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Abstract
The zero-temperature minimal energy structure of small free-standing Pd clusters
(14 � N � 21, where N is the number of atoms in the cluster), their characteristics and their
magnetic configurations are investigated. Results obtained using five different
phenomenological many-body potentials (implemented in combination with a genetic algorithm
search) are refined by means of various density functional theory (DFT) techniques. The
agreement and differences between the results obtained with our procedure, using these five
potentials, are displayed in detail. While phenomenological potentials yield values that
approach the minimal energies of larger clusters, as compared with DFT results, they fail to
predict the right symmetry group for some of the clusters with N > 14. We find that the
minimal energy configurations are not necessarily associated with high symmetry of the atomic
arrangement. Actually, several cases of previously overlooked low symmetry structures turn out
to have lower energies than more symmetric ones.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

For some time, nanoclusters have been the focus of attention
for physicists, chemists and applied scientists, due to their
interest to basic science and because of the variety of potential
and actual technological uses [1]. This interest is related to the
insight clusters and nanoparticles provide into the physical and
chemical properties as a function of size, since they constitute a
natural bridge between atoms and molecules on the one hand,
and the bulk limit on the other. For example, it is of interest
to determine the critical size and structure for which a cluster
exhibits quantization of the energy levels, which in turn is
closely related to the metal (or semiconductor) to insulator
transition.

On the application side we can mention, for example,
that Fe clusters promote the nitrogen plus hydrogen conversion
into ammonia, and that platinum clusters catalyze the process
used to increase the octane grade of gasoline. Gold,
silver and copper clusters are optically active in the visible
region, thus allowing the fabrication of optical devices.
Palladium, our focus of interest, is used to create catalytic
lattices [2] and, because of its nearly full d band, has unusual

magnetic properties [3]. This effect becomes more marked
in nanoclusters and is highly dependent on the particular low
energy structure, as will be seen below.

The first and crucial step in the description and
understanding of clusters is the precise determination of the
geometrical structure that the constituent atoms adopt. In the
words of Goedecker et al [4], ‘Determining the structure of a
molecule, cluster, or crystal is one of the most fundamental
and important tasks in solid state physics and chemistry.
Practically all physical properties of a system depend on its
structure.’ In view of this, the determination of the actual
geometry a cluster adopts has attracted much interest, and
several strategies to find these minimum energy structures have
been put forward [5–10].

There are basically two approaches to search for minimal
energy cluster structures. The first one is to calculate, via
DFT with or without relaxation, a given set of configurations,
and find the one with the lowest energy. The configurations
are usually chosen to have high symmetry [11, 12], but this
procedure has the drawback that there is no guarantee that
the actual quantum minimum has the chosen symmetry, nor
that the chosen seed, if relaxed via DFT, converges towards
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the minimum energy configuration. The second approach is
to search for minima in an unbiased fashion (that is, without
symmetry restrictions) with a phenomenological potential
using global minimizers [13, 14]. In this case, the implicit
assumption is that the minimum of the phenomenological
potential corresponds to the quantum one (transferability), an
assumption which may or may not be valid. A way to improve
on the results obtained with this second approach is to perform
a DFT refinement of the ‘phenomenological’ minimum. This
should provide a better solution, within the context of the
aforementioned transferability assumption. In this paper
we improve on this approach, by carrying out a genetic
algorithm (GA) search with five different phenomenological
potentials followed by DFT refinement. This way we combine
the advantages of both approaches: (i) we investigate an
initially diverse set of cluster configurations, and (ii) such
configurations are the results of an unbiased search. As
an additional benefit, we are able to explore which of the
phenomenological potentials provides the best seeds for DFT
refinement.

Unfortunately, there is not much experimental data on
free-standing clusters to compare theoretical results with, or
to establish the accuracy of numerically obtained properties
and characteristics of putative minima. Recently we studied
Pd clusters of up to N = 13 atoms using a genetic algorithm
with a number of phenomenological potentials to obtain a
first approximation of the minimum energy cluster structure.
These minimal energy configurations were then refined with
DFT approaches, in the search for the minimum energy cluster
configuration [14]. For these clusters (N � 13) we found that,
independently of the specific phenomenological potential used,
the DFT refinement led to the same cluster symmetry as the one
obtained using phenomenological potentials. As we will see
below, this is not the case for the N > 14 structures. Moreover,
we will also see that many of the N > 14 structures we obtain
have very low symmetries that would have been difficult to
obtain starting from configurations of high symmetry. This is
one of the main results of this paper.

Actually, in a previous paper [13] we found that for Pd13

the symmetry preservation paradigm seems to work fine, but
at the same time we concluded that this symmetry preservation
fails to hold for Rh13 and Ag13. In fact, a search based on the
conformational space annealing method [13] led to different
minimal structures when investigating 13-atom rhodium and
silver clusters, but for Pd we found that both procedures
(phenomenological and ab initio) yield a minimum with the
same symmetry. We conjecture that this agreement may be
due to the closed shell ([Kr]4d10) electronic structure of Pd.
Moreover, Pd is a fascinating element since it is on the verge
of being magnetic in the bulk, which strongly suggests the
possibility of interesting features of the magnetic structure of
Pd nanoclusters. However, the choice of Pd implies that the
results we supply here do not necessarily apply to neighboring
elements like Ag or Rh.

The present contribution has several objectives:

(i) to calculate, as a function of cluster size, physical
properties of Pd clusters such as symmetries, energies,
and interatomic distances, by means of several different

phenomenological potentials and with due attention to the
large-N limit;

(ii) to complement our previous work [14] by providing the
details of the calculation procedures that were employed;

(iii) to extend our previous results [14] to clusters of up to 21
atoms in size, and show that the symmetry of the minimal
energy structure for N > 14 can be different for the
several phenomenological potentials we use;

(iv) to carry out DFT refinement of these seeds in order to
obtain a geometric and magnetic configuration [3] of a
cluster at zero temperature with as low an energy as
feasible; and

(v) to try to establish which phenomenological potential
provides the best seeds for DFT refinement.

To do so we use a global minimization method, the genetic
algorithm (GA), in conjunction with a variety of phenomeno-
logical potentials, to search for a first approximation set of min-
imum energy configurations. The latter are then refined using
the SIESTA [15–17], VASP [18–20] and WIEN2k [21] codes.

Phenomenological potentials have been used extensively
since they were first introduced. Possibly the first
successful attempt in this context is due to Daw, Foiles
and Baskes [22, 23], who put forward a formalism known
as the embedded atom method (EAM). This formalism was
improved upon by Voter and Chen [24]. Other formalisms,
different from EAM but related to it, were put forward by
Ducastelle [25], Gupta [26, 27], Sutton and Chen [28] and,
more recently, by Murrell and Mottram [29, 30]. All of
them are many-body potentials, which were developed by
fitting several experimentally obtained values, like the cohesive
energy, lattice parameters, and independent elastic constants of
the bulk 0 K crystal structure. However, as we will see below,
the symmetries of the minimal energy structures derived from
phenomenological potentials are often different from the ones
obtained using ab initio codes. This raises the question as to
what extent it is appropriate to use bulk potentials to compute
cluster properties, a problem that should be investigated in
detail. However, we trust that the shortcomings due to this
approximation are at least partially mitigated by the quantum
refinement.

In combination with the above phenomenological poten-
tials we implement a GA technique to search for global energy
minima [31–33]. The main advantage of the GA over other
methods is that the latter show a strong tendency to get stuck
in local minima, a problem that the GA manages to alleviate.
This feature is also related to the ability of the GA to find min-
imum energy configurations with low symmetry, an important
result of this paper, as already mentioned above.

This paper is organized as follows: after this introduction
we present the numerical procedure that we implemented, with
details about the GA, the phenomenological potentials and the
DFT calculations we performed; in section 3 we present the
results, that are analyzed and discussed in section 4, which
closes this paper.
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2. Numerical procedure

The procedure we implement here is to close in on the
minimal energy structure using phenomenological potentials
and geometrical optimization via a genetic algorithm (GA),
which is followed by DFT refinement. The synergy between
ab initio and classical methods thus allows us to significantly
reduce the resources that are required and to expand the
set of problems amenable to treatment. In addition, the
increased computational speed allows to implement evaluation
intensive minimization procedures like the GA, which is
discussed in detail below. Alternative minimization methods
are abundant in the literature [34, 33, 35, 36]. For example,
Sebetci and Güvenç [37] in their study of Pt, have concluded
that, for clusters between 22 and 56 atoms, basin hopping
Monte Carlo is more efficient than molecular dynamics and
thermal quenching, but that with a few exceptions the minimal
structures that result are quite similar.

2.1. Genetic algorithm

In order to search for the minimum energy cluster structure
we use a genetic algorithm (GA), which is a global search
technique based on the principles of natural evolution [31, 32].
It has been successfully applied to cluster, nanoparticle and
protein structures [34, 33, 35, 36]. In particular, we implement
a steady-state GA that uses the coordinates of each atom as
our genome, and applies an additional local minimizer (in
our case a combination of Simplex and Monte Carlo) within
the basin [38]. This combination considerably improves the
convergence speed, and has proven to be quite reliable [38, 39].
As is standard in the steady-state GA we choose the parents by
the roulette wheel selection method, and specify the fraction
of population that is preserved across successive generations
(elitism). To originate a new generation we adopt the genetic
operators described by Niesse and Mayne [38]. The objective
function is, of course, the energy, and the fitness score is
obtained by dynamic linear scaling of the raw objective score
in each generation.

For a fixed number N of atoms in the cluster, and for
each one of the phenomenological potentials, we performed
computations for 10 different populations (each of them of
30 individuals). The initial atomic positions were chosen at
random under the constraint that the average pair separation
should be between 0.7 and 1.3 of the bulk nearest neighbor
distance. The elitism percentage we adopt is 30%. This
procedure is repeated 5000 times to obtain the ‘champion’, that
is the cluster structure with the lowest energy value for each
potential. For small clusters (N < 14) these 5000 iterations
are sufficient to ensure convergence to the same geometry.
However, for clusters with 14 � N � 21 we performed 5000
additional iterations for each one of the phenomenological
potentials. We started these additional iterations with 10
different populations (each of them of 30 individuals). In each
one of these populations we included the 5 champions found in
the 5000 initial iterations (one for each potential used) plus 25
chosen at random. We call this procedure ‘hybridization’ here.

2.2. Many-body potentials

We now outline several details related to the various
phenomenological potentials we used in our calculations.
Actually, one could think that more elementary pair potentials
could be sufficient to achieve the task. However, metals
are not properly described by pair potentials. In fact, the
dynamic properties and the so-called Cauchy discrepancy of
the elastic constants, namely the experimental evidence that
for most cubic crystals c11 �= c44, are not adequately obtained.
Another serious drawback of the use of pair potentials is
represented by incorrect estimates of the vacancy formation
energies, whose values result in being very nearly equal to the
cohesive energies, whereas experimental results indicate that
they range around 1/3 of the cohesive energy [27].

As already mentioned, the many-body embedded atom
method (EAM) was put forward as an alternative to the use
of pair potential models. The EAM assumes that each atom
in a solid can be regarded as an impurity embedded in a
host which comprises all the rest of the atoms, so that the
total electron density is approximated by the superposition
of electron densities of individual atoms. Thus, the electron
density in the vicinity of each atom can be written as the sum
of the density of each atom plus the electron density from all
the surrounding ones. By making the simplifying assumption
that this background electron density is a constant, an
embedding energy is defined as a function of the background
electron density of the particular atomic species. These ideas
were developed by Daw and Baskes [22], who derived an
approximation for the total energy. The values we adopted
for the parameters that enter the equations are Z0 = 10,
α = 1.2950, β = 0.0595, taken from Foiles et al [23]. To
apply this method the embedding function, pair repulsions, and
atomic densities must be known. Approximate values of the
embedding functions and pair interactions can be calculated
from the formal definitions of these quantities within the DFT
framework.

A different parameterization of the EAM was proposed by
Voter and Chen [24], which differs from that of Foiles et al
[23] primarily in the use of a core–core pair interaction. The
values of the parameters we used for Pd were given by Voter
and Chen [24], and are αM = 1.6629 Å

−1
, DM = 1.4272 eV,

RM = 2.3908 eV and β = 3.4456 Å
−1

.
The Sutton–Chen [28] potential is based on the empirical

many-body potential developed by Finnis–Sinclair [40] to
describe the cohesion of metals. For these potentials the
total internal energy is represented by a cohesive functional
of pairwise interactions and a predominantly repulsive pair
potential. The main difference of this potential from ordinary
pair potentials is that when calculating the force exerted by one
atom on another using pair potentials it depends exclusively on
the interatomic distance, whereas in the Sutton–Chen scheme
it depends on all the neighbors of both atoms. For Pd the
parameters we used are n = 12, m = 7, a = 3.89 Å

−1
,

ε = 4.179 × 10−3 eV and c = 108.526, as given by Rafii-
Tabar and Sutton [41]. These values yield a bond length of
2.388 Å, lower than the experimental dimer bond length [42]
of 2.48 Å.
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The Gupta potential [27] was derived from Gupta’s
expression for the cohesive energy of the bulk material [26]
and is based on the second moment approximation to tight
binding theory. It has a very simple analytical form which
depends on five parameters. It is written in terms of a repulsive
pair potential and an attractive many-body term. The values
we adopted for the Pd parameters were taken from Cleri and
Rosato [27]; for Pd they are A = 0.1746 eV, ξ = 1.718 eV,
p = 10.867, q = 3.742 and r0 = 2.75 Å.

An alternative approach was put forward by Murrell and
Mottram, who write the potential [29] as a sum of two- and
three-body terms. The values we adopted for the parameters
are the ones given by Cox et al [30], which are a2 = 7.0, a3 =
10.2, D = 0.946 eV, re = 2.667 Å, c0 = 0.197, c1 =
−0.221, c2 = 6.516, c3 = −0.435, c4 = 10.273, c5 =
−14.543 and c6 = 4.463.

We use the minimal energy configurations obtained with
the five phenomenological potentials as seeds and refine them
with first-principles calculations using the SIESTA, VASP
and WIEN2k codes with geometrical relaxation. Following
Alexandre et al [43, 44], in all DFT calculations we limited
ourselves to the local spin density approximation (LSDA)
since it yields good results for Pd. In fact, these authors
showed that the generalized gradient approximation (GGA) is
not necessarily more reliable for studying Pd, and in particular
its magnetism. On the other hand, the LSDA yields a bulk
lattice constant in agreement with experiment.

2.3. DFT SIESTA code implementation

The SIESTA (Spanish initiative for electronic simulations with
thousands of atoms) calculations were performed within the
framework of DFT [45, 46], using a basis set of strictly
localized numerical pseudoatomic orbitals, as implemented in
the SIESTA code [15–17]. The exchange–correlation energy
was calculated within the local spin density approximation
(LSDA) as parameterized by Perdew and Wang [47]. Norm-
conserving pseudopotentials3 [48], in their non-local form,
were used to describe the electron–ion interaction, including
non-linear core corrections [49]. We have used a double-
zeta basis set including polarization functions (DZP) [16, 50].
The clusters were placed in a cubic supercell of up to 20 Å
per side. Due to the large size of the supercell only the �

point was evaluated to sample the Brillouin zone. The cluster
geometries obtained by means of the GA were fully relaxed
using the conjugate gradient method, without any symmetry
constraint, until all the force components became smaller than
0.01 eV Å

−1
. The geometry of each cluster was minimized,

allowing the spin multiplicity to vary freely.

2.4. DFT VASP code implementation

We also used the ab initio VASP (Vienna Ab Initio Simulation
Program) code [18–20] with a plane-wave basis and PAW
ultrasoft [51, 52] pseudopotentials. The kinetic energy cutoffs
used were the maximal default values recommended by the
pseudopotential database, namely 250 eV. For the exchange–
correlation functional we used the spin polarized local density

3 Available at http://www.uam.es/departamentos/ciencias/fismateriac/siesta/.

approximation [47]. A cubic supercell with a side dimension
of 20 Å was employed in the calculation. Only the � point
was evaluated in the Brillouin zone integration, since 3 ×
3 × 3 Monkhorst–Pack k-point mesh computations, where all
the atoms are allowed to relax following Hellmann–Feynman
forces, yield equivalent results for the total energy. The cluster
geometry is optimized, without symmetry constraints, until the
total energy is converged to 10−4 eV in the self-consistency
loop and the force on each atom is less than 0.05 eV Å

−1
. The

energy spread σ was set equal to 0.02 eV.

2.5. DFT WIEN code implementation

In order to check the reliability of our calculations we
performed all-electron DFT calculations of the total energies
for the smaller clusters, using the full-potential linearized
augmented plane-wave method (FP-LAPW) [21]. The
WIEN2k code is an implementation of DFT which allows
different approximations for the exchange and correlation
potential, including the local spin density approximation
(LSDA). For the exchange and correlation potential we used
the Perdew and Wang parameterization of the Ceperley–Alder
approximation of the local density approximation [47]. The
Kohn–Sham equations are solved using a basis of linearized
augmented plane waves [53]. Local orbital extensions to the
LAPW basis were used to describe the 4s and 4p orbitals of
Pd.

The wavefunctions are expanded up to �max = 10 within
the muffin-tin spheres, and the potential and charge densities
are expanded up to Gmax = 10. For Pd we use a converged
basis set of around 7000 plane waves and a muffin-tin radius of
2.2 bohr. The cell is cubic with a side of 15 Å and only the �

point is considered for Brillouin zone integrations.

3. Results and discussion

3.1. DFT configurations and symmetries

As already mentioned, the GA we use consists of a
combination of local minimizers, genetic operations and
‘hybridization’ to search for a global minimum, and was
outlined in section 2.1. The phenomenological minima
thus obtained were subsequently refined by means of DFT
calculations. The geometries adopted by the putative minimum
energy Pd clusters (14 � N � 21) are displayed in
figure 1, and the symmetries that determine the point groups
are given in table 1. On the left-hand side of figure 1 we
show the minimum energy configurations we obtained using
several phenomenological potentials. On the right of the
vertical line in figure 1 are the refined configurations obtained
with SIESTA and VASP. Table 1 summarizes the average
nearest neighbor distances (specified below), and the space
group of the corresponding configuration, obtained with the
phenomenological potentials and with the SIESTA and VASP
codes. In a few cases we were unable to assign a symmetry
group to the cluster.

In relation to the structure symmetries displayed in
figure 1 we notice that, contrary to our own findings [14]
for clusters of up to 13 atoms, several DFT symmetries
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Figure 1. Illustration of the structures that the different size clusters adopt. On the left of the vertical line are the results obtained using
phenomenological potentials in combination with the genetic algorithm. On the right are results obtained with the SIESTA and VASP codes
after relaxation of the phenomenological results. FBD: Foiles–Baskes–Daw, G: Gupta, MM: Murrell–Mottram, SC: Sutton–Chen,
VC: Voter–Chen.

obtained for the refined structures differ from those obtained
phenomenologically. This fact is especially conspicuous for
N = 16, 17 and 18, but is also present for N = 20 and
21. We observe that all phenomenological potentials, except
FBD and VC, yield the minimal structure for N = 14 and
15, respectively. In fact the latter differ only slightly from
the DFT results. The N = 19 cluster constitutes a special
case; while all but one of the phenomenological potentials and
VASP yield the same symmetry group (C5), SIESTA yields
a structure that looks quite similar, and has the same average

nearest neighbor (nn) distance as MM; however, its symmetry
is D5h.

We now turn our attention to the comparison of the
nn distance of the different clusters. For the minimum
energy configurations obtained with the SIESTA and VASP
codes (see figure 1), we computed all the possible distances
between atoms of a given cluster to construct the pair distance
distribution. In figure 2 we show the number of atomic pairs
p(r) with a bond length within a bin of width δx = 0.05 Å.
From this plot we can conclude that a reasonable definition for
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Table 1. Point symmetry group and average nearest neighbor interatomic distance d for the Pd clusters illustrated in figure 1. FBD:
Foiles–Baskes–Daw, G: Gupta, MM: Murrell–Mottram, SC: Sutton–Chen, VC: Voter–Chen, and SG: symmetry group.

FBD VC G SC MM SIESTA VASP

d (Å) SG d (Å) SG d (Å) SG d (Å) SG d (Å) SG d (Å) SG d (Å) SG

14 2.62 C2v 2.63 C3v 2.65 C3v 2.68 C3v 2.72 C3v 2.72 C3v 2.66 C3v

15 2.63 C6 2.66 C6 2.65 C2v 2.67 C2v 2.72 C2v 2.71 C2v 2.65 C2

16 2.64 D3h 2.66 D3h 2.65 Cs 2.67 Cs 2.73 Cs 2.68 Cs 2.65 Cs

17 2.64 Td 2.63 C2v 2.66 C2v 2.67 C2 2.71 C2 2.70 C2v 2.65 C2v

18 2.62 C2v 2.65 C2v 2.65 2.66 C5 2.73 Cs 2.68 2.64
19 2.65 C5 2.66 C5 2.67 C5 2.70 D5h 2.73 C5 2.73 D5h 2.68 C5

20 2.63 D3d 2.65 C2v 2.65 Cs 2.70 C2v 2.73 C2v 2.70 2.64 Cs

21 2.65 Cs 2.66 2.66 2.68 2.73 2.71 2.64

Figure 2. Number of atomic pairs P(r), computed for the minimum
energy configurations obtained with the SIESTA and VASP codes.
As references we display the distances r = 2.75, 3.0, 3.25 and 3.5 Å
as vertical lines.

the size of the first shell is rc ≈ 3.0 Å, which we use from
now on to define the cutoff distance for the nearest neighbors
of an atom; moreover, this is consistent with the literature [14].
In figure 3 the average nn distance is plotted as a function of
cluster size, for the different potentials that we investigated.
Starting from the dimer [54, 55], the bond length increases
with growing cluster size to a value quite close to 2.74 Å, the
experimental bulk nn distance [56]. For bulk Pd (fcc), SIESTA
yields a bond length of 2.763 Å and VASP yields 2.795 Å.

It is also of interest to mention that we computed the
number of atoms in our Pd clusters with coordination equal
to 12 (the bulk value), in order to the develop a feeling on how
soon a cluster attains bulk characteristics. It turns out that the
number of atoms with bulk coordination is zero for N < 13, 1
for N = 13 and 2 for N = 19. To reach a fraction of 90% of
the cluster atoms with bulk coordination we estimate that the
cluster has to contain no fewer than N ≈ 20 000 atoms.

3.2. First and second differences

As mentioned above, we feed the minimal energy structures
obtained via phenomenological potentials into the DFT codes.
It is of interest to observe which input data eventually lead to
what results. This information is displayed in figure 4, where

Figure 3. Average nearest neighbor distance for the various
potentials and for DFT (SIESTA and VASP). The horizontal line
corresponds to the bulk value. FBD: Foiles–Baskes–Daw, G: Gupta,
MM: Murrell–Mottram, SC: Sutton–Chen, VC: Voter–Chen.

Figure 4. Binding energies for the various isomers, after refining
with VASP and SIESTA the structure of the seeds obtained with the
various phenomenological potentials, and displayed and labeled in
figure 1.

the binding energies Eb computed using SIESTA and VASP,
starting from the different seeds illustrated in figure 1, are
displayed. The consistency of the results is quite satisfactory
and constitutes an indication of the reliability and accuracy
of the computation methods we employed. In addition, a
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Figure 5. Energy per atom as a function of cluster size for the
various potentials and for DFT (SIESTA, VASP and WIEN).
The horizontal line corresponds to the bulk value.
FBD: Foiles–Baskes–Daw, G: Gupta, MM: Murrell–Mottram,
SC: Sutton–Chen, VC: Voter–Chen. The lines connecting the DFT
SIESTA and VASP results are a guide to the eye.

general trend that appears is the good performance of the Gupta
potential as source of candidates (seeds) for DFT refinement.

In order to investigate the relative stabilities of the clusters
we consider the evolution of the binding energy Eb, the first
and second energy differences 
1 E and 
2 E , respectively, all
defined in terms of the total interaction energy of the cluster
Vcluster. Analytically

Eb(N) = Vcluster

N
(1)


1 E = Eb(N) − Eb(N − 1) (2)


2 E = 2Eb(N) − Eb(N − 1) − Eb(N + 1). (3)

Our results for Eb as a function of N are displayed in
figure 5. As expected, in the very large cluster limit Eb

approaches the cohesive energy of the corresponding bulk solid
(for Pd Eb = −3.89 eV/atom), as the difference in binding
energy of clusters and bulk becomes smaller and smaller.

The magnitude of 
1 E is a measure of the relative
stability of a cluster against the loss of one of its constituent
atoms (
1 E = 0 for the bulk). An important feature of the

1 E graph displayed in figure 6 is the relative minimum at
N = 13, which corresponds to a region of enhanced stability
(magic number).

On the other hand, a minimum of 
2 E indicates an
enhanced stability of a cluster, relative to its heavier and lighter
neighbors. Therefore, 
2 E can be considered a measure of
the stability of the clusters, which in general is correlated
with experimental mass spectral intensities rather than with
the binding energy Eb. Thus, the minima of 
2 E identify
the clusters which are most stable. In particular, the deep
minimum of 
2 E we observe for N = 13 in figure 7, for all
phenomenological potentials and DFT calculations, indicates
an enhanced stability of the 13-atom cluster (magic number).
Except for N = 19, the agreement between results obtained for

2 E using phenomenological potentials and DFT calculations
is quite reasonable.

Figure 6. First difference for the various potentials and for DFT
(SIESTA and VASP). FBD: Foiles–Baskes–Daw, G: Gupta, MM:
Murrell–Mottram, SC: Sutton–Chen, VC: Voter–Chen.

Figure 7. Second difference for the various potentials and for DFT
(SIESTA and VASP). FBD: Foiles–Baskes–Daw, G: Gupta,
MM: Murrell–Mottram, SC: Sutton–Chen, VC: Voter–Chen.

It is interesting to notice that, as N grows, an improving
agreement for the binding energies and bond lengths is
observed when comparing phenomenological and DFT results.
Moreover, the small differences between the results obtained
using the Voter–Chen, Sutton–Chen and Gupta potentials as
compared with the DFT results, over the whole range 2 � N �
21, is quite remarkable. The variation between the SIESTA
and VASP values, with the latter being always smaller, is
probably due to the way nearest and second nearest neighbors
are defined, and to small differences in the cutoff radii of the
respective pseudopotentials.

3.3. Magnetic moments

In figure 8 we display the magnitude of the total magnetic
moment μ, in units of Bohr magnetons, of the lowest
energy configuration of the various clusters described above.
Our values for μ differ from recent results found in the
literature [57, 58], but obtained for slightly different structures
from ours. In fact, Kumar and Kawazoe [57] report for N = 7
four different structures, that differ in energy by a few meV,
and for which μ = 0, 2 and 4. Futschek et al [58] also report

7
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Figure 8. Magnetic moment per atom versus cluster size of the
lowest energy configuration, after relaxation with SIESTA and VASP.

several 7-atom Pd μ = 0 and 2 structures, whose energies
differ by a few meV. The total energy difference between the
N = 7 cluster with μ = 0 and 1 that we obtain is 62 meV. For
the N = 10 cluster the difference between the μ = 1 and 2
configurations amounts to 158 meV.

However, for N = 3, 8, 15 and 20 the values of
the magnetic moments obtained by SIESTA and VASP are
significantly different. We thus checked the magnitude of
the magnetic moment μ, for the above values of N , by
recalculating them using SIESTA with fixed spin values, at
the magnitude given by VASP. The results are the following:
(i) for N = 3 and 8 the value μ = 2 continues to have
the lowest energy; (ii) for N = 15 SIESTA yields μ = 8
and VASP μ = 4. We calculated for several values between
μ = 4 and 8 and found that μ = 6 is lower in energy than
the other two, but by only ≈0.1 eV; and (iii) for N = 20 the
energies of the μ = 6 given by SIESTA and μ = 2.2 given by
VASP differ by less than 10−4 eV. We conclude that, in general,
due to the large difference in magnitude between elastic and
magnetic energies, the latter are extremely sensitive to minute
geometry changes. This implies that the exact determination
of the minimum energy configuration becomes very difficult,
suggesting that at finite temperatures several magnetic cluster
configurations will quite often coexist.

4. Summary and conclusions

We have calculated, via several phenomenological potentials
in combination with the GA followed by DFT refinement, the
geometrical structure, total energy and magnetic configuration
of Pd14 through Pd21 clusters. This constitutes an extension
of a recently published work for Pd clusters of 2 � N � 13
atoms [14]. Since Pd has a closed shell atomic configuration
our results do not necessarily apply to neighboring elements,
like Ag or Rh.

Many minimization techniques are presently in use, like
basin hopping Monte Carlo, thermal quenching, molecular
dynamics, simulated annealing, genetic algorithm and
conformational space annealing. They differ in efficiency and
the computer resources and time required to implement them.

We have chosen the genetic algorithm in combination with
Simplex and Monte Carlo methods, as local minimizers, to
zero in on the local minima. The procedure proves to be
quite efficient and mitigates the pitfall of getting stuck in local
minima.

In this context phenomenological potentials are quite
successful in closing in on the minimal energy geometrical
structure of Pd clusters smaller than 16 atoms. Unfortunately,
they start failing from that size onwards as far as the
symmetry group of the structure is concerned. However,
the general trends for interatomic distances, binding energies
and first and second differences are very satisfactory, even
for the largest cluster sizes we report here (see figures 3
and 5–7). Furthermore, phenomenological potentials seem
to provide a convenient input for SIESTA, VASP and other
DFT implementations, thus allowing us in the case of Pd to
save computer time. The question that remains open is how
adequate phenomenological potentials, developed on the basis
of bulk properties, are in describing clusters. However, we trust
to be able to shed some light on this issue shortly. Nevertheless,
in this context the accuracy of the easily implemented Gupta
potential [26], in the range 14 � N � 21, is quite remarkable.

A general conclusion we draw is that high symmetry does
not guarantee success when used as a starting point criterion
in the search of the minimum energy configurations. This is
particularly relevant when biased searches are performed, by
discarding a priori lower symmetry geometries and allowing
relaxation of just the higher symmetry configurations, since
the latter may be separated from the low symmetry absolute
minimum by an unsurmountable energy barrier. To handle
these difficulties we have developed a search scheme focused
on preserving diversity [13], whose full details will be
published elsewhere shortly.

As far as the magnetic configurations are concerned, we
observe a trend to larger magnetic moments with increasing
cluster size, but this trend is far from smooth and is
associated to some degree of uncertainty. In fact, the large
difference between the elastic and magnetic energy scales
implies that slight uncertainties in the interatomic distances
bring about qualitatively different results for the magnetic
configurations [57, 58].
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