
Modeling traffic through a sequence of traffic lights
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We introduce a microscopic traffic model, based on kinematic behavior, which consists of a single vehicle
traveling through a sequence of traffic lights that turn on and off with a specific frequency. The reconstructed
function that maps the state of the vehicle from light to light displays complex behavior for certain conditions.
This chaotic behavior, which arises by the discontinuous nature of the map, displays an essential ingredient in
traffic patterns and could be of relevance in studying traffic situations.
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I. INTRODUCTION

The complex behavior displayed in traffic patterns is an
interesting field of physics that is attracting some attention
lately, in particular for their statistical[1,2] and dynamical
[3,4] properties. There are a number references on traffic
jams, chaotic traffic flows, bus-route problems, pedestrian
flows, etc.[5–11].

In particular, the development of complex behavior in
traffic flows determines, in a certain way, the efficiency of
the transportation infrastructure of a city, region, or country.
In this context, traffic flows, with and without passing, have
been studied extensively in the literature[12,13]—e.g, cellu-
lar automaton models, mean-field theories which test the mi-
croscopic evolution, hydrodynamic models which approach
collective behavior, etc.[14,15].

In this work, we are interested in the behavior of cars
moving through a sequence of street light signals. Those who
have been trapped in city traffic jams with traffic lights
should understand the relevance of studying the dynamics of
traffic patterns under these conditions and that the possibility
of controlling these patterns may offer a solution to this very
common problem. For this paper, we will concentrate on the
behavior of a single car moving through a sequence of traffic
lights, and we will see that under certain conditions unpre-
dictable behavior arises. The understanding of this problem
may help us approach the complex problem of interacting
cars moving through a city with traffic lights.

II. MICROSCOPIC MODEL

The aim of our approach, although simplified, is to follow
the details of one vehicle moving through a sequence of
traffic lights in one dimension. The separation between the
nth andsn+1dth traffic light is Ln. The nth light is green if
sinsvnt+fnd.0 and red otherwise, wherevn is the fre-
quency of the traffic light andfn is the time shift. Note that
these two parameters are important if we were trying to con-
trol the traffic flow.

A car in this sequence of traffic lights can have(a) an
accelerationa+ until its velocity reaches the cruising speed
vmax, (b) a constant speedvmax with zero acceleration, or(c)
a negative acceleration −a− until it stops; hence,

dv
dt

= Ha+u svmax− vd, accelerate,

− a−usvd, brake,

whereu is the Heaviside step function.
As the car approaches thenth traffic light with velocityv

the driver must make a decision—to step on the brakes or
not—at the distance(the last stopping point) v2/2a− depend-
ing on the sign of sinsvnt+fnd. Note that if svmax

2 /2a+d
+svmax

2 /2a−d,Ln, thenv=vmax and the car reaches cruising
speed before reaching the decision point. Also in general it
makes sense thats2p /vnd. svmax/a−d ,svmax/a+d so that the
traffic light does not change too fast from on to off. Of
course as the vehicle brakes two things can happen: the car
can stop completely and wait until the light turns on again or
it can start accelerating before it stops completely if the light
changes. Here we start observing the discontinuous nature of
the model.

The car enters the sequence of traffic lights with velocity
v0 and timet0. The set of rules described above determine a
two-dimensional(2D) map Mstn,vnd that evolves the state
stn,vnd at the nth traffic light to statestn+1,vn+1d at the sn
+1dth traffic light. This map is constructed explicitly in the
Appendix.

The types of trajectories between two traffic lights are
described in Fig. 1, which clearly shows the typical kinemat-
ics associated with this model.

It is interesting to mention that this simplified model may
still be relevant in the case of many cars going through the
traffic light sequence, but with the effective parameters de-
pending on the density of interacting cars. For example, you
may have observed while driving through a city that the
effective averaged acceleration seems to depend on the num-
ber of cars waiting at the traffic light. Similarly, the averaged
effective cruising speed also seems to depend on the density
of cars going through the sequence of traffic lights.*Electronic address: btoledo@macul.ciencias.uchile.cl
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III. ANALYSIS

We now study the situation of a car traveling through a
sequence ofN traffic lights, which in essence assumes a city
with regular city blocks. We expect that iterating this map
may reveal interesting information about the behavior of
traffic flow in a city, even with this simplified model.

The best travel time occurs when the car speed synchro-
nizes with the frequency of the traffic light; hence,
sinsnvnLn/vmax+fnd.0 for all n. This may be done for spe-
cific vmax, but it cannot be guaranteed for a range of cruising
speeds.

For now, we will concentrate on studying the dynamics
for a given value ofvmax. Note that this parameter is very
relevant in actual city situations since different drivers are
willing to reach different values ofvmax and traffic control
strategies, achieved throughvn andfn, will be very sensitive
to its distribution. Furthermore, if we assume that the traffic
parameters are, to first order, functions of the density or
number of cars, then control strategies must take this into
account especially during traffic jams.

Note that we could consider differentLn=L+DLn values
and different frequenciesvn=v+Dvn values as induced time
phasesDfn=vDLn/vmax andDfn=DvnL /vmax, respectively.
That is why we concentrate for simplicity on the situation
Ln=L and vn=v. In this case it is convenient to define the
cruising time asTc=L /vmax and normalizeu=v /vmax, t
= t /Tc, andy=x/L. The evolution equations then reduce to

du

dt
= HA+u s1 − ud, accelerate,

− A−usud, brake,

with A+=a+L /vmax
2 , A−=a−L /vmax

2 , andV=vTc.
The decision to stop or continue is made before the traffic

signal at a distance

Dy =
1

2A−
,

depending on the sign of sinsVt+fnd. The frequency restric-
tions reduce tos2p /Vd. s1/A+d ,s1/A−d. We propose to
study the traffic flow as a function ofA+, A−, and V. We
define the acceleration ratioa=A+/A−. Initially we will take
the phasefn=0.

As the car, with a reasonable acceleration ratioa=1/3
andA+=10 (corresponding toTc=L /vmax.T+=vmax/a+), it-
erates through the traffic light sequence, we can observe that

complex behavior appears for certain ranges ofV. The case
of V=6 is shown in Figs. 2(a) and 2(b) for the speedun at
the nth traffic light and time traveledDtn=stn+1−tnd be-
tween thenth andsn+1dth traffic lights, respectively. Clearly
we observe a period-2 solution in which the car is caught by
every other light, affecting the effective traffic flow.

Although all initial conditions in theu-t plane reach this
period-2 orbit asymptotically, a range of initial conditions
reaches this orbit in one step due to the discontinuous nature
of the map.

We then take a similar situation but withV=6.11, and we
observe the more complicated situation of Figs. 3(a) and 3(b)
for un and Dtn, respectively. Note that in this case, even
though there exists a complex traffic behavior, the averaged
traveling time is reduced, as compared with the situation of
Fig. 2(b).

The bifurcation diagram in which we varyV is shown in
Figs. 4(a) and 4(b) for the speed and time traveled between
traffic lights. There is a particular range of frequencies where
the iterated speed of the car varies in a complicated manner.
Clearly, the average travel time in Fig. 2(b) has a larger value
than the one for Fig. 3(b). In fact, it is worth noticing that the
averaged travel time in the chaotic region coincides with the
interpolation between the left and right nonchaotic regimes.
But given the richer dynamics in the chaotic region, it could
be possible to obtain a lower travel time through a chaos
controlling strategy(e.g., Fouladi and Valdivia[16]). This
will be explored elsewhere.

The bifurcation diagram of Fig. 4 suggests a period-
doubling bifurcation to chaos as we increaseV. As the cha-
otic attractor collides with one of the velocity thresholds, it
produces an inverse period-doubling bifurcation. If we zoom
into one of the frequency ranges where the map displays
complex behavior, as shown in Fig. 5(a), we find an intricate
structure of steady and chaotic behavior, as expected of a

FIG. 1. The possible situations at the decision point—namely,
(1) continuing, (2) braking to stop atx=L before the light turns
green again, and(3) braking and accelerating again as the light
turns green before stopping completely.

FIG. 2. The iterated map for(a) the speedun at thenth traffic
light and(b) the normalized time traveledDtn/Tc=stn+1− tnd /Tc be-
tween traffic lights, forV=6, a=1/3, andA+=10.

TOLEDO et al. PHYSICAL REVIEW E 70, 016107(2004)

016107-2



chaotic regime after a period-doubling bifurcation.
Estimating the relevance of this chaotic behavior and its

sensitivity to perturbation and noise may be of importance in
control strategies. In this sense a finite-amplitude Lyapunov
exponent can be estimated[17]. Let us take a trajectory in
the attractor that starts fromsu0,t0d and an initially perturbed
trajectory that starts fromsu0,t0+d0d, with, for example,
d0=10−7. The error is iteratedn times, producingdn. Care
must be taken to include only the scaling region where

dn , d0e
ln.

Given an initial condition over the attractor an exponent can
be estimated by a fitting procedure in the scaling region. Of
course, the discontinuous nature of the map complicates this
calculation, where, for example, both trajectories can reach
the same state in one step, yieldingl=−`. Nevertheless, a
final Lyapunov exponent can still be constructed by averag-
ing many initial conditions over the attractor, as shown in
Fig. 5(b).

Another way to understand the dynamics of the system is
to plot the phase space evolution, at a given value ofV, as
shown in Fig. 6 for four values ofV. It is interesting to note
that the dimension of the attractor is close to 1D in the cha-
otic situation. Here the volume contraction comes from the
dynamics itself and the fact that a range of initial conditions
goes to the same point in one iteration, hence its discontinu-
ous nature.

The bifurcation diagram can be continued to larger values
of V and windows with complex behavior similar to the one
displayed in Fig. 4 can be found. In Fig. 7(a) we see the next
window in a higher-frequency range. This case corresponds
to increasingly faster light switching and may not be as
relevant in actual traffic situations as the one described in
Fig. 4.

Another parameter isa=a+/a−. In the limit a→0, with
a−→` and a+ constant and finite, the driver makes the de-
cision exactly at the traffic light and stops instantaneously if
it is red. We expect that in this case the nature of the dynam-
ics changes and any separation of trajectories in phase
space—i.e.,u-t—can be understood in terms of the situation
in which the cruising speed is synchronized with the traffic
light. Figure 7(b) shows the bifurcation diagram for the car
speed whena=1/30. The curves that resemble vertical lines
correspond to the car not being synchronized with the traffic
lights. These vertical lines should disappear asa is decreased

FIG. 3. The iterated map for(a) the speedun and (b) the time
traveledDtn between traffic lights, forV=6.11, a=1/3, andA+

=10.

FIG. 4. The bifurcation diagram for(a) the speed and(b) the
time between traffic light as a function ofV. The other parameters
are as before,a=1/3 andA+=10. The transient has been removed.
The four vertical lines at the bottom of(a) mark V values used to
build Fig. 6.

FIG. 5. The bifurcation diagram:(a) zoom for Fig. 4(b) and(b)
the associated Lyapunov exponent.
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so that we obtain only two situations: either the car goes
through the traffic light withvmax or stops completely.

We now turn to the problem of sensitivity with noise. We
impose on the above model a random phasefn taken from a
uniform distribution inf0,0.01g and study the equivalent to
Fig. 4. In Fig. 8, we can still observe the general bifurcation
structure of Fig. 4 forvn and Dtn, but this structure is, of
course, lost as we increase the perturbation amplitude.

IV. CONCLUSIONS

Suppose we design a traffic system—namely,vn and
fn—so that it permits a continuous traffic flow for a certain
cruising speedvmax. We can simulate the situation in which

the cruising speed is not exactly at the value the traffic lights
were designed. This should be similar to the situation in
which we vary V and study the bifurcation diagram as
shown in Figs. 4(a) and 4(b) for the speed and time duration
between traffic lights.

An important point to clarify is the relative size of the
chaotic region which depends on the specific values ofA+,
A−, andL (vmax can be rescaled). Much larger chaotic regions
than the ones illustrated here can be obtained by adjusting
the parameters accordingly. For example, if we useA+=5,
A−=30, and Tc=10, the chaotic regions are significantly
larger from the ones previously shown and may apply in a

FIG. 6. The evolution in phase space,u-t plane, at the four
frequencies marked in Fig. 4(a) as vertical lines belowu=0. The
transient has been removed.

FIG. 7. (a) The bifurcation diagram for the speed similar to Fig.
4(a), but in a different frequency range.(b) The bifurcation diagram
for the speed but fora=1/30.

FIG. 8. (a) The bifurcation diagram including a random phase
fn, for the case shown in Fig. 4. The noise is taken from a uniform
random distribution between 0 and 0.01.
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different traffic situation. Although the parameters used in
this work were chosen to illustrate this ingredient in traffic
dynamics without a specific city in mind, other parameter
sets can represent a wide range of traffic conditions(street
size, traffic light separation, car types, driver types, etc.).
Note thatjd (see the Appendix) is another important variable
determing the complexity in the behavior which defines the
chaotic region.

Furthermore, if we want to extrapolate this model to the
situation of more than one car, thenA+, A−, andL may be
obtained in a statistical sense from the distribution of param-
eters defining the traffic flow, distance between traffic lights,
the car types, specific road situations, driver attitudes, etc.
And in this case the values may be expected to be quite
heterogeneous. Hence one could observe, for example, that a
car moving in a traffic jam, accelerates and brakes all the
time, contributing to an effectiveA+ andA−. This is an idea
that may be of relevance for designing traffic flow during
traffic jams.

It is worth noticing that the present analysis discusses the
effect of long trips through the city, while short trips in a city
would be affected by the transients in this model. Hence, this
analysis points to the difficulties that may arise when trying
to control the traffic flow in cities. With one car, we already
have a complicated situation, and as we include more than
one car we can only expect more interesting and complicated
situations. Controlling such systems usually requires a con-
trol strategy that involves a large number of interacting
agents.

Realistic situations are not as simple as the model we
presented here; i.e., we have randomly varying street length
Ln (or Vn or fn, etc.), a distribution ofa+ anda−, etc. Some
of these variations can be observed in a distribution off. In
this sense it is worth mentioning that if we changefn ran-
domly the chaotic behavior can be destroyed as expected for
a large enough perturbation amplitude. On the other hand, if
we chose the obvious deterministic phasefn=−vnLn/vmax
(other parameters kept constant), then the car can make it
though the traffic sequence without stopping, hence optimal
control. But this is not realistic because in practice the cars
have a distribution ofvmax, and what works for one car,
clearly does not work for another. If other deterministic func-
tions are enforced, then interesting situations may also hap-
pen and will be studied elsewhere.

We clearly understand that the presented model is a strong
simplification of actual traffic situations, but it keeps some
essential features we believe are present in real traffic. This
is just a very interesting starting point from which we can
construct and interpret more complex scenarios—i.e., a work
in progress.
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APPENDIX: THE M„t ,v… MAP

It is convenient to construct an exact map that relates
successive crossing of the traffic lights. LetL be the distance

between originO and next traffic light. After crossing thenth
light, the car reachesvmax at

xc =
vmax

2 − vn
2

2a+
→ yc =

1

A+
s1 − un

2d,

tc = tn +
vmax− vn

a+
→ tc = tn +

1

A+
s1 − und,

vc = vmax→ uc = 1,

and continues to move at constant velocity until the decision
point

xd = Ln −
vmax

2

2a−
→ yd = 1 −

1

2A−
,

td = tc +
xd − xc

vmax
→ td = tc + syd − ycd,

vd = vmax→ ud = 1.

At this point we have two choices depending on the sign
of sinsvntd+fnd.

If sinsvntd+fnd=sinsVtd+fnd.0, the car reaches the
traffic light with a state

xn+1 = Ln → yn+1 = 1,

tn+1 = td +
Ln − xd

vmax
→ tn+1 = td + 1 −yd,

vn+1 = vmax→ un+1 = 1.

If sinsvntd+fnd=sinsVtd+fnd,0, the car must start
slowing down with a−, and it will take an extra timeDt
=vmax/a− or Dt=1/A− to reach thesn+1dth traffic light and
stop. This time must be compared with the next time the light
turns green,tg, at which point the car can accelerate again.
Defining the phasejd=vntd+fn=Vtd+fn, we can compute

jg = vntg + fn = 2pSIntF jd

2p
G + 1D ,

where Intfxg is the integer part ofx. Therefore, if td
+Dt, tg or td+Dt,tg, the car will cross thesn+1dth traffic
light with

xn+1 = Ln → yn+1 = 1,

tn+1 = tg → tn+1 = tg,

vn+1 = 0→ un+1 = 0.

In the other casetd+Dt. tg or td+Dt.tg the car starts ac-
celerating at the state

xg = xd + vdstg − tdd − a−stg − tdd2/2

→ yg = yd + udstg − tdd − A−stg − tdd2/2,

tg = tg → tg = tg,
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vg = vd − a−stg − tdd → ug = ud − A−stg − tdd,

and again we have two cases before it reachesL. We need to
determine if the car reachesvmax before the light. We com-
pute the distance at which the car reachesvmax—namely,
xm=xg+svmax

2 −vg
2d /2a+ or ym=yg+s1−ug

2d /2A+. Therefore, if
xm.L, then the car reaches the traffic light with

xn+1 = Ln → yn+1 = 1,

tn+1 = tg +
vn+1 − vg

a+
→ tn+1 = tg +

1

A+
sun+1 − ugd,

vn+1 = Îvg
2 + 2a+sLn − xgd → un+1 = Îug

2 + 2A+s1 − ygd;

otherwise, it reachesvmax at

xm = xm → ym = ym,

tm = tg +
vmax− vg

a+
→ tm = tg +

1

A+
s1 − ugd,

vm = vmax→ uf = 1,

and the light at

xn+1 = Ln → yn+1 = 1,

tn+1 = tm +
Ln − xm

vmax
→ tn+1 = tm + s1 − ymd,

vn+1 = vmax→ un+1 = 1.
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