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We report a study of the nonmetal-metal transition of free-standing PdN clusters (2 ≤ N ≤ 21)
carried out through two different theoretical approaches that are extensively employed in electronic
structure calculations: a semi-empirical Tight-Binding (TB) model and an ab-initio DFT pseu-
dopotential model. The calculated critical size for the metallic transition decreases fast with the
temperature and an oscillatory dependence with the cluster size is obtained particularly in the DFT
approach. TB model describes well the metallic behavior for cluster sizes beyond N ≈ 12. Our
obtained critical size at room temperature is of the order of the experimental estimation.

Keywords: DFT methods, Tight-Binding methods, metallic behavior, nonmetal to metal transition in

transition-metal clusters

I. INTRODUCTION

The insulator to metal transition in atomic clusters as
a function of their size is of fundamental interest from
both the scientific and technological points of view. The
discrete spectrum of the electronic states will begin to
form a quasi-continuous band for a critical cluster size
depending on the temperature. Although this question
was originally addressed by Fröhlich seventy years ago,1

it is still far from being completely understood. From the
technological point of view, the insulator or the metal-
lic character of an atomic cluster is also of great rele-
vance, particularly in the context of transport properties
in nanostructures and nanocontacts,2,3 where it is very
important to determine and to predict if the transport
is tunneling-like or through molecular states extending
through the entire cluster or molecule. The insulator
to metallic transition may appear at some critical size
when increasing the degree of miniaturization of micro-
electronic devices.

The nonmetal to metal transition in clusters has been
studied experimentally by several groups and through
different techniques.4–8 In general, for clusters of 3d and
4d elements this transition is experimentally observed at
about N ≈ 50 atoms at low temperature (77 K liquid
nitrogen) or at smaller sizes at room temperature. For
the theoretical description of the metallic behavior, it
is necessary to accurately determine the location of the
electronic states close to the Fermi level, for which the
optimization of the cluster geometry is essential due to
the interplay between the electronic structure and the
atomic environment. This transition has been studied
for some transition metal clusters by several authors9–15

using Kubo’s criterium16, which establishes that a sys-
tem becomes metallic when the density of states (DOS)
at the Fermi level exceeds the 1/kBT .

In the particular case of Pd clusters, experimental re-
sults by Aiyer and coworkers5 indicate that, at room tem-
perature, clusters of N ≈ 50 are in the threshold to un-
dergo the nonmetal to metal transition. Further support
to this indication is provided by the different reactivity of
the Pd50 in comparison with larger Pd clusters, as well as
by Wertheim’s experimental measurements on core-level
binding energy shift.4 Pd is a very interesting element in
many respects. It is in the frontier of the magnetism (a
magnetic moment has been observed in clusters despite
the paramagnetic character of the bulk) and its suitabil-
ity for catalytic devices has been demonstrated.17

It is our aim here to perform a systematic study of the
nonmetal-metal transition in free-standing PdN clusters
(2 ≤ N ≤ 21) using two different theoretical approaches
that are extensively employed in electronic structure cal-
culations. We have used, on the one hand, the ab-initio

pseudopotential DFT calculation, as implemented in the
SIESTA code,18 and on the other hand a self-consistent
real space spd TB method.12,19,20 As a first step, a set
of possible geometrical structures for each cluster size
are determined using a Genetic Algorithm21–24 (GA)
on a phenomenological Gupta potential,26 and then re-
optimized with conjugate gradients as implemented in
the SIESTA code. The metallic behavior of those struc-
tures is studied using both SIESTA and TB since it has
been also our purpose to benchmark both theories.

The paper is organized as follows, in Section II we
briefly present the theoretical models. Section III is de-
voted to present and discuss the results and Section IV
summarizes our main conclusions.
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II. COMPUTATIONAL METHODS

A. Genetic Algorithm

In order to search the minimum energy cluster struc-
ture we use a genetic algorithm (GA), which is a global
search technique based on the principles of natural
evolution21–24. It uses operators that are analogues to
evolutionary processes of mating or crossover, mutation
and natural selection, to explore the multidimensional
parameter spaces.

In particular, we implemented a GA that uses real
numbers (the coordinates of each atoms) instead of a
binary representation in order to represent each cluster.
In the GA scheme each cluster represents a trial solu-
tion of the problem and corresponds to an individual.
The initial population corresponds to the starting set of
individuals which are to be evolved by the GA. These
individuals are usually generated randomly. The popu-
lation of individuals evolves, via genetic operations, for a
certain number of generations. These genetic operations
can be of two types, namely mutation and crossover.
The mutation GA operators helps to increase popula-
tion diversity, thus increasing the number of points of
the parameter space that are evaluated. The crossover
GA operators essentially exchange information between
individuals, thus evolving to new and better solutions to
the problem being optimized. In general, the parame-
ter space may have many local minima. The GA, by
exploring the multidimensional parameter space, jumps
between basins, thus avoiding being stuck in a non-global
minimum. In order to improve the search for minima, we
use, additionally, local minimizers (classical simplex and
Monte Carlo) within the basin25. This combination, GA
in real numbers space and local minimizer, considerably
improves the convergence speed, and it has proven to
be quite reliable25,27. In order to implement the mating
or crossover genetic operations the choice of parents is
made by random selection method (the roulette wheel
method). We also specify the fraction of population that
is replaced in each generation and the fraction that re-
mains unchanged. This kind of GA is known as steady-
state GA. To produce a new generation we adopt the fol-
lowing genetic operators: four crossover operators (the
arithmetic and geometric means, the N and the 2-point
crossover) plus the mutation inversion operator as de-
scribed by Niesse and Mayne25. The objective function
to be minimized is, of course, the cluster energy and the
fitness score is obtained by dynamic linear scaling of the
raw objective score in each generation.

For a fixed number N of atoms in the cluster, we per-
formed computations for ten different populations (each
of them with 30 individuals). The initial atomic posi-
tions were chosen at random under the constraint that
the average pair separation be between 0.7 and 1.3 of the
bulk distance. The fraction of population that is replaced
in each generation adopted was 70%. For N = 2 − 13,
we used 5000 generations and for N = 14 − 21 we used

10000 generations in order to obtain the putative global
minimum.

The energy in the GA was computed with the Gupta
phenomenological potential26,28 which was derived from
Gupta’s expression for the cohesive energy of a bulk
material26 and is based on the second moment approx-
imation to tight binding theory. It is a potential that
has a very simple analytical form, which depends on five
parameters, and it is written in terms of repulsive pair
and attractive many-body terms which are obtained by
summation over all atoms.

The explicit functional form for the cohesive energy
and the parameter values for Pd used in our calculations
are given by Cleri and Rosato.28 The parameters of the
potential for Pd in our model are fitted to bulk proper-
ties (cohesive energy, lattice parameter, bulk modulus,
independent elastic constants in the appropriate crystal
structure at T = 0 K), and the vanishing of the energy
gradient at equilibrium distance.

B. ab-initio DFT pseudopotential calculations

We have performed first-principles DFT calculations
using the pseudopotential SIESTA code (Spanish Initia-
tive for Electronic Simulation of Thousand Atoms).18

This method employs linear combination of pseudo-
atomic orbitals as basis sets. The atomic core is replaced
by a nonlocal norm-conserving Troullier-Martins29 pseu-
dopotential that is factorized in the Kleinman-Bilander
form30 and may include nonlinear terms correcting for
the significant overlap of the core charges with the va-
lence d orbitals.

To re-optimize the geometrical structures we did a lo-
cal relaxation using the conjugate gradient algorithm,
starting from the structures previously obtained via the
genetic algorithm search on a Gupta potential. Si-
multaneously with the geometrical re-optimization, the
SIESTA code allow us to determine the electronic struc-
ture for all the different clusters, particularly at the Fermi
level which will be used in Kubo’s criterion for the deter-
mination of the metallic character, and to compare with
the results obtained with the TB-recusion method (see
below).

In the present calculation, we have used for the ex-
change and correlation potential the LDA as parame-
terized by Perdew-Zunger.31 The ionic pseudo-potentials
were generated using the atomic configurations: 4d9, 5s1

and 5p0 for Pd with 2.0, 2.2 and 2.4 a.u. cutoff radii,
respectively. The core corrections are included with a ra-
dius of 1.2 a.u. We have found from the various pseudo-
potentials tested that the 4d9, 5s1 configuration repro-
duced slightly better the eigenvalues of different excited
states of the isolated Pd atom than the 4d10, 5s0 config-
uration. Besides, the ab-initio electronic occupations of
small Pd clusters32 are closer to this configuration than
to the 4d10, 5s0. Valence states have been described using
DZP basis sets with two orbitals having different radial
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form to describe both the 5s and the 4d shells of Pd and
one orbital to describe the 5p shell. We consider an elec-
tronic temperature of 25meV and a 120 Ry energy cutoff
has been used to define the real space grid for numerical
calculations involving the electron density, a larger cutoff
does not substantially modify the results.

C. Semiempirical Real-space Tight-Binding

calculations

The spin-polarized electronic structure was determined
by solving self-consistently a TB Hamiltonian for the
4d, 5s and 5p valence electrons in a mean-field approx-
imation. We considered hopping integrals up to third
nearest-neighbor distances and fitted to reproduce the
band structure of Pd bulk.33 The changes of the hop-
ping integrals, reflecting in turn the deviation of the in-
teratomic distances (rij) from their bulk values, were
considered, as usual, via the power law of the type
(r0/rij)

l+l′+1. Here r0 represents the bulk distance, be-
tween first or second neighbors, with l and l′ standing for
the orbital angular momenta of the electronic states in-
volved in the process.34 We solve the Hamiltonian in the
real space using the recursion method.34 The number of
recursion levels used in our calculation is large enough
to assure the stability of the results. The imaginary part
of the energy for the calculation of the density of states
within the recursion method is chosen so as to correspond
to the electronic temperature used in SIESTA. The self-
consistent value of the density of states at the Fermi level
calculated in this way is used later on for the determi-
nation of the nonmetal to metal transition under Kubo’s
prescription. The local electronic occupation in our TB
calculation is fixed by linearly interpolating between the
atom and the metal occupations according to the local
coordination at site i, and self-consistent potentials are
determined to assure the local electronic occupation. We
have used [Kr] 4d9 5s1 for the electronic configuration of
Pd atom. The metal electronic occupations, on the other
hand, are 0.60, 0.45, and 8.95 for the s, p, and d electrons
of Pd, respectively. The local neutrality approximation
has been probed to be a good approximation in transi-
tion metal systems35 and in the present case, atomic and
bulk sp and d occupations are mainly the same. The ex-
change parameter (0.6 eV), which is responsible of the
spin-splitting of the electronic states, has been chosen
such that reproduces the ab-initio DFT calculations of
the average magnetic moment of a Pd13 icosahedral clus-
ter by Moseler et al.36 and Kumar et al.37 We have chosen
the Pd13 cluster for the fit because it is the most studied
cluster in the literature, and agreement exists concerning
its icosahedral geometry.

The same model was used in previous works19 for the
study of Rh clusters and for the study of the single FCC-
like Pd clusters.20 The good agreement with available
data in the literature for free clusters, give us confidence
in the transferability of the parameterization. The reader

TABLE I: The cluster size (N), average interatomic distance
in Å, average coordination number (Z), the symmetry of the
PdN clusters, and binding energy in eV.

N Distance Z Structure EB

2 2.45 2.00 Dumbbell 0.92

3 2.50 2.00 Triangle 1.67

4 2.58 3.00 Tetrahedron 2.17

5 2.62 3.60 Trigonal bipyramid 2.37

6 2.63 4.00 Octahedron (O) 2.58

7 2.66 4.60 Pentagonal bipyramid (PB) 2.65

8 2.64 4.50 O+2 2.75

9 2.67 5.12 PB+2 2.82

10 2.68 5.40 PB+3 2.90

11 2.69 5.64 PB+4 2.96

12 2.70 6.00 PB+5 3.02

13 2.71 6.50 Icosahedron (I) 3.09

14 2.68 6.43 I+1 3.13

15 2.68 6.53 I+2 3.19

16 2.68 6.38 Distorted I-like 3.25

17 2.67 6.67 Distorted I-like 3.30

18 2.67 6.44 Distorted I-like 3.32

19 2.69 7.16 Double Icosahedron (DI) 3.32

20 2.68 6.70 Distorted DI 3.38

21 2.70 7.05 Distorted DI 3.40

can find more details of the model Hamiltonian and of the
parameterization in previous works.19,20

FIG. 1: Ground-state geometrical structures of PdN clusters
(2 ≤ N ≤ 21) as re-optimized from SIESTA code .
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III. GEOMETRICAL STRUCTURES

In Table I, we list the main geometrical properties of
the structures of the palladium clusters,38 illustrated in
Fig. 1. In general, we obtain an icosahedral-like growth
pattern with some structural disorder, particularly be-
tween symmetric closed shell clusters (N =8 to 13, 13 to
19) and for N =20 and 21. For the geometrical proper-
ties in Table I, at a given site i within the cluster, we
consider as First Nearest Neighbor (FNN) those atoms
located at distances within 0.85 to 1.15 of the bulk inter-
atomic one. The structural disorder in our clusters (is re-
flected by a wide distribution in the interatomic distance)
results from the fully unconstrained relaxation process.
Slightly non-symmetrical arrangements are obtained for
the closed shell clusters. For the symmetric closed shell
clusters there are two and three well defined interatomic
distances.

Let us briefly comment on these geometrical struc-
tures in comparison with other geometries reported in
the literature. In the case of N ≤ 13, Futschek39 re-
port Pd clusters that can be seen as relaxed fragments of
the fcc crystal bulk structure, whereas ours are mainly
non-crystalline structures, particularly in the range of
7 ≤ N ≤ 13, in which five fold symmetry is observed.
Our geometrical structure are more similar to those re-
ported by Kumar37, for N = 2− 15 and 19. For the rest
of the clusters their structures are icosahedral-like. In
our case, for N = 16− 18, 20 and 21, the structures have
some structural disorder as previously quoted. Other-
wise they are also icosahedral-like. In general, when our
geometries coincide with those reported by Futschek et

al. and Kumar et al. the interatomic distances of the
clusters are very similar (within 2%).

Concerning the binding energy, we have a monotonic
increasing dependence with the cluster size like Kumar
and coworkers.37 although our calculated values overes-
timate the GGA ones. This overestimation is expected
since it is well know that the LDA approximation give
larger binding energy than GGA. The binding energy in
our calculation is given approximately by E ≈ E0Z

1/3,
been E0 a constant that depends on the approximation
used.

IV. METALLICITY

We use Kubo’s criterion as one of the simplest ap-
proximations to estimate the nonmetal-metal transition.
This criterion establishes that a system becomes metallic
when the average spacing between the electronic levels
within the cluster becomes smaller than kBT and the
discrete energy levels begin to form a quasi-continuous
band, or formulated in terms of the electronic density
of states DN (E), when DN(E) at the Fermi level ex-
ceeds the 1/kBT value.16 Notice that experiments are
usually performed at finite T and the broadening of the
T = 0 calculated electronic spectrum reflects in a first

approximation the finite temperature effects. Therefore,
for the metallic character to be accurately determined it
is necessary to correctly account for the position of the
electronic states in the neighborhood of the Fermi level.
In this sense, it requires a more accurate determination
of the environment-dependent electronic structure than
that required for the magnetic properties. We compare
the real-space TB model that takes advantage of the re-
cursion method and the SIESTA code. Since the TB
Hamiltonian is solved here using the recursion method
we directly obtain the density of states but not the eigen-
functions Kubo’s criterion allows to compare TB and the
SIESTA without the need of the TB spectrum.

We have also considered the Friedel’s square d band
model based on the second moment approximation12,40

in order to enrich the discussion. Friedel’s model is very
simple and depends only on average coordination number
(Z(N)) to determine the d-band width and the DN (E) at
the Fermi level through the second moment approxima-
tion. In this model the s and p electrons are not consid-
ered and a rectangular shape is assumed for the d-band,
in which the total DN(E) at the Fermi is 10N/W (N).
The second moment approximation introduces a depen-
dence of the band width W (N) on the local coordina-
tion number, the band width of a finite size N cluster is
given by W (N) = WB(Z(N)/ZB)1/2, where WB and ZB

are the band width and the bulk coordination number,
respectively.41
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FIG. 2: Metallicity temperature as a function of the clus-
ter size from TB and SIESTA calculations. We also provide
results from Fridel’s model.

In Fig. 2 we present the results of our TB and SIESTA
calculations, together with the more crude estimation ob-
tained using the Friedel’s d-band model. The results split
the temperature range in two parts, the low tempera-
ture or non-metallic region and the high temperature or
metallic region. A cluster with a temperature below the
line (within the different models) behaves as an insulator
whereas above the line it exhibits a metallic character.

In general, the results for the metallicity indicate, as



5

expected, that the larger is the cluster the lower is the
temperature required for its becoming metallic. In the
case of Friedel’s model, we have a monotonic decreasing
dependence, consistent with the fact that this model only
takes into account the average coordination in the deter-
mination of the D(E) at the Fermi level no details of the
symmetry of the cluster geometry are taken into account
(beyond the average coordination number).12,13,41 With
the TB model, we obtain a decreasing dependence but
with more structure. We have a smooth shoulder around
N = 8 and two shallow local minima at N = 13 and
N = 19 indicating that these clusters are more metallic
than their neighbor cluster sizes of the same icosahedral
family.

With SIESTA we obtain a richer structure than with
TB, with well defined minima at N = 7, 13− 14, 20− 21
and maxima at N = 9, 17 − 18; a minimum (maxi-
mum) indicates, again, a more metallic (insulator) char-
acter in comparison with its neighbor cluster sizes can be
observed. The richer structure obtained with SIESTA
is mainly due to its more accurate description of the
HOMO-LUMO gap. In general, the largest the gap the
largest the temperature required to have metallic-like
character. However it is remarkable that the TB cal-
culation is able to reproduce the same trend as the DFT
SIESTA code for clusters larger than only N ≈ 12, de-
spite the fact that the TB model is, in principle, better
adapted to large systems.

Experimental results by Aiyer and coworkers5 based
on tunneling conductance measurements of Pd clusters
supported on graphite indicate that, at room tempera-
ture, clusters of N ≈ 50 are in the threshold to undergo
a nonmetal-metal transition. This experimental obser-
vation is endorsed by the different reactivities shown for
the Pd50 clusters in comparison with larger Pd clusters.5

However, by performing core-level binding energy shift
measurements, Wertheim4 predicts that the insulator-
metal transition at room temperature for Pd clusters
(supported on amorphous carbon) is in the range of 7 to
10 Å(about 20 to 50 atoms) suggesting that the metallic-
ity could be present at even smaller sizes than the ones
reported by Aiyer et al.

We performed additional TB calculations for a N = 55
icosahedral Pd cluster with bulk interatomic distances
(this cluster size is easily handled within the TB code),

and we obtained a metallicity temperature of ≈70K. This
result is consistent with both experimental observations
in the sense that clusters of this size should present metal-
lic behavior at room temperature. The results of Fig. 2
for N ≈ 20 are supported by Wertheim’s4 measurements
that find metallicity in Pd clusters of very small sizes. It
is worth noticing that nonmetal-metal transition for sup-
ported Fe clusters on GaAs has been reported also at very
small sizes, such as N ≈ 35 atoms at room temperature.6

V. CONCLUSIONS

We have performed a systematic study of the metallic-
ity of PdN (2 ≤ N ≤ 21) clusters using: the ab-initio

pseudopotential DFT method, as implemented in the
SIESTA code, and a self-consistent real space spd TB
method. We find that for the metallic character, whose
determination requires to accurately account for the po-
sition of the electronic states close to the Fermi level,
the DFT approximation is more reliable than the TB, al-
though it is remarkable that the TB calculation is able to
reproduce the same trend as the DFT SIESTA code for
clusters larger than only N ≈ 12, despite the fact that
the TB model is better adapted to large systems.

The results for the nonmetal-metal transition studied
using the Kubo’s criterion are consistent with tunnel-
ing conductance measurements of Pd clusters supported
on graphite5 and with core-level binding energy shift
measurements4, which predict that the insulator-metal
transition at room temperature for Pd clusters is in the
range of 20 to 50 atoms.
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2 N. Agräit, A.L. Yeyati, and J.M. Ruitenbeek, (2003) Phys.

Reports Lett. 377, 81.
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