forma de calcular esto es graficarlo en Mathematica y ver su evolución.

Definamos la función
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f(x, t, t̄) = c(t̄− t) + |x− r(t̄)| = c(t̄− t) +
√
x2 + r(t̄)2 − 2x · r(t̄)

para la cual tenemos que encontrar sus ceros t̄i. Si buscamos las soluciones causales, entonces la señal
partió antes de ser recibida, esto es t̄ ≤ t. Además, f(x̄, t, t) > 0. Notemos que si β < 1 esta función tiende
a ±∞ para t̄→ ±∞, por lo tanto hay un cero por lo menos. Calculemos la derivada de esta ecuación con
respecto a t̄,

1

c

∂f

∂t̄
= 1 +

(r(t̄)− x)

|x− r(t̄)|
· β(t̄)

Por lo tanto

Si β < 1 entonces esta derivada es positiva, y existe una solución causal t̄ ≤ t y se utiliza las expresiones
de arriba para los campos

si β > 1 pueden existir mas de una solución para algún x, t. Estas soluciones hay que tomarlas en
cuenta y sumar los campos producidas por ellas

E(x, t) =
∑
i

E[t̄i(x, t),x, t]

ya que al hacer la transformación cτ = c(t− t̄) + |x− r(t̄)| hay que considerar todos los ceros que se
obtienen de evaluar la función delta.

En particular, podemos calcular la enerǵıa radiada como

dP

dΩ
= (S · x̂)x2 → Ptot =

∫
dP

dΩ
dΩ

lejos de la fuente.

1.4. Caso: velocidad constante

En este caso tenemos

r(t) = βot

donde hemos normalizado el tiempo y el espacio apropiadamente. Buscando soluciones f́ısicas escribimos

t̄2(1− βo)2 + t̄(2βo · x− 2t) + (t2 − x2) = 0

que tiene solución

t̄ =
(t− βo · x)±

√
(βo · x− t)2 − (t2 − x2)(1− β2

o)

(1− β2
o)
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Para el caso particular de βo < 1 tenemos una solución f́ısica t > t̄, que esta dada por

t̄ =
(t− βo · x)−

√
(βo · x− t)2 − (t2 − x2)(1− β2

o)

(1− β2
o)

donde el campo electromagnético esta dado por

E(x, t) =
en̂(t)(1− β2)

R2|1− β2 sin2 θ|3/2

donde en este caso muy particular n(t) = x− r(t), osea el campo apunta en todo el espacio a la dirección
instantánea en tiempo t, y no en t̄. Esto es como si no hubiera retardo, pero es consistente con la teoŕıa de
la relatividad. Esto solo se da para el caso particular de una aceleración a = 0. Los patrones de radiación se
ven en la Fig. 1 para diferentes velocidades donde podemos observar este efecto particular. Este resultado
ya lo calculamos en relatividad.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

ct=1.5 Β=0.2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

ct=1.5 Β=0.9

Figura 1: E2 en z = 1 para (a) β = 0,2 (b) β = 0,9. Las unidades son en c = 1. la linea roja es la trayectoria
de la part́ıcula.

Para el caso particular de βo > 1 podemos tener dos soluciones f́ısicas t > t̄

t̄ =
(t− βo · x)±

√
(βo · x− t)2 − (t2 − x2)(1− β2

o)

(1− β2
o)

como es el caso en la Fig. 2a. Estas dos soluciones hay que tomarlas en cuenta y sumar los campos producidas
por ellas
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E(x, t) =
∑
i

E[t̄i(x, t),x, t]

Los patrones de radiación se ven en la Fig. 2b, mostrando el patrón esperado. Este patrón se denomina
patrón de Cherenkov, y se utiliza por ejemplo para medir un flujo de neutrinos.

-1 -0.5 0.5 1 1.5 2
t’

0.5

1

1.5

2

C

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2
t=0.5 Β=1.2

Cos@ΘcD=1�Β

Figura 2: (a) La diferencia t̄ − t + |x − r(t̄)| en x = 1 y = z = 0 para β = 1,2. (b) Patrón de radiación de
Cherenkov, dado por E2. La linea roja corresponde a la trayectoria de la part́ıcula.

1.5. Caso: radiación para una part́ıcula acelerada

En este caso tenemos

[S · R̂]ret =
e2

4πc

 1

R2

∣∣∣∣∣∣
R̂×

(
(R̂− β)× β̇

)
(1− β · R̂)3

∣∣∣∣∣∣
2

ret

Notemos que esta formula solo funciona mientras v << c, osea para situaciones como movimiento acotado.

Notemos que si medimos la radiación producida por una carga entre t1 y t2 (la radiación fue emitida entre
t̄1 y t̄2 respectivamente), mediŕıamos

[R2]ret

∫ t2

t1

[S · R̂]retdt =

∫ t̄2

t̄1

S · R̂dt
dt̄
dt̄

Entonces la potencia radiada por ángulo solido es
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dP (t̄)

dΩ
= R2(S · R̂)

dt

dt̄
= R2(S · R̂)(1− β · R̂)

y por lo tanto

dP (t̄)

dΩ
=

e2

4πc

∣∣∣R̂× ((R̂− β)× β̇
)∣∣∣2

|1− β · R̂|5

Es importante notar que en principio R(x, t) = x−r[t̄(t,x)] esta cambiando de dirección, y nosotros hemos
calculado S · R̂. Si queremos hacerlo con respecto a una dirección fija en el espacio, tendŕıamos que calcular

[S]ret · r̂

1.5.1. Caso β̇ 6= 0 con β << 1

En este caso 1− β · R̂ ≈ 1, y por lo tanto

E =
e

c

[
1

R
R̂×

(
R̂× β̇

)]
ret

El vector de Poynting es

[S]ret =
c

4π
[E×B]ret =

c

4π

[
|E|2R̂

]
ret

Notemos que para velocidades pequeñas comparadas con c, muy lejos de la fuente tenemos,

R ∼ r

y por lo tanto la potencia radiada por ángulo solido es

dP

dΩ
= S · R̂R2 =

e2

4πc

∣∣∣R̂× (R̂× β̇)∣∣∣2
ret

=
e2

4πc3
|v̇|2ret sin θ2

Donde θ es el ángulo con respecto a la dirección de propagación. Por lo tanto

P =
2e2

3c3
|v̇|2ret

Que es la famosa formula de Larmor que se utiliza en astrof́ısica. Notemos que esta formula solo funciona
mientras v << c, osea para situaciones como movimiento acotado.

1.5.2. Movimiento colineal

El caso particular de una carga en movimiento con su velocidad y aceleración (constante) paralela es

dP (t̄)

dΩ
=
e2|v̇|2

4πc3

sin2 θ

|1− β cos θ|5

con lo que obtenemos
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P (t̄) =
2e2|v̇|2

3c3

1

(β2 − 1)3

En la Fig. 3a se muestra este patrón de radiación para diferentes velocidades. POr supuesto, este patrón
aplica mientras |v| < c, ya que entonces tendŕıamos que incluir una segunda solución, como en el caso de
Cherenkov.

Β=0.1

Β=0.5

-3 -2 -1 1 2 3

1

2

3

Figura 3: (a) Patrón de radiación para situación colineal.

-2 -1 0 1 2

-2

-1

0

1
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ct=1 a=0.45 Β=0.225

-2 -1 0 1 2

-2

-1

0

1

2

x

y

ct=2 a=0.45 Β=0.9

Figura 4: E2 con z = y β̇ = 0,45 en (b) ct = 1, (c) ct = 2.

Quizás mas interesante aun es la situación

r(t) =

[
0 t ≤ 0
1

2
β̇t2x̂ t > 0

En la Fig. 3b-c se muestra el patrón de radiación
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dP (t)

dΩ
= S · r̂r2

para r fijo.
para z = 0, y con r = (x, y, z) desde el origen. Vemos claramente la propagación hacia fuera de la onda.

1.5.3. Movimiento colineal relativsta

En este caso asumiremos, como lo hicimos en el problema de Gemelos, que la particula acelera en forma
constante en su sistema de referencia. Por lo tanto tenemos que resolver

ẍ0 =
a

c
ẋ1

ẍ1 =
a

c
ẋ0

con la condiciones inicial

x0(0) = x1(0) = ẋ1(0) = 0 ẋ0 = 0

Luego de invertir la ecuacion ct = x0(τ) por τ(t), we can write

x(t) =
1

ao

[√
1 + a2

ot
2 − 1

]
β(t) =

t√
1 + a2

ot
2

β̇(t) = ao
1

(1 + a2
ot

2)3/2

donde hemos normalized a unidades-luz (t → ct, x → x/c, β̇ → β̇) con ao = a/c2. Asumiremos que la
particula esta en reposo para t < 0. Vemos que a medida que el tiempo aumenta, la velocidad tiende a
v → c.

2 4 6 8 10
ta�c

0.2

0.4

0.6

0.8

1.0

Β
°

a�c Β

Figura 5: Velocidad de la particula

los campos radiados se muestra en la Fig. 6 para dos tiempos de interes.
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Figura 6: E2 con z = 0 y β̇ = 0,25 en (b) ct = 10, (c) ct = 20.

1.5.4. Movimiento circular

El caso particular de una carga en movimiento en un circulo, tenemos la velocidad y la aceleración perpen-
dicular

r(t) = ro [cosωt, sinωt, 0] = −ror̂

β(t) = roω [− sinωt, cosωt, 0] = βot̂

β̇(t) = −ω2ro [cosωt, sinωt, 0] = −ω2ror̂

Si el radio es suficientemente pequeño, tiene sentido promediar en t. Por lo tanto

dP (t̄)

dΩ
=
e2ω4r2

o

4πc3

1

T

∫ T

0

∣∣∣R̂× ((R̂− βot̂)× r̂
)∣∣∣2

|1− βot̂ · R̂|5
dt

Este patrón de radiación se muestra en la Fig. 7a.

Β=0.1

Β=0.8

-1.5 -1.0 -0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

Figura 7: (a) Patrón de radiación para movimiento circular, promediado en el tiempo para R̂ ∼ r̂.
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En la Fig. 8a-d se muestra el patrón de radiación

dP (t)

dΩ
= S · r̂r2

en las dos fases de rotación y en los diferentes planos. Aqúı no hemos hecho ninguna aproximación. Vemos
una espiral propagándose hacia el infinito. Es posible construir el patrón de radiación

G(θ, φ) =
c

(4π)2

∫ 2π/ω

0

dt S · r̂

Aveces es posible ver el tipo de radiación que obtenemos por el espectro de la radiación. Para esto podemos
estimar

S(ω) =
1√
2π

∫
dte−iωtS(t)

2. Vector de Hertz: otra formulación

En el espacio vaćıo podemos definir un potencial de Hertz

J =
∂Q

∂t

ρ = − (∇ ·Q)

→
ψ = − (∇ ·Π)

A =
1

c

∂Π

∂t

∇2Π− 1

c2

∂2Π

∂t2
= −4πQ

y los campos son entonces

B =
1

c

[
∇× ∂Π

∂t

]
E = (∇×∇×Π)− 4πQ

que pueden ser resueltos en el espacio de Fourier (tiempo y espacio) cuando ρ = 0, ya que J y Q se pueden
relacionar.

2.1. El caso de materiales

En la presencia de una material
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Figura 8: Patrón de radiación para movimiento circular en el plano x− y para (a) ωt = 0 y (b) ωt = π; y
en el plano x− z para (c) ωt = 0 y (d) ωt = π
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D = E− 4πP

H = B− 4πM

tenemos

J =
∂Q

∂t
+
∂P

∂t
+ c (∇×M)

ρ = − (∇ ·Q)− (∇ ·P)

→
ψ = − (∇ ·Πe)

A =
1

c

∂Πe

∂t
+ (∇×Πm)

∇2Πe −
1

c2

∂2Πe

∂t2
= −4π(P + Q)

∇2Πm −
1

c2

∂2Πm

∂t2
= −4πM

los campos son

B =

(
1

c
∇× ∂Πe

∂t

)
+ (∇×∇×Πm)

E = (∇×∇×Πe)−
(

1

c
∇× ∂Πm

∂t

)
− 4π(Q + P)

3. Ecuación de onda: campo lejano

Sabemos que en general tenemos la solución completa para Ψ y A,

ψ(x, t) =
∫ ρ

(
x̄, t− |x− x̄|

c

)
|x− x̄|

dx̄3

A(x, t) =
1

c

∫ J

(
x̄, t− |x− x̄|

c

)
|x− x̄|

dx̄3

usando el Gauge de Lorenz, en el espacio-tiempo, para una distribución localizada en carga y corriente.

En muchas situaciones donde tenemos una distribución localizada de carga, es factible calcular la aproxi-
mación de campo lejano haciendo

|x− x̄| ≈ r

y por lo tanto tenemos
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ψ(x, t) =
1

r

∫
ρ
(
x̄, t− r

c

)
dx̄3

A(x, t) =
1

cr

∫
J
(
x̄, t− r

c

)
dx̄3

Hay que ser cuidadoso cuando hacemos esta expansión, en especial cuando hay variaciones temporales
importantes y tenemos efectos de propagación dentro de la distribución de carga (generalmente efectos
relativistas). Esto lo discutiremos abajo.

Cuando tenemos cargas microscópicas moviéndose, podemos escribir

ρ(x, t) =
∑

n qnδ
(3)(x− rn(t))

J(x, t) =
∑

n qnvn(t)δ(3)(x− rn(t))

con lo cual podemos escribir

ψ(x, t) =
1

r

∑
n qn

A(x, t) =
1

cr

∑
n qnvn (t− r/c)

Si la carga total del sistema es cero y definimos el dipolo eléctrico como

p(t) =
∑
n

qnrn(t) ,

entonces obtenemos

ψ(x, t) = 0

A(x, t) =
1

cr
ṗ (t− r/c)

Podemos escribir los campos como

B = ∇×A =
1

c2r
p̈ (t− r/c)× r̂ +O(1/r2)

y

E = −1

c

∂A

∂t
=

1

c2r
p̈ (t− r/c)

Notemos que

B = −E× r̂

con lo que podemos calcular
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S =
c

4π
E×B = − c

4π
E× (E× r̂) =

c

4π

( q

c2r

)2 [
|p̈|2 r̂ − (p̈ · r̂)p̈

]
t=r/c

y por lo tanto

dP

dΩ
=

c

4π

( q

c2r

)2 [
|p̈|2 − (p̈ · r̂)2]

Vemos un resultado que va a ser importante mas adelante. La potencia radiada va como

P ∼ ω4 ∼ k4

la frecuencia del sistema.

Problema: Tomemos unas part́ıculas de carga q y masa m que se mueve en un campo magnético uniforme
Bo. Demuestre que la trayectoria es

r(t) = [
v⊥
Ω

cos(Ωt+ φ),
vn
Ω

sin(Ωt+ φ), zo + v‖t]

donde v⊥ es la velocidad inicial perpendicular al campo, v⊥ es la velocidad inicial paralela al campo, φ es la
fase inicial de la part́ıcula, y Ω = eBo/mc. Asumiendo que β << 1, encuentre los potenciales y los campos
radiados en la aproximación de campo lejano para esta part́ıcula. Si tenemos N de estas part́ıculas, con
la misma masa y carga, encuentre dP/dΩ. Asuma que tenemos una distribución termal definida por una
temperatura T⊥ y T‖ con respecto al campo magnético, tal que

1

2

∑
nmv

2
⊥ = T⊥

1

2

∑
nmv

2
‖ = T‖

Para estas part́ıculas tenemos

ρ(x) =
∑
n

qnδ
(3) (x− rn(t)) J(x) =

∑
n

qnvn(t)δ(3) (x− rn(t))

donde

rn(t) = [
vn,⊥
Ω

cos(Ωt+ δn),
vn,⊥
Ω

sin(Ωt+ δn), zn,o + vn,‖t]

vn(t) = [−vn,⊥ sin(Ωt+ δn), v⊥,n cos(Ωt+ δn), vn,‖]

an(t) = [−vn,⊥Ω cos(Ωt+ δn),−v⊥,nΩ cos(Ωt+ δn), 0]

con Ω = eBo/mc. En la aproximación de campo lejano |x− x̄| = r tenemos
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Ψ =
1

r

∑
n qn

A =
1

r

∑
n qnvn(t− r/c)

Por lo tanto los campos lejanos son

E = − 1

cr

∑
n qnan(t− r/c)

B =
1

cr

∑
n qnr̂× an(t− r/c)

Notemos que hemos asumido que Ψ = 0, que implica que existe un background de particulas de carga −qn
para neutralizar

∑
n qn, tal que podemos usar

E = −1

c

∂A

∂t
.

De lo contrario tendriamos un potencial escalar, y por lo tanto habria que usar

E =
q

cr
r̂ ×

[
(r̂ − β)× β̇

]
para el campo radiado lejano. En ambos casos el campo magnetico es

B = r̂ × E .

El vector de Poynting es

r2S · r̂ = r2 c

4π
(E×B) · r̂ =

1

4πc

∑
n

∑
m

qnqm (an · am − (an · r̂)(am · r̂))

Notemos que si δn esta distributido uniformemente entre [0, 2π], entonces podemos definir

φn = δn = 2π
n

N
dφn = 2π

∆n

N

con lo cual∑
n

∑
m

cos[Ωt+ δn] cos[Ωt+ δm]∆n∆m =
N2

(2π)2

∫
dφ1

∫
dφ2 cos[Ωt+ φ1] cos[Ωt+ φ2] =

N2

4π

y por lo tanto

∑
n

∑
m cos[Ωt+ δn] cos[Ωt+ δm] =

∫
dφ1

∫
dφ2 cos[Ωt+ δn] cos[Ωt+ δm] =

N2

4π∑
n

∑
m cos[Ωt+ δn] sin[Ωt+ δm] =

∫
dφ1

∫
dφ2 cos[Ωt+ δn] sin[Ωt+ δm] = 0∑

n

∑
m sin[Ωt+ δn] sin[Ωt+ δm] =

∫
dφ1

∫
dφ2 sin[Ωt+ δn] sin[Ωt+ δm] =

N2

4π
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Con lo cual vemos que es un proceso coherente. Usando las expresiones de arriba podemos escribir

r2S · r̂ =
N2q2(v⊥Ω)2

16π2c
(3 + cos 2θ)

Con la definición T⊥ = m v2
⊥/2, podemos finalmente escribir

dP

dΩ
=
q2Ω2N2T⊥

8π2mc
(3 + cos 2θ) P =

q2Ω2T⊥
πmc

Problema Cual es el patron de radiacion de una sola particula? Si usamos esta expresion y promediamos
durante la duracion del movimiento ciclotronico ∆t = 2π/Ω obtenemos la misma expresion anterior?

En este caso tenemos el mismo caso anterior

∂P

∂Ω
= r2S · r̂ = r2 c

4π
(E×B) · r̂ =

q2

4πc

(
|a| − (a · r̂)2

)
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Figura 9: Patrón de radiación para movimiento circular de una particular en el plano (a) x− y y (b) x− z
para ωt = 0.

El campo radiado se puede ver en la Fig. 9a-b. El patron de radiacion promediado en el tiempo〈
∂P

∂Ω

〉
=

1

T

∫ T

0

∂P

∂Ω
dy =

q2Ω2

8πmc
T⊥(3 + cos 2θ) P =

q2Ω2T⊥
πmc
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Figura 10: Patron promediado en el tiempo.

4. Ecuación de onda escalar: oscilaciones harmónicas

Podemos construir un teorema de Green para soluciones harmónicas. Para este caso definimos

∇2G+ k2
oG = −4πδ(3)(x− x̄)

con ko = ω/c. Vemos que el teorema de green para la electrostática funciona perfectamente y

Φω(x) =

∫
Ω

ρ(x̄) G(x, x̄) dx̄3 +
1

4π

∮
δΩ

(
G(x, x̄)

∂

∂nx̄
Φ(x̄)− Φ(x̄)

∂

∂nx̄
G(x, x̄)

)
dSx̄

Las condiciones de borde de Dirichlet se usan cuando Φ está definido en el borde, y las condiciones borde
de Neumann cuando ∂Φ/∂n está definido en el borde.

Nuevamente tenemos dos condiciones naturales

especificar el potencial en el borde, Φ(x)|∂Ω

especificar la carga en el borde,
∂Φ(x)

∂n

∣∣∣∣
∂Ω

Vemos inmediatamente que especificar los dos tipos de condiciones seria redundante, y generaŕıa soluciones
no reales. Esto significa que dada un tipo de condición de borde para Φ, tenemos que hacer cero una de las
integrales de superficie de arriba, y para eso utilizamos la flexibilidad de G.

En el caso de las condiciones de borde de Dirichlet, forzamos G(x, x̄) =|x̄∈δΩ 0 para x̄ en el borde, lo cual
es equivalente a encontrar la carga en la superficie

Φω(x) =

∫
Ω

ρ(x̄) G(x, x̄) dx̄3 − 1

4π

∮
∂Ω

Φ(x̄)
∂

∂nx̄
G(x, x̄) dSx̄

En el caso de las condiciones borde de Neumann, también se pueden definir.

22



Notemos también que esta función de green también funciona para los campos eléctricos y magnéticos. Esto
se usará mas adelante.

4.1. Función de Green en coordenadas cartesianas para el espacio infinito

Es bastante trivial darse cuenta que la función de green en coordenadas cartesianas es

G(x, x̄) =
eiko|x−x̄|

|x− x̄|
Ahora enfrentaremos otros sistemas de coordenadas.

4.2. Función de Green en coordenadas esféricas para el espacio infinito

Supongamos que ahora expandamos la ecuación de onda en termino de una expansión de Fourier en el
tiempo para obtener

∇2Ψ + k2
oΨ = 0

Si ahora expandimos esta ecuación en coordenadas esféricas como

Ψ =
∑
`,m

u(r)√
r
Y`,m(θ, φ)

obtenemos la ecuación  d2

dr2
+

1

r

d

dr
+ k2

o −

(
`+

1

2

)2

r2

u = 0

Esta ecuación define las funciones de Bessel esféricas

j`(x) =

√
π

2x
J`+1/2(x)

n`(x) =

√
π

2x
N`+1/2(x)

De la misma forma podemos definir las funciones de

h
(1)
` (x) = j`(x) + in`(x) r →∞ (−i)`+1 1

x
eix

h
(2)
` (x) = j`(x)− in`(x) r →∞ (−i)`+1 1

x
e−ix

Por lo tanto la solución general de la ecuación de arriba es
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Ψ =
∑
`,m

(A`,mj`(kor) +B`,mn`(kor))Y`,m(θ, φ)

Ahora podemos construir la función de green para el caso general, expandiendo

G =
∑
`,m

g`,m(r, r′)Y`,m(θ, φ)Y ∗`,m(θ′, φ′)

que tiene una solución

g(r, r′) = Aj`(kor<)h
(1)
` (kor>)

que tiene soluciones que se propagan hacia el infinito. Evaluando la discontinuidad para valores grandes,
podemos encontrar que

G(x, x̄) =
eiko|x−x̄|

|x− x̄|
= iko

∑
`,m

4πj`(kor<)h
(1)
` (kor>)Y`,m(θ, φ)Y ∗`,m(θ̄, φ̄)

Esta expansión sera útil mas adelante cuando veamos problemas de radiación.

5. Ecuación de onda vectorial: oscilaciones harmónicas

Supongamos que tenemos que resolver la ecuación de Maxwell (para una variación harmónica en el tiempo)

∇ ·D = 4πρ ∇× E = i
ω

c
B

∇ ·B = 0 ∇×H =
4π

c
J− iω

c
D

lo que da origen a una ecuación de onda vectorial. Para el caso en que no tenemos fuentes (o materiales
homogéneos), la ecuación para el campo eléctrico es

∇2E +
√
µεk2

oE = 0 ∇ · E = 0 B = − i

ko
∇× E

y para el campo magnético es

∇2B +
√
µεk2

oB = 0 ∇ ·B = 0 E =
i

koµε
∇×B

donde ko = ω/c. Definamos k = ko
√
µε.

Notemos que si Ψ es una solución de la ecuación escalar, ∇Ψ es una solución de la ecuación de onda
vectorial, ya que

∇2(∇Ψ) = ∇(∇2Ψ)

Definamos el operador
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L = −i(r×∇)

Notemos que

Lψ = −i(r×∇Ψ) = i∇× (rψ)

por lo tanto la divergencia de este vector es nulo. Además

∇2Lψ = i∇2(∇× (rΨ)) = i∇×∇2(rψ)

y usando

∇2(rψ) = 2∇Ψ + r∇2Ψ

podemos demostrar que

∇2Lψ + k2LΨ = 0

Por lo tanto Lψ satisface la ecuación de onda vectorial. En principio podŕıamos esperar que la solución
(transversal eléctrico)

E = LΨ

es correcta, pero esta no esta completa. Esto se debe a que en principio B también se puede escribir de esta
forma, y por lo tanto la solución debeŕıa ser también

E =
i

k
∇×B

Por lo tanto la solución completa es

E = aLΨE +
i

k
b∇× (LΨB)

B = bLΨB −
i

koµε
a∇× (LΨE)

Notemos también que precisamente el operador ∇×∇× vuelve a dar algo proporcional LΨ. Por lo tanto
es una solución completa.

5.1. En coordenadas esféricas

Para el caso de coordenadas esféricas este operador es

LΨ = i∇× (rψ) =
i

r2 sin θ

∣∣∣∣∣∣∣∣∣∣
r̂ rθ̂ r sin θφ̂

∂

∂r

∂

∂θ

∂

∂φ

rΨ 0 0

∣∣∣∣∣∣∣∣∣∣
o en pocas palabras
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LΨ = i

[
1

sin θ

∂Ψ

∂φ
θ̂ − ∂Ψ

∂θ
φ̂

]

Mientras que

∇× LΨ =
i

r2 sin θ

∣∣∣∣∣∣∣∣∣∣∣

r̂ rθ̂ r sin θφ̂

∂

∂r

∂

∂θ

∂

∂φ

0
r

sin θ

∂Ψ

∂φ
−r sin θ

∂Ψ

∂θ

∣∣∣∣∣∣∣∣∣∣∣
o en pocas palabras

∇× LΨ =
i

r

[
L2Ψr̂ +

∂2(rΨ)

∂r∂θ
θ̂ +

1

sin θ

∂2(rΨ)

∂r∂φ
φ̂

]

con la definición

L2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

sin2 θ

∂2Φ

∂φ2

]
Notemos que este operador L no tiene componente radial, por lo tanto

L[f(r)g(θ, φ)] = f(r)Lg(θ, φ)

y en part́ıcula podemos demostrar que

L2Y`,m(θ, φ) = `(`+ 1)Y`,m(θ, φ)

Por lo tanto podemos escribir la solución general como

E =
∑

`,m

[
a`,mf`(kr)X`,m +

i

k
b`,m∇× (g`(kr)X`,m)

]
B =

∑
`,m

[
b`,mg`(kr)X`,m −

i

ko
a`,m∇× (f`(kr)X`,m)

]
donde a`,m representa la cantidad de campo eléctrico multipolar y b`,m representa la cantidad de campo
magnético multipolar. Es interesante notar el termino ` = 0 no existe. Hemos definido el campo

X`,m =
1√

`(`+ 1)
LY`,m(θ, φ)

que nos permite establecer
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∫
X∗¯̀,m̄ ·X`,mdΩ = δ¯̀,`δm̄,m

Para este caso particular podemos escribir

X`,m(θ, φ) =
i√

`(`+ 1)

[
im

sin θ
Y`,m(θ, φ)θ̂ − ∂Y`,m(θ, φ)

∂θ
φ̂

]
i

k
∇× [g`(kr)X`,m(θ, φ)] =

1√
`(`+ 1)(kr)

[`(`+ 1)g`(kr)Y`,mr̂

+
∂(rg`(kr))

∂r

∂Y`,m
∂θ

θ̂ +
im

sin θ

∂(rg`(kr))

∂r
Y`,mφ̂

]
Notemos que

[X`,m(θ, φ)] ·
[
i

k
∇× [g`(kr)X`,m(θ, φ)]

]
= 0

Vemos que en principio podŕıamos escribir la solución explicita

a`,mf`(kr) =
∮
r1

X∗`,m · EdΩ

b`,mg`(kr) =
∮
r2

X∗`,m ·BdΩ
(2)

para algún radio r1 y r2.

Problema: Supo gamos que tenemos una onda plana que es incidente sobre una esfera conductora. Asu-
mamos que µ = ε = 1. Encontrar los campos de escatering.

Partiendo con

eik|x−x̄|

|x− x̄|
= ik

∑
`,m

4πj`(kr<)h
(1)
` (kr>)Y`,m(θ, φ)Y ∗`,m(θ̄, φ̄)

podemos expandir para grandes distancias r, lo que implica que

eik̄·x =
∑
`,m

4πi`j`(kr)Y`,m(θ, φ)Y ∗`,m(θ̄, φ̄)

donde k̄ tiene componentes k, θ̄ y φ̄. Tomemos una onda que se propaga en la dirección ẑ (θ̄ = φ̄ = 0) con
un campo en la dirección x. Esto implica que

EI = Eox̂e
ikr cos θ = Eoe

ikr cos θ
(

sin θ cosφr̂ + cos θ cosφθ̂ − sinφφ̂
)

BI = Eoŷe
ikr cos θ = Eoe

ikr cos θ
(

sin θ sinφr̂ + cos θ sinφθ̂ + cosφφ̂
)
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donde

eikr cos θ =
∞∑
`=0

(2`+ 1)i`j`(kr)P`(cos θ)

Esto implica que podemos escribir la solución general como

E = Es + EI B = Bs + BI

donde Es y Bs satisface la expansión de arriba

Es =
∑

`,m

[
a`,mh

(1)
` (kr)X`,m +

i

k
b`,m∇×

(
h

(1)
` (kr)X`,m

)]
Bs =

∑
`,m

[
b`,mh

(1)
` (kr)X`,m −

i

ko
a`,m∇×

(
h

(1)
` (kr)X`,m

)]
para tener condiciones de borde de salida en el infinito. Notemos que las condiciones de borde de interés
son

Eθ = Eφ = 0 Br = 0

sobre la superficie de la esfera. Notemos que

∂

∂θ
eikr cos θ = −ikr sin θeikr cos θ

y que

dP`(cos θ)

dθ
= −P 1

` (cos θ)

Por lo tanto la condición de borde para Br(r = a, θ, φ) es

− 1

ka
Eo
∑
`=1

(2`+ 1)i`−1j`(ka)P 1
` (cos θ) sinφ−

∑
`,m

a`,m
`(`+ 1)√
`(`+ 1)(ka)

h
(1)
` (ka)Y`,m(θ, φ) = 0

Inmediatamente vemos que sobreviven los términos m = ±1, y que

a`,m = −Eo
i`−1(2`+ 1)

√
`(`+ 1)

`(`+ 1)

j`(ka)

h
(1)
` (ka)

1

2i
[δm,−1 − δm,1] 2πC`,m

∫ 1

−1

Pm
` (x)P 1

` (x)dx

Ahora podemos evaluar

2πC`,1
∫ 1

−1
P 1
` (x)P 1

` (x)dx = −

√
π

(2`+ 1)

(`+ 1)!

(`− 1)!

2πC`,−1

∫ 1

−1
P−1
` (x)P 1

` (x)dx = +

√
π

(2`+ 1)

(`+ 1)!

(`− 1)!

Esto implica que

28



a`,m = −Eoi`−1(2`+ 1)
j`(ka)

h
(1)
` (ka)

1

2i
[δm,−1 − δm,1]

Para encontrar b`,m podemos utilizar la condición Eφ(r = a, θ, φ) = 0. Por lo tanto podemos construir una
solución completa al problema.

5.2. Fuente Localizada

Para expandir una fuente localizada, podŕıamos usar Eq. 2. Pero notemos que

1

i
r · (∇×A) =

1

i
(r×∇) ·A = L ·A

con lo cual podemos encontrar

r · E =
∑

`,m

ib`,m
k

r · (∇× [g`(kr)X`,m(θ, φ))

= −
∑

`,m

b`,m
k

(L2[g`(kr)X`,m(θ, φ)])

= −
∑

`,m

`(`+ 1)b`,m
k

g`(kr)Y`,m(θ, φ)

y por lo tanto

b`,mg`(kr) = − k√
`(`+ 1)

∮
r1
Y ∗`,m(r · E)dΩ

a`,mg`(kr) =
k√

`(`+ 1)

∮
r1
Y ∗`,m(r ·B)dΩ

En el caso de que ∇ ·E 6= 0 se pueden generar 3 vectores ortonormales (mirar el Arfken) a partir de LΨ`,m

y ∇× LΨ`,m que se pueden utilizar para expandir cualquier solución.

Para el caso de una fuente localizada las ecuaciones de Maxwell son

∇ · (E + 4πP) = 4πρ ∇× E = i
ω

c
B

∇ ·B = 0 ∇× (B− 4πM) =
4π

c
J− iω

c
E

y la continuidad

ρ =
1

iω
∇ · J

Primero notemos que lejos de la fuente la expansión de arriba es
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B =
eik·x−ωt

kr

∑
`,m(−i)`+1 [a`,mX`,m + b`,mr̂ ×X`,m]

E = r̂ ×B

por lo tanto tenemos que encontrar una expresión para los a`,m y b`,m o r · E y r ·B lejos de la fuente. Es
conveniente definir el campo

Ē = E + 4πP +
4πi

ω
J

con lo que las ecuaciones son ahora

∇ · Ē = 0 ∇× Ē = i
ω

c
B +

4πi

ω
∇× J + 4π∇×P

∇ ·B = 0 ∇×B = −iω
c
Ē + 4π∇×M

lo que implica ecuaciones de onda

∇2Ē + k2
oĒ = −4π∇×

[
i

ω
∇× J + ∇×P + ikoM

]
∇2B + k2

oB = −4π∇×
[

1

c
J + ∇×M− ikoP

]
En términos de r · E y r ·B podemos escribir

∇2(r · Ē) + k2
o(r · Ē) = −4πiL ·

[
i

ω
∇× J + ∇×P + ikoM

]
∇2B + k2

oB = −4πiL ·
[

1

c
J + ∇×M− ikoP

]
Notemos que fuera de la fuente, Ē = E. La solución general es entonces

r · E = i
∫ eik|x−y|

|x− y|
L ·
[
i

ω
∇× J + ∇×P + ikoM

]
dy3

r ·B = i
∫ eik|x−y|

|x− y|
L ·
[

1

c
J + ∇×M− ikoP

]
dy3

Usando la expansión ∫
dΩY ∗`,m(θ, φ)

eik|x−y|

|x− y|
= 4πikh

(1)
` (kx)j`(ky)Y ∗`,m(θy, φy)

y por lo tanto podemos ver de inmediato que

a`,m =
4πk2√
`(`+ 1)

∫
j`(kr)Y

∗
`,m(θ, φ)L ·

[
i

ω
∇× J + ∇×P + ikoM

]
dx3

b`,m = − 4πk2√
`(`+ 1)

∫
j`(kr)Y

∗
`,m(θ, φ)L ·

[
1

c
J + ∇×M− ikoP

]
dx3
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y con estas expresiones podemos calcular los coeficientes de la expansión multipolar.
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6. Ecuación de onda escalar: campo lejano para oscilaciones

harmónicas

En general tenemos que resolver el siguiente problema escalar(
∇2 − 1

c2

∂2

∂t2

)
Ψ = −4πf

con condiciones de borde, lo cual hace la situación un poco complicada, y probablemente requiera una
solución numérica.

Para el caso del espacio infinito, tenemos ya calculado la solución usando la función de Green para el espacio
infinito

∇2G−− 1

c2

∂2G

∂t2
= −4πδ(3)(x− x̄)δ(t− t̄)

G(x, t, x̄, t̄) =
1

2π

∫ ∞
−∞

eiko|x−x̄|

| x− x̄ |
e−iω(t−t̄) dω =

δ

(
t̄−
[
t− |x− x̄|

c

])
| x− x̄ |

y por lo tanto tenemos la solución

Ψ(x, t) =

∫∫
G(x, t, x̄, t̄)f(x̄, t̄) dx̄3dt̄

Donde ko = ω/c. Debemos hacer esta integración para J y ρ.

Asumamos que tenemos una fuente localizada J y ρ y estamos interesados en mirar los campos lejos de las
fuentes. En este caso tenemos una fuente armónica

ρ(x, t) = ρ(x)e−iωt J(x, t) = J(x)e−iωt

necesitamos resolver la ecuación de Helmoltz

(∇2 + k2
o)A(x, ω) = −4π

c
J(x)

Para este caso la función de Green es

G(x,y) =
1

4π

eiko|x−y|

| x− y |
= ik

∑
`

∑
m

j`(kor<)h
(1)
` (kor>)Y ∗`,m(θy, φy)Y`,m(θ, φ)

Esta expansión es en general complicada, a menos que las fuentes tengan una distribución especifica, y por
lo tanto converja después de unos pocos términos.

Si estamos interesados en casos generales, es conveniente tratar con la solución general
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A(x) =
1

c

∫
J(y)eiko|x−y|

| x− y |
d3y →

B = ∇×A

E =
i

ko
∇×B

(3)

Notemos que no necesitamos integrar el potencial eléctrico, ya que tenemos la ley de Ampere para campos
harmónicos.

6.1. Fuente localizada

En ciertas regiones del espacio podemos aproximar la solución para una fuente localizada. Notemos que
la dificultad de integrar la expresión para A es debido a la dificultad de aproximar la fase de

eiko|x−y|

Notemos que

|x− y| =
√
x2 + y2 − 2x · y = x

√
1 +

∣∣∣y
x

∣∣∣2 − 2x̂ · y
x

Podemos usar

√
1 + x = 1 +

1

2
x−

∞∑
n=2

[
(−1)n

1

2
√
π

1

n!
Γ

(
n− 1

2

)]
xn

para x < 1. El coeficiente en el paréntesis se muestra en la Fig. 11

n3�2

1 2 5 10 20 50 100
n

0.001

0.01

0.1

an

Figura 11: (a) Coeficiente de la aproximación.

Vemos que para kod > 1, donde d es el tamaño de la fuente, la fase nos puede dar problemas ya que como
integramos sobre la fuente localizada la fase puede dar 2π algunas veces, entonces la aproximación debe
ser hecha muy cuidadosamente. Usualmente las aproximaciones relevantes son posibles si el tamaño de la
fuente d satisface

kod ≤ 1
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En esta aproximación particular, hay tres regiones de interés:

1. Zona cercana (estática) d < x << λ: En este caso podemos utilizar la aproximación

eiko|x−y| ∼ 1

y la solución es construida por los métodos descritos en caṕıtulos anteriores para campos estáticos
con múltiplos escalares.

2. Zona intermedia d << x ∼ λ : En este caso hay que hacer el calculo directamente con los multipolos
derivados en este capitulo.

3. Zona lejana d << λ << x: En este caso podemos aproximar

k
√
x2 + y2 − 2x · y = kx

√
1 +

y2

x2
− 2x̂ · y

x

≈ kx

(
1− x̂ · y

x
+

1

2

y2

x2
+ . . .

)
≈ kx− kx̂ · y +

ky2

x
+ . . .

y por lo tanto vemos que los dos términos de la derecha son

ky2

x
≤ d

x
kod kx̂ · y ≤ kod

por lo tanto la serie converge rápidamente. En esta aproximación podemos entonces escribir

eiko|x−y|

| x− y |
∼ eikox

x
e−ikox̂·y

y hay que hacer la integral de esta forma.

Problema: Tomemos una fuente de corriente infinitesimal

J(x, t) = Joδ
(3)(x)e−iωtL̂

El vector potencial es

A(x) = Jo
eikox

cx
L̂
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Los campos pueden ser calculados

B = iko
Jo
c

eikox

x

[(
x̂× L̂

)(
1− 1

ikox

)]

E = iko
Jo
c

eikox

x

[(
1− 1

ikox
+

1

(ikox)2

)
L̂−

(
1− 3

ikox
+

3

(ikox)2

)(
L̂ · x̂

)
x̂

]
Vemos que tenemos claramente campos cercanos, intermedios y lejanos.

Problema: Tomemos una distribución de cargas muy cerca del origen. Asumiendo d << λ

J =
∑
i

qiviδ
(3)(x− xi)

nos da

A =
∑
i

qivi
eiko|x−xi|

c|x− xi|
≈ −iωp

eikox

cx

y por lo tanto haciendo una transformada de Fourier inversa tenemos

B =
1

cx
x̂×

(
[ṗ]

x
− 1

c
[p̈]

)

E = −
(
− [p]

x3
− [ṗ]

cx2
+

[p̈]

c2x

)
+

[(
3[p]

x3
+

3[ṗ]

cx2
+

[p̈]

c2x

)
· x̂
]
x̂

donde [ ] es el valor evaluado en el tiempo retardado t̄ = t− |x− r(t̄)|/c. Notemos que acá esta el resultado
de Larmor que encontramos antes.

6.2. Zonas lejanas

En comunicación y en astrof́ısica es de interés encontrar los campos radiados (zonas lejana). En el capitulo
3 encontramos como hacer el calculo exacto en cartesianas y en esféricas. Pero si nos reducimos a una fuente
pequeña

kod < 1

podemos ir mas allá y calcular en la zona lejana

A(x) =
eikox

cx

∫
J(y)e−ikox̂·ydy3 =

eikox

cx

∑
n

(−iko)n

n!

∫
J(y)(x̂ · y)n d3y

la cual converge rápidamente si kod << 1.
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6.2.1. Primer termino n = 0

Es interesante notar que el termino monopolar n = 0 no contribuye a menos que ω 6= 0, como ya hab́ıamos
encontrado es magnetoestatica, ya que∫

J(y) d3y = −
∫

y(∇ · J(y)) d3y = −iω
∫

yρ(y) d3y = −iωp

El vector potencial es

A(x) = −ikop
eikox

x

y los campos

B =
k2
oe
ikox

x
(x̂× p) E =

k2
oe
ikox

x
(x̂× p)× x̂

Notemos que

E = B× x̂

En la aproximación lejana podemos calcular la potencia radiada

dP

dΩ
=

c

8π
Re[x2x̂ · E×B∗] → P =

ω4

3c3
|p|2

Aqúı es importante notar el término ω4 en la potencia radiada.

Problema: Como ejemplo, consideremos una antena alimentada desde su centro. Asumamos que la corriente
en la antena es

J = Io sin

(
kod

2
− ko|z|

)
δ(x)δ(y)ẑ

Para esta corriente podemos calcular

ρ(x) =
∇ · J
iω

= ±ikoIo
ω

cos

(
kod

2
− ko|z|

)
lo que nos da el dipolo efectivo

p = 4
Io sin2 kod

4
k2

ẑ

La potencia radiada es entonces

P =
16

3
I2
o sin2 kod

4
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Esta expresión es sólo aceptable para kod � 1, ya que estamos usando la expresión para A en este limite.
También podemos integrar esto exactamente (en la zona lejana con kod < 1) y nos da

A(x) =
eikox

cx

∫
J(y)eikox̂·y d3y = ẑ

2Ioe
ikox

ckox

cos

(
kod

2
cos θ

)
− cos

(
kod

2

)
sin2 θ



En general es bastante complicado describir la corriente en una antena para diferentes frecuencias, ya que
hay que incluir la impedancia del circuito y la impedancia de radiación para diferentes frecuencias. Esto es
en general un tema complicado y requiere resolver un problema de condiciones de borde para la corriente
a lo largo de un cable conductor. Supongamos que tenemos un alambre con una corriente harmónica en ẑ,
Por lo tanto tenemos

E(x) =
i

ko

[
∇(∇ ·A) + k2

oA
]

en el Gauge de Coulomb. Por lo tanto tenemos por un lado tenemos

Ez(x) =
i

ko

[
∂2A

∂z2
+ k2

oA

]
lo que implica que sobre la superficie del alambre tenemos[

∂2

∂z2
+ k2

o

]
A(ρ = a, z) = 0

Por otro lado

Az =
1

c

∫ zo+L

zo

J(y)
eiko|x−y|

|x− y|
dy3

Estas ecuaciones tiene que se resueltas para J en la superficie del conductor. En general el resultado depende
de como es excitada la corriente sobre el conductor (centro, al final, etc.) y la condición de borde de no
corriente en los extremos. Esto es en general dif́ıcil de resolver.

Problema: Resolver el problema de un cilindro finito (pero largo) conductor forzado por una diferencia de
potencial ∆V entre sus extremos

Problema: Primera Aproximación: Potencia radiada para ω variable.

En general el circuito que produce la corriente sobre la antena, tiene una resistencia, una capacitancia y
una inductancia por unidad de largo. Además hay que incluir el efecto de la potencia radiada P (ω) por la
antena, a través de su impedancia ZA(kod). Usando los resultados del capitulo 3, vemos que
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Figura 12: (a) Potencia radiada normalizada P/|I|2 por un dipolo. (b) Potencia radiada por la antena con
Ro = 0,001, Co = 1 y Lo = 0,8.

V = RI − ikodLoI +
1

−ikdCo
I|+ ZA(kd)I = ZI

Asumamos que corriente en la antena se puede describir como en el problema anterior aun para kL > 1.
Por lo tanto

dP (kd)

dΩ
= 4|I|2 1

c

∣∣∣∣∣∣∣∣
cos

(
kod

2
cos θ

)
− cos

(
kod

2

)
sin2 θ

∣∣∣∣∣∣∣∣
2

luego de integrar obtenemos

P (kod) =
2

c
|I|2g(kod)

Todo esto debeŕıa ser igual, a primera aproximación, a la potencia que fuerza el circuito completo

Po =
1

2
V I∗ =

1

2
Z|I|2

Por lo tanto podemos estimar la potencia radiada como

P (kod) = Re
[
|I|2g(kod)

]
= Re

[
Pog(kod)

Z(kod)

]
En la Fig. 12b vemos que la potencia radiada por esta antena tiene un máximo cerca de

kod ∼ 1

Claro esta que el patrón de corriente sobre la antena no es correcto para kd > 1, por lo tanto todo esto
hay que evaluarlo con cuidado, y por lo general se hace haciendo expansiones de la ecuación de arriba en
funciones propias útiles (Bessel para esta geometŕıa).
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6.2.2. Segundo termino n = 1

Es interesante notar que si incluimos los términos de primer orden n = 1 obtenemos

p =
∫

xρ(x) d3x

m =
1

2c

∫
(x× J) d3x

 →
E =

k2
oe
ikox

x
[(x̂× p)× x̂− x̂×m]

B = x̂× E

donde hemos incluido la magnetización.

7. Escatering para kod� 1

Para el caso general podemos suponer que tenemos campos incidentes (ondas planas) dadas por

Ei = Eoε̂ie
ikox̂o·x Bi = x̂o × Ei

mientras que los campos radiados por el medio son

Es =
k2
oe
ikox

x
[(x̂× p)× x̂− x̂×m] Bs = x̂× Es

entonces necesitamos encontrar p y m.

La sección eficaz de escatering podemos definirla como la potencia irradiada en la dirección x̂, normalizada
por el flujo incidente

dσ

dΩ
= r2 (Es ×B∗s) · x̂

(Ei ×B∗i ) · x̂o
Si estamos interesados en diferenciar diferentes polarizaciones, podemos definir la sección diferencial de
escatering polarizada como la potencia irradiada en la dirección x̂ con polarización ε̂ normalizada al flujo
incidente de la dirección x̂o con polarización ε̂o

dσp
dΩ

= r2 |ε̂ · E∗s|2

|ε̂o · E∗i |2

Problema: Tomemos el campo producido por una part́ıcula en un campo electromagnético (una onda
plana)

ẍ =
q

m
Eoe

−(ko·x−iωt)
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Si kx << 1 entonces podemos calcular

p = qx =
q2

mω2
Eoe

−iωt

Para una part́ıcula los campos son

E =
k2
oe
ikox

x
(x̂× p)× x̂ B =

k2
oe
ikox

x
x̂× p

y la potencia radiada puede ser calculada con

dP

dΩ
=

c

8π
Re[x2x̂ · E×B∗] =

(
q2

mc2

)2
c

8π
|Eo|2

(
1− (p̂ · x̂)2

)
Asumiendo un campo incidente con polarización Eo. La sección eficaz diferencial de escatering es

dσ

dΩ
=

(
q2

mc2

)2

(1− (p̂ · x̂))

Dada una dirección de propagación, por ejemplo ẑ, este vector de campo puede tener cualquiera de las
direcciones de polarización en 2π. Asumiendo una distribución uniforme de polarización, debemos hacer un
promedio sobre la polarización incidente. Por lo tanto, si asumimos que tenemos una onda que se propaga
en z

p =

(
q2

ω2m

)
Eo{cos Ψ, sin Ψ, 0}

usando x̂ = [cos θ cosφ, cos θ sinφ, cos θ] podemos encontrar que

〈
dσ

dΩ

〉
ε̂o

=

(
q2

mc2

)2
1

2π

∫ 2π

0

[(x̂× p̂)× x̂]× [x̂× p̂]] · x̂ dΨ

=

(
q2

mc2

)
cos2 θ

y por lo tanto

σ =
2

3

(
q2

mc2

)2

Es interesante notar que (
q2

mc2

)2

es denominada como la sección eficaz de un electrón.
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Problema: Tomemos una pequeña esfera dieléctrica (promediado sobre las polarizaciones). Notemos que
si ka << 1 entonces podemos utilizar el resultado estático

p =

(
ε− 1

ε+ 2

)
a3Ei

y por lo tanto podemos encontrar

dσ

dΩ
= k4

oa
6

∣∣∣∣ε− 1

ε+ 2

∣∣∣∣2 cos2 θ

y también

σ =
2

3
k4
oa

6

∣∣∣∣ε− 1

ε+ 2

∣∣∣∣2
7.1. Colección de escateres

Si tenemos una colección de escateres, tenemos que incluir su dispersión espacial. Para el caso anterior
tenemos 〈

dσ

dΩ

〉
ε̂o

= k4
o

1

|Eo|2
∑
i,j

(pi · pj − (pi · x̂)(pj · x̂)) eiko(yi−yj)·x̂

donde yi es la posición del escater i. Esto define el factor

F =
∑
i,j

〈pi · pj − (pi · x̂i)(pj · x̂j)〉ε̂o e
iko(yi−yj)·x̂

Esto también tenemos que promediarlo por polarización incidente ε̂o. La distribución espacial de los dipolos
es fundamental, y can puede tener efectos profundos en la eficiencia de los radiadores. Si la posición de
los radiadores es coherente (en el caso de un fractal), el efecto es del orden F ∼ N2, mientras que si la
distribución no es coherente, tenemos F ∼ Np2.

Problema: Compare el patrón de radiación de un set uniforme y un set fractal de escateres

7.2. Escatering de Raleigh

Podemos generalizar este análisis para estudiar el escatering de Raleigh, y podemos ver cómo obtener que
el efecto es proporcional a k4, preferencialmente para frecuencias altas. Esto es una posible sugerencia del
porqué el cielo debeŕıa ser azul. Podemos utilizar el resultado para una molécula

dσ1

dΩ
= k4

o

∣∣∣∣a3 ε1 − 1

ε1 + 2

∣∣∣∣2
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donde λ1 = 4πa3(ε1− 1) esta relacionado con el momento dipolar p1 = λ1E de una molécula. Al considerar
al efecto colectivo de N moléculas donde

F ≈ Np2

asumiendo no coherencia (random distribution). En esta analoǵıa la constante dieléctrica efectiva es

ε− 1 =
N

V
(ε1 − 1) = 4πλ

donde λ es la polarización molecular efectiva en el aire, y por lo tanto podemos escribirla en termino del
ı́ndice de refracción del aire (ε ≈ 1)

n− 1 =
√
ε− 1 =

√
1 + 4πλ− 1 ≈ 1

2
(4πλ) =

1

2
(ε− 1)

Por lo tanto la sección eficaz de escatering por molécula es

σ =
8

27

(
V

N

)2

k4 |n− 1|2

donde N/V es el numero de moléculas por unidad de volumen. Notemos que n también depende de la
frecuencia ω como vimos anteriormente.

Si enviamos un flujo de enerǵıa, al atravesar una distancia dz del aire, la intensidad sera atenuada

dI

dz
= −N

V
σI → I(z) = I(0)e−

∫ z
0 α(τ)dτ

y por lo tanto la distancia de atenuación es

α(z) =
8

27

(
V

N

)
k4 |n− 1|2

Gente ha sugerido que esta dependencia puede ser responsable del color azul de nuestro atmósfera, ya que
para frecuencias ω más altas (azul) el escatering es más eficiente que para las frecuencias más bajas (rojo).
Otra contribución interesante es el escatering preferencial producido por las perturbaciones de densidad en
nuestra atmósfera que cambian el ı́ndice de refracción. En este caso

δεi
3

=
1

3

∂εi
∂N

δN ≈ V

N

(ε− 1)

3

δN/V

N/V

ya que

εi − 1 =
ε− 1

N/V

donde δN es la fluctuación del numero de moléculas (o densidad si normalizamos por V) en un pequeño
volumen V = L3 tal que L << λ. Esta estimación solo funciona si ε ∼ 1. Usando los resultados anteriores
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σ =
8

27

(
V

N

)2

k4 |ε− 1|2
〈(∑

i

δNi/V

N/V

)2〉
=

8

27

(
V

N

)2

k4 |ε− 1|2NkTβ

con la definición ∑
i,j

δNiδNj = NVNkTβ

y con β como la compresibilidad termal

β = − 1

V

(
∂V

∂P

)
T

Obviamente, todo esto cambia si F tiene términos coherentes (por ejemplo fractales, o turbulencia correla-
cionada, gravity waves, etc.)
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θi θo

Figura 13: (a) geometŕıa de la pantalla. (b) Fuente y punto de observación.

8. Teoŕıa de difracción escalar kod >> 1

En situaciones más generales debemos recurrir a un método para calcular los campos de la radiación que
satisfacen

(∇2 + k2
o)Ψ = 0

Ψ(x) = −
∮
S

[Ψn̂ ·∇G−Gn̂ ·∇Ψ]dS

En general estamos interesados en aperturas, ver Fig. 13 en los cuales tenemos una pantalla y un hoyo en
ella. Debemos hacer dos suposiciones:

1. Para calcular G asumiremos que la pantalla es infinita y que los Ψ en el borde es cero.

2. En la abertura usaremos los campos incidentes.

Esta aproximación significa que funciona siempre y cuando θ ≤ λ/d, o en pocas palabras kod >> 1. Esto
tiene sentido ya que implica que los bordes de la apertura no afectan en forma considerable lo que sucede
en la apertura

Usando la función de Dirichlet-Green

G =
1

4π

[
eikoR

R
− eikoR

′

R′

]
donde

R =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 R =
√

(x− x′)2 + (y − y′)2 + (z + z′)2

Podemos encontrar

Ψ+(x) = −
∮
S

Ψ−
∂G

∂n
dS
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con por ejemplo (ver Fig. 13b)

Ψ− = Ψo
1

2π
eiko·x

Por lo tanto tenemos

Ψ(x) =
k

2πi

∫
σ

eiko|x−y|

|x− y|
Ψ−

(
1 +

i

ko|x− y|

)
(x− y) · n̂y
|x− y|

dSy

' ko
2πi

∫
σ

eiko|x−y|

|x− y|
Ψ−

(x− y) · n̂y
|x− y|

dSy +O(1/r)

Hemos asumido que lejos de la pantalla (R tendiendo hacia el infinito) la contribución de S tiende a cero,
lo que implica que hay que calcular la integral sólo sobre la apertura. También, r es la distancia desde el
punto en la apertura hasta el punto de observación. Usualmente la radiación entrante es perpendicular a la
pantalla.

Tomemos una apertura circular de radio a, tenemos

ko | x− y |= ko
√
|x|2 + |s|2 − 2x · s ∼ ko|x| − kos · x̂+

ko|s|2

2|x|
+ . . .

con s como el vector en la apertura, y r desde el centro de la apertura al punto de observación. Hemos
asumido que r →∞. Si botamos el tercer término, tenemos la difracción de Fraunhofer

r � a2

8λ

con a como el tamaño de la antena. Si usamos la forma para Ψ−, tenemos finalmente para el campo lejano

Ψ+ =
k

2πi
Ψo
eiko|x|

|x|

∫
σ

(eiko(x̂o−x̂)·s cos θods
2

donde x̂o es el vectores unitario para la fuente

Ψ− = Ψo
1

2π
eiko·xo

En el caso θo ∼ 0 tenemos que x̂o = ẑ, que es lo mas común, obtenemos que cerca del eje de la antena el
campo radiado es la transformada de Fourier de la apertura de la antena

Ψ(x) =
k

2πi
Ψo
eiko|x|

|x|

∫
σ

e−ikox̂·sds2

Para el caso de un apertura circular, por simetŕıa podemos considerar el vector x̂ = (sin θ, 0, cos θ) y el
vector s = ρ(cos φ̄, sin φ̄, 0), y tenemos
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Figura 14: Gráfico de la radiación producido por una apertura circular para (a) koa = 10 y (b) koa = 20.

Ψ+ =
ko
2πi

Ψo
eiko|x|

|x|

∫ a

0

ρdρ

∫ 2π

0

e−ikoρ sin θ cosφ cos θdφ̄

=
k

2πi
Ψo
eiko|x|

|x|
cos θ

∫ a

0

ρdρ(2πJo(koρ sin θ))

= −ikoΨo
eiko|x|

|x|
a2 cos θ

J1(koa sin θ)

koa sin θ

Vemos entonces que

Ψ+ = Ψo
eiko|x|

|x|
Ψo(koa

2)f(θ) → f(θ) = cos θ
J1(koa sin θ)

koa sin θ

Notemos que en principio podemos usar esta apertura como un telescopio. Para este caso podemos obtener
el mismo resultado anterior, pero donde θ ahora es con respecto a la linea definida por el vector ˆ̄x. Esto
implica que un telescopio tiene la capacidad de resolver objetos separados por una resolución angular ∆θ
dada por el primer cero x1 = 3,83 de J1(x)/x, esto es

∆θ ∼ 4
λ

a

Problema: El problema de simular numéricamente que pasa a una onda al cruzar una y varias aperturas
se dejara para la tarea.

Problema: El problema de interferencia entre dos aperturas ahora se puede calcular como un problema de
transformada de Fourier.

Para el caso en 2D, podemos asumir que la apertura tiene tamaños Ly >> Lx. La propagación de la onda
incidente seŕıa tal que
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r̂o = (xo,1, 0, xo,3)

Y tomando r̂ = (x1, 0, x3), podemos encontrar

Ψ+ =
k

2πi
ΨoLy cos θo

eiko|x|

|x|

∫
σ

eiko(r̂o−r̂)·x̂ sx dsx

Osea, el resultado es el mismo que antes, y requiere hacer una transformación de Fourier de la apertura en
una dimensión.

Notemos que si utilizamos

∂

∂y
= 0

la función de Green es

G = H
(1)
0 (ko

√
(x− x̄)2 + (z − z̄)2)−H(1)

0 (ko
√

(x− x̄)2 + (z + z̄)2)

Dado que

H(1)(x) ∼ 1√
x
eikx

vemos que obtenemos soluciones similares.

9. Teoŕıa de difracción vectorial kod� 1

Ahora queremos tener una estimación de los resultados de difracción, pero para los campos vectoriales E y
B. Supongamos que tenemos una apertura (con un conductor como pantalla) en el plano z = 0. El campo
se puede escribir como

E = Eo + E1

donde Eo es el campo producido por la fuente y E1 por el obstáculo. Notemos que este campo es producido
por las corrientes y densidades de carga en la pantalla generadas para satisfacer las condiciones de borde.
Si la pantalla es muy delgada, podemos asumir que no hay corriente en ẑ, por lo tanto A1,z = 0, mientras
que A1,x, A1,y y Φ son funciones pares en z. Esto implica que

E1,x, E1,y, B1,z

son pares en z, mientras que

E1,z, B1,x, B1,y

son impares en z, aunque no necesariamente cero en la pantalla dadas las discontinuidades. Estas discon-
tinuidades determinan que la densidad de carga es la misma a los dos lados de la pantalla (ya que E1,z

47



es impar sobre la pantalla). Lo mismo aplica para la corriente tangencial. Mientras que en la apertura, la
continuidad de los campos requiere que E1,z, B1,x, B1,y sean cero en la apertura. Esto sugiere que

E1,x, E1,y, B1,z

tiene tienen los valores que existiŕıan en la apertura si la pantalla no estuviera alĺı (aqúı es importante que
la apertura sea d >> λ). Usando una función de Green de Neumann

GN =
1

4π

[
eikoR

R
+
eikoR̄

R̄

]
podemos escribir sobre la pantalla

A1(x) =
1

2π

∫
screen

(n̂×B1)
eikoR

R
dS

ya que Az = 0. Esto se podŕıa obtener de la corriente superficial

K1 = − c

4π
B1 × n̂

usando

A1(x) =
1

c

∫
screen

GNK1dS

Con lo cual podemos construir el campo magnético como

B1 =
1

2π
∇×

∫
screen

(n̂×B1)
eikoR

R
dS

En una forma similar podemos construir una solución para el campo eléctrico como

E1 = ± 1

2π
∇×

∫
screen

(n̂× E1)
eikoR

R
dS

para ±z. Con esta definición, los campos satisfacen las ecuaciones de Maxwell. Notemos que E1 × n̂ no es
cero en la pantalla, solo el campo total E× n̂ = 0. Tratemos de relacionar este campo, con el campo sobre
la apertura. Dividamos

E1 = E1,s + E1,A

Si la pantalla no tuviera una apertura tendŕıamos campos Eo y Bo. Usando las simetŕıas ya discutidas
podemos, podemos sumarle para z > 0 los campos

E1 → E = E1 − Eo B1 → B = B1 −Bo

que tiene la simetŕıa apropiada. Ahora podemos definir el campo eléctrico para z > 0 como

Es(z > 0) =
1

2π
∇×

∫
apertura

(n̂× E)
eikoR

R
dS
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donde E es el campo total en la pantalla (el resto no contribuye dado que E× n̂ = 0 en la pantalla). Para
z < 0 podemos utilizar

E(x) = Eo + Er − Es

donde Er es el campo reflejado por una pantalla infinita (los campos incidentes son Eo).

Problema: Para el caso e una onda incidente sobre una apertura circular tenemos

Eo = Eo(ε̂1 cosα− ε̂2 sinα)eiko(cosαz+sinαx)

Asumiendo que el campo en la apertura es el campo incidente, podemos escribir

(n̂× Ei)z′=0 = Eoε̂2 cosαeiko sinαx′

donde n̂ = ε̂3. Por lo tanto

Es(x) =
ieiko|x|Eo

2π|x|
ko ×

∫
A

n̂× E(x′)e−iko·xdS ′

donde k̂o = x/|x|. En esta geometŕıa

Es =
ieiko|x|Eo cosα

2π|x|
(ko × ε̂2)

∫ a

0

ρdρ

∫ 2π

0

dβeiko(sinα cosβ−sin θ cos(φ−β))

Definiendo

ξ =

√
sin2 θ + sin2 α− 2 sin θ sinα cosφ

podemos encontrar

Es =
ieiko|x|a2Eo cosα

|x|
(ko × ε̂2)

J1(koaξ)

koaξ

Finalmente

dP

dΩ
=

[
cE2

o

8π
πa2 cosα

]
(cos2 θ + cos2 φ sin2 θ)

∣∣∣∣2J1(koaξ)

koaξ

∣∣∣∣2
Este resultado es una mejora consistente a los resultado de escatering escalar.

Notemos que tenemos un resultado simular al anterior. Este resultado solo tiene sentido si koa >> 1, sino
las condiciones de borde son relevantes.

9.1. Que pasa en el limite kod ∼ 1

Para mas adelante.
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