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Abstract
The determination of the spatial distributions that atoms adopt to form condensed matter is a
problem of crucial importance, since most physical properties depend on the atomic
arrangement. This is especially relevant for clusters, where periodicity is nonexistent. Several
optimization procedures have been implemented to tackle this problem, with ever increasing
success. Here we put forward a search scheme which preserves as large a diversity as allowed
by the use of phenomenological potentials, generating in an unbiased fashion a bank of
configurations to be explored; a procedure we denominate diversity driven unbiased search
(DDUS). It consists in the generation, using phenomenological potentials, of a data bank of
putative minima rather than a single, or just a few, configurations which are based on the
conformational space annealing method (CSA). All of the configurations in the bank are
thereafter refined by means of DFT computations. Certainly, in spite of our efforts to generate a
bank as diverse as possible, not all relevant structures might be included in it, since quantum
effects are ignored. The procedure is applied to several examples of rhodium, palladium, silver,
platinum and gold clusters, between 5 and 23 atoms in size. The main conclusion we reach is
that unbiased search, among a significant number of candidates, quite often leads to rather
unexpectedly low symmetry configurations, which turn out to be the lowest energy ones within
our scheme.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nanoclusters have attracted the interest of physicists, chemists
and applied scientists, due to their challenges to basic science
and because of the variety of potential and actual technological
uses they have [1]. From a basic science point of view
they constitute a natural bridge between the macroscopic bulk
limit and the microscopic scale of atoms and molecules. On
the application side they have found a large variety of uses
in technologies that span the range from catalytic processes,
hydrogen conversion, increasing the octane grade of gasolines
all the way to optoelectronics.

But, as Goedecker et al [2] recently pointed out, the
first and most fundamental step in the description and

understanding of clusters is the precise determination of the
geometrical configuration that the constituent atoms adopt,
since most physical properties depend on the structure of the
system. This has generated significant interest and activity in
the field.

However, the complexity of the problem is quite
overwhelming, as can easily be perceived by pointing out that
a 13 atom cluster, interacting via a Lennard-Jones two-body
potential, has a potential energy surface function with around
1000 minima. Even more impressive is that for a 147 atom
cluster this number grows to ∼1050 minima [3].

Thus, recently the search for minimum energy cluster
configurations has received much attention, which has led to
the development of several strategies to obtain them [4–9].
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Certainly, the ideal procedure would be to implement
an unbiased search using exclusively ab initio or density
functional theory (DFT) codes; however, at present such an
approach is out of the question, especially for larger clusters,
because of the extremely long number crunching times that
would be required. Thus, the strategies put forward differ in
the accuracy they pretend to achieve. Obviously, increasing
accuracy has a steep cost in computer resources.

Among the strategies that have been developed we can
distinguish at least four categories:

(i) To simply use two body [3, 5, 10, 11] or more
refined phenomenological potentials [12–14] and global
optimization techniques to obtain, fairly quickly, rough
estimates of the minimum energy of the cluster
configuration. This approach is at present the only feasible
one to explore very large clusters [15, 16].

(ii) To use less expensive quantum methods, such as tight
binding, to compute structural [17] and even magnetic
properties [18–21] of larger clusters (N > 100).

(iii) To adopt a set of high symmetry structures and refine
them ab initio keeping the original symmetry fixed. For
example, Yang et al [22, 23] investigated, exploring an
extensive structural database plus DFT refinement, the
configurations of Cun clusters, for 8 � n � 20, and Ag
clusters, for 9 � n � 20.

(iv) To allow for arbitrary symmetry when implementing the
ab initio refinement [24–27].

Using the latter approaches it becomes apparent that the
minimum energy cluster structure obtained with phenomeno-
logical potentials does not necessarily converge to the one with
the lowest energy after DFT refinement [27]. Actually, this is
the main point we want to convey with the present paper: it is
extremely unlikely that simple inspection of the set of minima
obtained by means of phenomenological potentials can give
clues to which one of them is the best candidate for the global
minimum. Our conclusion is that a large set of candidates
has to be re-optimized with DFT techniques to improve the
probability of actually being able to find the global minimum.

Thus, given the fact that the potential energy surface is so
complex and that it has such a large number of minima, the
preservation of diversity of the candidates for DFT refinement
is of central importance. Failing to preserve the diversity
of the candidates for DFT refinement strongly increases
the probability of missing low lying energy configurations.
Thus, unbiased search strategies, based on phenomenological
potentials, are the most suitable ones, at the price of an
additional computational effort. In this contribution we present
a successful unbiased search strategy which, implemented with
the aim of keeping as large a diversity as feasible, combines
the use of many-body phenomenological potentials with DFT
refinement. We call this procedure diversity driven unbiased
search (DDUS). More precisely the procedure incorporates all
of the following elements: the creation of a data bank with
a fixed number of configurations Nb using CSA [28–30] with
phenomenological potentials to ensure diversity, followed by
DFT re-optimization.

Certainly, the interesting and important generalization of
these techniques to the study of binary clusters is considerably
more challenging and complex. However, significant progress
has recently been achieved in this most promising new
field [26, 31–33].

This paper is organized as follows. After this introduction,
in section 2 we present the basic ideas used to generate
the data banks. In section 3 we describe the many-body
phenomenological potential we use. The cluster structure
classification is discussed, on the basis of a ‘distance’ among
the several configurations, in section 4, where a comparison
between several options for the concept of distance between
configurations is also given, and a simple and convenient
alternative definition is suggested. The codification of a
particular structure, and the genetic operations employed to
generate it, are described in section 5. In section 6 we
provide the technical details of the strategy we implemented
and the codes we used. In section 7 the results obtained with
our procedure, as applied to several illustrative examples, are
given. Finally, section 8 closes the paper with an analysis of
the method and a discussion of the results that were obtained.

2. Generation of the data bank

A novel and powerful global optimization method, based on
evolutionary type algorithms and called conformational space
annealing (CSA), was put forward by Lee, Scheraga et al
[28–30] and applied extensively by them to the protein folding
problem [29, 30] and, more recently, to the global optimization
of Lennard-Jones clusters [34]. The key feature that makes
CSA advantageous is the fact that it yields a data bank of low
lying minima, while at the same time it preserves diversity.
As a comparison, the more standard genetic algorithm (GA)
methods, due to their notable efficiency, have a tendency to
collapse most of the initial populations into a single global
minimum, eliminating most of the diversity in the solutions.

CSA starts with a set of configurations, denominated the
bank. In our implementation we have used banks of Nb = 15,
30, and 50 different configurations for clusters of N = 5, 13,
and 23 atoms, respectively. For the clusters in the initial bank,
each of the three atomic coordinates of each atom are chosen at
random within the range {0, N1.32} [Å], where N is the number
of atoms in the cluster. The exponent 1.32 is adopted on the
basis of an empirical best fit, intended to achieve maximum
diversity. These Nb configurations are locally minimized,
using the many-body phenomenological potential specified in
section 3, with the quasi-Newton L-BFGS routine [35] and a
modified steepest descent method to manage compressed and
distended situations. Among the resulting configurations, 40%
are chosen at random as seeds to generate new configurations.
Each seed is used to generate a population of Np = 0.6 × Nb

new configurations through the genetic operations that will
be described below in section 5: two thirds by mating with
another configuration chosen from the bank, and one third by
mutation. All the new configurations in these populations are
locally minimized. From this locally optimized population, the
i th configuration is incorporated into the bank if it satisfies one
of the following conditions: (i) if the distance D(i, kmin), which
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is defined in section 4, between the i th configuration and the
closest configuration kmin in the bank is small (< Dcut), then
the configuration with the largest energy of the two is replaced
by the other one; (ii) if the distance D(i, kmin) between the
i th configuration and the closest configuration kmin in the bank
is large (>Dcut) then the largest energy configuration in the
bank is removed. The threshold distance Dcut is chosen as the
average pair distance among all the configurations considered
in the initial optimized bank. This way the diversity is
improved as the bank is constantly being renewed, and we
choose to stop this renewal when all the bank members have
been used as seeds. This process has been defined as an
iteration in the original CSA method. We chose to apply three
iterations starting from the final bank of the previous iteration,
while keeping Dcut fixed.

3. Many-body potentials

We now outline key features related to the phenomenological
potentials we used in our calculations. At the outset one might
think that elementary pair potentials should be sufficient to
achieve the task. However, metals are not properly described
by pair potentials since they are not capable of reproducing, for
example, many of the dynamical properties of the material nor
the so-called Cauchy discrepancy, which the elastic constants
of most cubic crystals satisfy: i.e. c11 �= c44. Another
serious drawback of the use of pair potentials is the incorrect
estimate of the vacancy formation energy, whose value turns
out to be almost equal to the cohesive energy (Eb), whereas
experimental results [36] indicate that they range around Eb/3.
Moreover, as pointed out by Ferrando et al [37], the many-body
character of the interaction potential must account for bond
order/bond length correlation, which is a many-body effect.
However, empirical potentials leave out quantum effects, such
as shell closure and quantum interference.

The many-body embedded atom method (EAM) was
put forward as an alternative to the use of pair potential
models [12, 38]. The EAM assumes that each atom in a
solid can be regarded as an impurity embedded in the host
of the remaining atoms, so that the total electron density is
approximated by the superposition of the electron densities of
the individual atoms. Thus, the electron density in the vicinity
of each atom can be written as the sum of the densities of each
atom plus the electron densities from all the surrounding ones.
By making the simplifying assumption that this background
electron density is a constant, an embedding energy is defined
as a function of the background electron density of the
particular atomic species. Possibly the first successful attempt
in this context is due to Daw, Foiles and Baskes [12, 38] who
put forward a formalism known as the embedded atom method
(EAM). This formalism was improved upon by Voter and
Chen [39]. To apply this method, the embedding function, pair
repulsions, and atomic densities must be known. Approximate
values of the embedding functions and pair interactions can
be calculated from the formal definitions of these quantities
within the DFT framework. Other formalisms, different from
EAM but related to it, were put forward by Ducastelle [40],

Table 1. Parameters employed for the Gupta potential.

Metals A (eV) ξ (eV) p q r0 (Å)

Rh 0.0629 1.660 18.450 1.867 2.69
Pd 0.1746 1.718 10.867 3.742 2.75
Ag 0.1028 1.178 10.928 3.139 2.89
Pt 0.2975 2.695 10.612 4.004 2.77
Au 0.2061 1.790 10.229 4.036 2.88

Gupta [14, 36], Sutton and Chen [41] and, more recently, by
Murrell and Mottram [42, 43].

We chose the Gupta potential [36] for the rest of this paper,
because it has a very simple analytical form which depends on
five parameters. It was derived from Gupta’s expression for the
cohesive energy Eb of the bulk material [14] and is based on
the second moment approximation to tight binding theory. It is
written in terms of a repulsive pair potential and an attractive
many-body term. The attractive many-body term (the band
energy) for the i th atom is given by

Ei
b = −

[∑
j

ξ 2 exp

{
−2q

(
ri j

r0
− 1

)}]1/2

. (1)

The stability of the system is ensured by adding a
phenomenological core-repulsion term of the Born–Mayer
type, which for a pure element reads

Ei
r = A

∑
j

exp

[
−p

(
ri j

r0
− 1

)]
. (2)

In these expressions ri j is the distance between atoms i and
j , r0 is the bulk first neighbor distance. A, ξ , p, and q are
parameters fitted to bulk properties of the specific metal, i.e.,
the cohesive energy, the bulk modulus, and the cancelation of
the energy gradient at r0. Moreover, the cohesive energy of the
system is given by

Ec =
∑

i

(Ei
b + Ei

r ). (3)

The values we adopted for the parameters were taken from
Cleri and Rosato [36], and are given in table 1.

4. The concept of distance between configurations

A tricky question does arise when one tries to establish if
two clusters are equal or different. Even visual inspection is
not very helpful because it strongly depends on the spatial
orientation of the cluster. In this context several parameters
have been suggested with some degree of success. Grigoryan
et al [44] put forward the following definition for the distance
Sα,β :

Sα,β =
(

1 + qα,β

uI

)−1

, (4)

qα,β =
[

2

N(N − 1)

N(N−1)/2∑
n=1

(d(α)
n − d(β)

n )2

]1/2

, (5)

where {d(α)
n } is the sorted set of all 1

2 N(N − 1) interatomic
distances of the αth configuration, and uI = 1 Å.
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Lee et al [34] introduced the distance D(α, β) we actually
employed in the generation of the data banks used in our
calculations. It is given by

D(α, β) =
∑

m

m(2|Hα(1, m) − Hβ(1, m)|
+ |Hα(2, m) − Hβ(2, m)|) (6)

where Hα(1, m) [Hα(2, m)] is the histogram of the number of
atoms having m neighbors in the first (second) shell of the αth
configuration. To specify the shell radii we adopt the first and
second neighbor distances of the respective bulk lattice, which
in this particular instance is fcc. This way of specifying the
distance has the obvious disadvantage that the first and second
neighbor distances, unknown a priori are defined somewhat
arbitrarily. In [27] and here we have used the bulk first and
second neighbor distances for this purpose.

We propose a new definition of the distance, between
configurations α and β of N atom clusters, which proved quite
simple and successful. It is given by

dα,β = 1

N

∣∣I (α)
max − I (β)

max

∣∣ (7)

where α and β label specific cluster configurations and I (α)
max

is the largest of the three eigenvalues of the matrix whose
elements are

I (α)

i j =
N∑

n=1

[(r (α)
n )2δi j − x (α)

n,i x (α)

n, j ] (8)

where (r (α)
n )2 = ∑3

i=1(x (α)

n,i )
2. The x (α)

n,i ’s are the i th Cartesian
coordinates of atom n measured relative to the coordinates of
the cluster center of mass, for the αth configuration.

We found that this distance dα,β is quite convenient to
compute and very sensitive to changes in cluster topology.
Moreover, since it does not require the knowledge of the
cutoff radii, it is very convenient and easily implemented. In
addition, by determination of the principal or singular axis
of the I (α)

i j matrix, the graphic representation of the cluster
becomes uniquely defined, rather than depending on the angle
of sight. However, the problem of defining the distance, in a
convenient and universal way, is by no means a closed subject.
Among other open questions the extension to binary clusters is
not trivial.

5. Generating diversity

Now we describe the genetic operations used in our procedure.
A configuration is specified by 3N real numbers, the Cartesian
coordinates of the N atoms of the cluster, which we enumerate
as

ζ1 ζ2 ζ3 · · · ζp−2 ζp−1 ζp ζp+1 ζp+2 · · · ζ3N−2 ζ3N−1 ζ3N

Next, we define the following genetic operations:

(i) Inversion: We choose two random integers, such that
0 < r < p < 3N , and relabeling our initial configuration
as follows:

ζ1 ζ2 · · · ζr−1 ζr ζr+1 · · · ζp−1 ζp ζp+1 · · · ζ3N−1 ζ3N

we obtain, by inverting the order of all the coordinates
between r and p, the new configuration

ζ1 ζ2 · · · ζr−1 ζp ζp−1 · · · ζr+1 ζr ζp+1 · · · ζ3N−1 ζ3N

(ii) Coordinate replacement: We choose a random integer,
such that 0 � r � 3N , and specify the initial
configuration by

ζ1 ζ2 · · · · · · · · · ζr−1 ζr ζr+1 · · · · · · · · · ζ3N−1 ζ3N

Changing ζr by a random number ξr, chosen within the
same range used to construct the initial bank, one obtains

ζ1 ζ2 · · · · · · · · · ζr−1 ξr ζr+1 · · · · · · · · · ζ3N−1 ζ3N

(iii) Cluster replacement: We write the initial configuration as

ζ1 ζ2 · · · ζr−1 ζr ζr+1 · · · ζm−1 ζm ζm+1 · · · ζ3N−1 ζ3N

and change every coordinate in the configuration by a
random number, chosen within the same range used to
construct the initial bank, to obtain

ξ1 ξ2 · · · ξr−1 ξr ξr+1 · · · ξm−1 ξm ξm+1 · · · ξ3N−1 ξ3N

(iv) Arithmetic mean: We take two initial configurations

ζ1 ζ2 · · · ζr−1 ζr ζr+1 · · · ζm−1 ζm ζm+1 · · · ζ3N−1 ζ3N

ξ1 ξ2 · · · ξr−1 ξr ξr+1 · · · ξm−1 ξm ξm+1 · · · ξ3N−1 ξ3N

that generate the descendant as follows:

κ1 κ2 · · · κr−1 κr κr+1 · · · κm−1 κm κm+1 · · · κ3N−1 κ3N

where

κi = ζi + ξi

2
. (9)

(v) Geometric mean: We take two initial configurations

ζ1 ζ2 · · · ζr−1 ζr ζr+1 · · · ζm−1 ζm ζm+1 · · · ζ3N−1 ζ3N

ξ1 ξ2 · · · ξr−1 ξr ξr+1 · · · ξm−1 ξm ξm+1 · · · ξ3N−1 ξ3N

that generate the descendant as

κ1 κ2 · · · κr−1 κr κr+1 · · · κm−1 κm κm+1 · · · κ3N−1 κ3N

where
κi = sgn(ζiξi)

√|ζiξi |. (10)

(vi) Plane crossover: Start choosing an integer 0 < i < N .
Next we take two clusters in three dimensional spatial
space and rotate them, using three arbitrary Euler angles
for each cluster. Next, we cut them using two z = constant
planes, such that both clusters are divided into two pieces
with i and N − i atoms. The first 3i elements of the
configuration of the descendant correspond exactly to the i
atoms of the first cluster below the first plane, and the last
3N − 3i elements of the configuration of the descendant
corresponds exactly to the N − i atoms of the second
cluster that are above the second plane.

4
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Figure 1. Illustration of the 15 structures of the 5 atom cluster banks for rhodium, palladium, silver, platinum and gold. For each one of the
elements considered there are two columns; the left one (denoted by P) illustrates the DDUS bank obtained using phenomenological
potentials, ordered from top to bottom by increasing energy. The right column (denoted by V) depicts the configuration after re-optimization
with VASP. The structures with the gray background are the lowest energy ones (when several of them have this background they have the
same energy).

6. Technical details

6.1. Minimization scheme

The procedure we implement is to close in on the minimal
energy structure using phenomenological potentials and

geometrical optimization via CSA, then to follow that by
DFT refinement. The procedure we denominate DDUS
incorporates all of the following elements: the creation
of a data bank with a fixed number of configurations Nb

using CSA with phenomenological potentials and genetic

5
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operations, to ensure diversity, keeping the value of Dcut

fixed. The total bank generated this way is subject to DFT
re-optimization. A similar scheme has recently been put
forward by Ferrando et al [37]. The synergy between ab
initio and classical methods thus allows one to significantly
reduce the resources that are required and to expand the set
of problems amenable to treatment. In addition, the increased
computational speed allows one to implement evaluation
intensive minimization procedures. There are many alternative
minimization methods in the literature [45–48]. For example,
Sebetci and Güvenç [49] in their study of Pt, have concluded
that for clusters between 22 and 56 atoms, basin hopping
Monte Carlo is more efficient than molecular dynamics and
thermal quenching, but that with a few exceptions the minimal
structures that result are quite similar.

6.2. DFT VASP code implementation

In all the DFT calculations we used the ab initio VASP (Vienna
Ab initio Simulation Package) code [50–52] with a plane-
wave basis and GGA pseudopotentials, using the projector-
augmented wave method (PAW) [53, 54]. The kinetic energy
cutoffs used were the maximal default values recommended
by the pseudopotential database, namely 250 eV. For the
exchange–correlation functional we used the spin polarized
generalized gradient conjugate approximation [55]. A cubic
supercell with a side dimension of 20 Å was employed in the
calculation. Only the � point was evaluated in the Brillouin
zone integration, since 3 × 3 × 3 Monkhorst–Pack k-point
mesh computations, where all the atoms are allowed to relax
following Hellmann–Feynman forces, yield equivalent results
for the total energy. The cluster geometry is optimized,
without symmetry constraints, until the total energy converges
to 10−4 eV in the self-consistency loop and the force on each
atom is less than 0.05 eV Å

−1
. The energy spread σ was set

equal to 0.02 eV.

7. Results

We now present results of the implementation of our diversity
driven unbiased search (DDUS) for several metal clusters.
Specifically rhodium, palladium, silver, platinum and gold
clusters of 5, 13 and 23 atoms. The idea is to illustrate the
power of the method and to show that it leads to some novel
and rather unexpected results.

First, in figure 1 we present the banks we generated on the
basis of the scheme outlined in section 2 for 5 atom clusters
of Rh, Pd, Ag, Pt and Au. In this 5 atom case we limited
the bank to 15 specimens for each element. From top to
bottom they are ordered in increasing energy as obtained with
phenomenological potentials. It is apparent that the lowest
energy structures obtained phenomenologically are all three
dimensional, while after VASP refinement Ag5, Pt5 and Au5

adopt planar configurations as the most stable ones. Moreover,
they are obtained by refinement of the 14th, 12th and 14th
structure, respectively, of the phenomenological data bank.
It is also quite apparent that by simple inspection, and/or
symmetry arguments, they would not have been the first choice
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Figure 2. Energies of 5 atom clusters of rhodium, palladium, silver,
platinum and gold, computed both with phenomenological potentials
(stars) and after relaxation with VASP (open circles); the lines are
just a guide to the eye. All energy values are referred to the minimum
energy configuration. The arrows denote the specimen that attains
the energy minimum after VASP relaxation.

for putative minima. In addition, the coincidence between
phenomenological and DFT energy values for Rh5 is quite
remarkable, but is due to the fact that all but one of the
configurations in the bank are quite similar. The values of the
energies of all these clusters are displayed in figure 2. The
refined lowest energy configurations are illustrated, in more
detail, in figure 3.

In figure 4 we display the energies of the phenomenolog-
ical and VASP refined data banks of rhodium, palladium and
silver 13 atom clusters. We again observe that the refined
lowest energy configurations are not the most likely a priori
candidates. However, they are all three dimensional. Of
special interest is the Pd13 configuration, since in a previous
publication [56], using the GA and relaxing with the SIESTA
code, we found the icosahedron as the lowest energy configu-
ration. Using DDUS with VASP refinement we obtain several
structures with lower energies than the Pd13 icosahedron, all of
them less symmetrical. However, the energy reduction is slight
and amounts to just ≈0.25 eV. We checked these values using
VASP with both ultrasoft and PAW-GGA potentials. These
results stress once again the power of an unbiased search in the
quest for minimal energy configurations. The refined lowest
energy configurations are illustrated in figure 5.

6
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Rh Pd Ag

AuPt

5 5 5

55

Figure 3. Geometric configuration of the 5 atom rhodium, palladium, silver, platinum and gold clusters with lowest energies as obtained with
our procedure. The three latter ones are essentially planar.

In figure 6 we display the energies of the phenomeno-
logical and VASP refined data banks of palladium and silver
23 atom clusters. Once more the refined lowest energy
configurations are of rather low symmetry and are illustrated
in figure 7.

Several important physical characteristics of the lowest
energy configurations are summarized in table 2. More
precisely, the cohesion energy Ecoh, the average nearest
neighbors distance, the cutoff radius for nearest neighbor
distance as computed after refinement, the symmetry group,
the fraction of cluster atoms with bulk coordination, the
average coordination and the magnetic moments of all the
structures illustrated in figures 3, 5 and 7 are organized in
table 2. In general the lowest energy configurations are quite
regular and do not display a large symmetry. The most striking
deviations from average values are the large magnetic moments
of Rh13 and Pd13, of 11 and 6 Bohr magnetons, respectively.
However, a word of caution should be added as to the reliability
of these values, since small geometry variations imply elastic
energy changes that are much larger than the magnetic energies
that are involved [57]. It is also worth mentioning that none
of the 5 or 13 atom clusters have fully coordinated atoms;
actually, only for the 23 atom clusters do one or two atoms
achieve bulk coordination.

Actually, the most striking shortcoming of the present
work is the failure to obtain the lowest reported energy
configuration of several small cluster structures, such as Pd13

and Rh13 [58–60]. In fact, the energy of the cubic-like
structure of Rh13, when calculated with the Gupta potential,
lies around 10 eV above the buckled biplanar one, and is
unstable. It is thus excluded from the data bank because of
its large energy. Results such as these underline the main
point we stress in this contribution, which is that the minima
obtained phenomenologically are not necessarily good ground
state candidates as computed with ab initio techniques. At
present we are exploring several alternatives to overcome this
snag in our procedure.

0
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13

0

0.5

E
-E

m
in

 [
eV

]

Pd
13

5 10 15 20 25 30

Configuration

0

1

2 Ag
13

Pheno
VASP

Figure 4. Energies of 13 atom clusters of rhodium, palladium and
silver, computed both with phenomenological potentials (stars) and
after relaxation with VASP (open circles); the lines are just a guide to
the eye. All energy values are referred to the minimum energy
configuration. The arrows denote specimens that attain the energy
minimum after VASP relaxation.

8. Discussion and conclusions

In this contribution we have outlined and implemented an
unbiased search procedure to obtain the minimum energy
configurations of metallic clusters. Our purpose is to preserve
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13Rh Pd 13 Ag13

Figure 5. Geometric configuration of the 13 atom rhodium, palladium and silver clusters with lowest energies as obtained with our procedure.
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Figure 6. Energies of 23 atom clusters of palladium and silver,
computed both with phenomenological potentials (stars) and after
relaxation with VASP (open circles); the lines are just a guide to the
eye. All energy values are referred to the minimum energy
configuration. The arrows denote the specimens that attain the
energy minimum after VASP relaxation.

as much diversity as feasible, since prejudiced choices, based
on the ideas that: (i) the minimum energy configuration
obtained via phenomenological potentials does coincide with
the one computed after DFT refinement; or, (ii) high symmetry
structures are the most stable ones, are not supported by
extensive computations [27, 61, 56].

Thus, we have implemented a diversity driven unbiased
search scheme (DDUS), which starts with the creation of
a diverse data bank of configurations that were minimized
using phenomenological potentials. This algorithm is based on
the conformational space annealing method (CSA) mentioned

Ag23Pd23

Figure 7. Geometric configuration of the 23 atom palladium and
silver clusters with lowest energies as obtained with our procedure.

Table 2. Several physical properties of our lowest energy clusters.
Ecoh: cohesive energy per atom, in eV; d: average nearest neighbors
distance, in Å units; rc: cutoff radius for nearest neighbor distance,
in Å units; SG: symmetry group, FBC: fraction of cluster atoms with
bulk coordination, AC: average coordination, μ: magnetic moment,
in Bohr magnetons.

Cluster Ecoh (eV) d (Å) rc (Å) SG FBC AC μ (μB)

Rh5 2.91 2.50 2.7 D3h — 3.6 3.0
Pd5 1.78 2.64 2.9 D3h — 3.6 2.0
Ag5 1.28 2.73 2.9 C2 — 2.8 1.0
Pt5 2.85 2.48 2.7 C2 — 2.4 0.5
Au5 1.76 2.68 2.9 Cs 0 2.8 0.6
Rh13 3.79 2.59 3.2 C3v 0 5.5 11.0
Pd13 2.29 2.71 3.2 Cs 0 5.8 6.0
Ag13 1.68 2.85 3.2 C2 0 5.7 1.0
Pd23 2.58 2.73 3.2 Cs 1/23 6.8 0.0
Ag23 1.83 2.89 3.2 Cs 2/23 7.0 1.0

above. Next, all the elements in the bank are refined via DFT
in order to obtain putative minima. This way, we are able to
obtain not only the lowest energy configuration, but a set of
low lying ones that often differ only slightly in energy. Since
experiments are not carried out at absolute zero it is most likely
that they generate a mixed set of low energy configurations.
Moreover, at finite temperatures one expects this set to be
stable.

An interesting illustration of the above is the structure
of Pd13. Previously [56], using the GA and relaxing with
the SIESTA code, we found the icosahedron as the lowest
energy configuration. Using DDUS with VASP refinement

8
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we obtain several structures with lower energies than the
Pd13 icosahedron, but the energy reduction only amounts to
≈0.25 eV.

We have applied our scheme to rhodium, palladium, silver,
platinum and gold clusters of 5, 13 and 23 atoms. The results
stress the fact that prejudiced choices of putative minima are
risky to make. In addition, we have been able to obtain several
novel minima for the above mentioned cluster structures. Of
particular interest are the planar minimal configurations of
Ag5, Pt5 and Au5.

The main idea we want to convey is that an unbiased
search improves the probability of obtaining the global
minimum configuration. To prove our point we have
implemented a scheme that, starting with the generation of a
data bank of putative minima, allows for an unbiased search
of minimum energy configurations of small clusters. As a
result of its implementation it becomes quite apparent that a
biased search, on a set of high symmetry configurations or
simple refinement of minimum configurations obtained via
phenomenological potentials, is not sufficient. In contrast,
a full DFT relaxation of a relatively large and diverse data
bank does improve the probability of obtaining global minima.
It also allows one to find a set of low lying configurations
which could prove useful in interpreting finite temperature
experimental data.
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[49] Sebetci A and Güvenç Z B 2004 Eur. Phys. J. D 30 71
[50] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[51] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[52] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[53] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[54] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245

9

http://dx.doi.org/10.1016/j.surfrep.2004.10.001
http://dx.doi.org/10.1103/PhysRevLett.95.055501
http://dx.doi.org/10.1038/nature04556
http://dx.doi.org/10.1103/PhysRevB.68.085408
http://dx.doi.org/10.1016/S0009-2614(03)00820-0
http://dx.doi.org/10.1103/PhysRevB.70.205415
http://dx.doi.org/10.1103/PhysRevB.73.115415
http://dx.doi.org/10.1021/jp071120x
http://arxiv.org/abs/cond-mat/000738v2
http://dx.doi.org/10.1103/PhysRevB.29.6443
http://dx.doi.org/10.1080/01418618408244210
http://dx.doi.org/10.1103/PhysRevB.23.6265
http://dx.doi.org/10.1103/PhysRevLett.90.135504
http://dx.doi.org/10.1103/RevModPhys.77.371
http://dx.doi.org/10.1103/PhysRevB.62.13188
http://dx.doi.org/10.1103/PhysRevB.61.7781
http://dx.doi.org/10.1103/PhysRevB.57.12469
http://dx.doi.org/10.1016/S0038-1098(00)00507-X
http://dx.doi.org/10.1103/PhysRevB.66.224410
http://dx.doi.org/10.1063/1.2150439
http://dx.doi.org/10.1063/1.2351818
http://dx.doi.org/10.1103/PhysRevLett.93.133401
http://dx.doi.org/10.1002/(SICI)1096-987X(199912)20:16<1752::AID-JCC7>3.0.CO;2-0
http://dx.doi.org/10.1016/j.cplett.2006.03.003
http://dx.doi.org/10.1063/1.2402168
http://dx.doi.org/10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1097-0282(199808)46:2<103::AID-BIP5>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:3<255::AID-QUA15>3.0.CO;2-V
http://dx.doi.org/10.1103/PhysRevLett.93.105503
http://dx.doi.org/10.1021/jp0674165
http://dx.doi.org/10.1103/PhysRevB.77.195404
http://dx.doi.org/10.1103/PhysRevLett.91.080201
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1103/PhysRevB.48.22
http://dx.doi.org/10.1039/b709000e
http://dx.doi.org/10.1103/PhysRevB.33.7983
http://dx.doi.org/10.1051/jphys:019700031011-120105500
http://dx.doi.org/10.1080/09500839008206493
http://dx.doi.org/10.1080/00268979000100411
http://dx.doi.org/10.1140/epjd/e2005-00141-6
http://dx.doi.org/10.1016/0009-2614(96)00406-X
http://dx.doi.org/10.1103/PhysRevB.60.2000
http://dx.doi.org/10.1140/epjd/e2004-00072-8
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1088/0953-8984/6/40/015


J. Phys.: Condens. Matter 21 (2009) 084209 J Rogan et al

[55] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[56] Rogan J, Garcı́a G, Valdivia J A, Orellana W, Romero A H,

Ramı́rez R and Kiwi M 2005 Phys. Rev. B 72 115421
[57] Rogan J, Garcı́a G, Ramı́rez M, Muñoz V, Valdivia J A,

Andrade X, Ramı́rez R and Kiwi M 2008 Nanotechnology
19 205701

[58] Bae Y-C, Asani H, Kumar V and Kawazoe Y 2004 Phys. Rev. B
70 195413

[59] Wang L-L and Johnson D D 2007 Phys. Rev. B 75 235405
[60] Futschek T, Marsman M and Hafner J 2005 J. Phys.: Condens.

Matter 17 5927
[61] Kumar V and Kawazoe Y 2002 Phys. Rev. B 66 144413

10

http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.72.115421
http://dx.doi.org/10.1088/0957-4484/19/20/205701
http://dx.doi.org/10.1103/PhysRevB.70.195413
http://dx.doi.org/10.1103/PhysRevB.75.235405
http://dx.doi.org/10.1088/0953-8984/17/38/001
http://dx.doi.org/10.1103/PhysRevB.66.144413

	1. Introduction
	2. Generation of the data bank
	3. Many-body potentials
	4. The concept of distance between configurations
	5. Generating diversity
	6. Technical details
	6.1. Minimization scheme
	6.2. DFT VASP code implementation

	7. Results
	8. Discussion and conclusions
	Acknowledgments
	References

