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We explore in detail the nontrivial and chaotic behavior of the traffic model proposed by Toledo
et al. �Phys. Rev. E 70, 016107 �2004�� due to the richness of behavior present in the model, in
spite of the fact that it is a minimalistic representation of basic city traffic dynamics. The chaotic
behavior, previously shown for a given lower bound in acceleration/brake ratio, is examined more
carefully and the region in parameter space for which we observe this nontrivial behavior is found.
This parameter region may be related to the high sensitivity of traffic flow that eventually leads to
traffic jams. Approximate scaling laws are proposed. © 2010 American Institute of Physics.
�doi:10.1063/1.3308597�

Urban traffic is interesting not only due to its obvious
social and economical impact, but also due to its com-
plexity. It is not unusual for drivers to get stuck in a
traffic jam that apparently emerged from nowhere. A
situation like this is believed to emerge from a sudden
change in the driving of some vehicle combined with the
reaction time of neighboring drivers. In this way, a per-
turbation induced by some driver will back propagate
through the system possibly affecting vehicles far away.
In this article, we study the acceleration behavior of a
given driver as one of the possible causes leading to a
traffic jam. We based the present study on a previous
work that showed theoretically the intrinsic chaotic na-
ture of the traffic in cities, and we extend those results to
a broader range of accelerations and deceleration ratios.
In this way, our simulations suggest that high
deceleration/acceleration ratios may be at the root of
emergent traffic jams.

I. INTRODUCTION

The study of urban traffic from a physical viewpoint1–6

has shown to be interesting not only due to its obvious social
and economical7 impact, but also due to its complexity,8,9

which is experienced daily by drivers. This complex behav-
ior has been studied from many perspectives, ranging from
statistical and cellular automaton models to hydrodynamical
and mean field approaches.10–13 As a complex system, a traf-
fic network may display emergent dynamics,10 chaotic
behavior,1,14–16 self-organization,17 etc.

In this work we deepen our understanding of the city
traffic model proposed in Ref. 1, which displays nontrivial
dynamics and chaos, due to the finite acceleration and brak-
ing capabilities of the vehicles for a set of parameters that is
relevant for standard cities. We will discuss below that the
ratio of the accelerating and braking capabilities will play a

crucial role in determining the size of the region in parameter
space where the chaotic and nontrivial behavior can be ob-
served. Furthermore, the nontrivial behavior in this model
arises even in the nonchaotic region due to the existence of
periodic trajectories that have multiple periods. We will show
below that it is precisely this type of microscopic dynamics
that cannot be observed in traditional cellular automaton and
hydrodynamical models.

The appearance of chaos in such a minimal model of city
traffic strongly suggests that chaotic behaviors should be at
the root of many common complex macroscopic traffic
states. To achieve our aim of characterizing the nontrivial
dynamics and the chaotic behavior of the model we do two
things: �a� we bound the region on which the nontrivial dy-
namics and the chaotic behavior occur, and �b� we compute a
numerical Lyapunov exponent18 of the system in parameter
space. This behavior can then be understood in terms of ap-
proximate scaling relations, which we derive.

This paper is organized as follows. In Sec. II we recall
briefly the model introduced in Ref. 1. In Sec. III we define
the nontrivial region using the bifurcation points observed in
the bifurcation diagrams. Some of these points can be found
analytically, whereas others must be found numerically. We
devote this section to the analysis of the period-one and
period-two attractors that can be seen on the bifurcation dia-
grams of the model. In Sec. IV we analyze the behavior of
the system through a numerical Lyapunov exponent for sev-
eral sets of parameters and construct approximate scaling
relations. Finally, Sec. V presents the conclusions to the pa-
per. The specific details of the model are presented in the
Appendix of the paper.

II. MODEL

We follow the dynamics of one vehicle moving through
a sequence of traffic lights in one dimension, as originally
proposed in Ref. 1. A car in this sequence of traffic lights can
have �a� an acceleration a+ until its velocity reaches thea�Electronic mail: btoledo@macul.ciencias.uchile.cl.
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cruising speed vmax, �b� a constant speed vmax with zero ac-
celeration, or �c� a negative acceleration −a− until it stops.
Therefore, we can summarize the equations of motion for the
vehicle as

dv
dt

= �a+��vmax − v� , accelerate,

− a−��v� , brake,
� �1�

where ��x� is the Heaviside step function.
As the car approaches the nth traffic light with velocity

vmax, the driver must make a decision depending on the sign
of sin��nt+�n� at the distance vmax

2 /2a− �the last stopping
point to arrive with null velocity at the traffic light�. The
frequency �n and the phase �n at the nth traffic light are used
to control the traffic.

If sin��nt+�n��0 �green light� the driver continues
through the traffic light at speed vmax. If sin��nt+�n��0
�red light� the driver starts braking with −a− until it reaches
the traffic light with speed v=0 and waits for the next green
light, or until the light turns green again with v�0, at which
point it starts accelerating with a+ �see situation before the
nth+1 traffic light in Fig. 1�. We will choose parameters such
that vmax

2 /2a++vmax
2 /2a−�Ln, so that v=vmax before the de-

cision point. Also in general it makes sense that the period
2� /�n�Max�vmax /a− ,vmax /a+� so that the traffic light does
not change too fast from green to red.

For the purpose of illustration, in this paper we will
make the simplifying assumptions Ln=L, �n=�, and �n=0.
The situation of a green wave, which is defined by �n

=�n−1−�Ln /vwave, will give similar results from the bifurca-
tion diagram to the resonant behavior, as demonstrated in
Ref. 2. Hence, the assumptions taken above also represent
qualitatively the trends of a more general situation with vari-
able street length. In our model, at time t all lights are green
if sin��t��0 and red otherwise. Here � represents the fre-
quency of the traffic lights. The car enters the sequence of
traffic lights with velocity v0 at time t0. The set of rules
described above defines a two-dimensional �2D� map
M�tn ,vn� that evolves the state �tn ,vn� at the nth traffic light
to the state �tn+1 ,vn+1� at the �n+1�th traffic light. This map
is constructed explicitly in Ref. 1. The generic behavior of
this model is depicted in Fig. 1.

For ease of handling we work with a normalized version
of the model by defining a cruising time Tc=L /vmax, a nor-

malized speed u=v /vmax, a normalized time �= t /Tc, and a
normalized distance x̄=x /L. With this normalization the evo-
lution described by Eq. �1� can be written as

du

d�
= �A+��1 − u� , accelerate,

− A−��u� , brake,
� �2�

where A+=a+L /vmax
2 , A−=a−L /vmax

2 , and 	=�Tc is the nor-
malized traffic light’s frequency. The restrictions are now

A+
−1 + A−

−1 � 2,
	

2�
�

1

Max�A+
−1,A−

−1�
, �3�

so that v=vmax �u=1� before the decision point, and the traf-
fic light does not change too fast from green to red. See the
Appendix for a complete construction of the map. Some re-
alistic city traffic parameters are, for example, L=200 �m�,
vmax=14 �m /s�, a+=2 �m /s2�, and a−=6 �m /s2�. It will be
useful to define the scaling variable ao=L /vmax

2

=1.020 41 �s2 /m� for the acceleration, so that for the case of
A+=2
200 /142=2ao and A−=6ao we have the bifurcation
diagram of Fig. 2�b�, displaying the nontrivial dynamics and
the chaotic behavior. It is important to mention that this type
of behavior is not considered by other models. Indeed, this
type of microscopic dynamics cannot be observed in tradi-
tional cellular automaton models and hydrodynamical mod-
els, where the transition from 	L to 	1 in the bifurcation
diagram is reduced to a single point, namely, 	L=	1. Hence,
the traditional models of city traffic miss an important part of
this bifurcation diagram, which occurs for finite accelerating
and braking capabilities of the car, as suggested in Refs. 1
and 2. Let us note that it is possible to construct the associ-
ated bifurcation diagram for the time variable �n

=�tn mod 2�, or �n=	�n mod 2� in normalized form, but
we will characterize the bifurcations of the system through
the bifurcation diagram for un=vn /vmax.

FIG. 1. Reference diagram for the dynamics of the car model. In this par-
ticular case we show a sequence of three traffic lights, where the velocity of
the car at the light n, namely, vn, is the same as the velocity at light n+2.
The car has speed vn+1 at light n+1.

(b)(a)

(c) (d)

FIG. 2. Bifurcation diagrams for u=v /vmax as a function of 	 /2� for A+

=2ao and different values of A−. The region of the nontrivial dynamics and
chaotic behavior bounded by 	L�	�	1 is shown for �a� A−=4ao,
�b� A−=6ao, and �c� A−=8ao. The open circles correspond to the stable
period-one and period-two orbits, while the dashed line to the unstable
period-one and period-two orbits, which are derived analytically from
Sec. III. Bifurcation diagram �d� shows the behavior of the model for
A+=A−=10ao. In �b� we have included 	0 for reference �see Eq. �4��.
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III. BIFURCATION ANALYSIS

In this section we will characterize the region in param-
eter space defined by 	, A+, and A−, where the nontrivial
dynamics and the chaotic behavior occur in this model. From
Fig. 2 we can observe that there is a transition at 	1 /2�
=1 where the car goes through every traffic light without
stopping, since the period of the traffic light 2� /� is the
same as the traveling time Tc. The critical behavior close to
this transition point was studied in detail in Ref. 2. The re-
gion of interest, with respect to the parameter 	, where the
nontrivial dynamics and chaotic behavior occur, is found be-
tween 	L �lower bound� and 	U �upper bound�, as shown in
Fig. 2. In Figs. 2�a�–2�c�, we show the region in which the
nontrivial dynamics and the chaotic behavior occur for three
values of A−. We note that variations in A− change the size of
the nontrivial region, and for some values the chaotic regime
disappears, namely, Fig. 2�a�. Now we will derive the ana-
lytical expressions for 	L and 	U as a function of A+ and A−.

We first define the frequency 	0 where the car stops at
every other traffic light, passing the light in between with
v=vmax. This means that the time between three lights must
be equal to the time it takes to accelerate from v=0 to v
=vmax, brake from v=vmax to v=0, and travel at speed v
=vmax the remaining distance. If we call this time T0 �the
time it takes to advance two lights�, then

T0 =
vmax

a+
+

1

vmax
�2L −

vmax
2

2a+
−

vmax
2

2a−
� +

vmax

a−
.

Since this time must be equal to the period of the traffic
lights, we have

	0

2�
= � 1

2A+
+

1

2A−
+ 2�−1

. �4�

Let us calculate the lower bound 	L. This is the frequency at
which the car always stops, which means that the time be-
tween two lights must be equal to the time it takes to accel-
erate from v=0 to v=vmax, brake from v=vmax to v=0, and
travel at speed v=vmax the remaining distance. If we call this
time TL, then

TL =
vmax

a+
+

1

vmax
�L −

vmax
2

2a+
−

vmax
2

2a−
� +

vmax

a−
.

Since this time must be equal to the period of the traffic
lights, we have

	L

2�
= � 1

2A+
+

1

2A−
+ 1�−1

. �5�

Let us derive the upper bound 	U. To the left of 	U there is
a period-two region �m=2�, at which the car goes through
every other light with speeds 0�vn ,vn+1�vmax. We follow
the notation described in Fig. 1 with vn+2=vn, xd=vmax

2 /2a−,
and the restrictions

x1,n + x2,n + x3,n + x4,n = L, n = 1,2. �6�

For a period-m orbit, we have

t4,n−1 + t1,n + t2,n + t3,n = P , �7�

where

x1,n =
vmax

2 − vn
2

2a+
t1,n =

vmax − vn

a+
,

x2,n = L − x1,n − xd t2,n =
L − x1,n − xd

vmax
,

x3,n =
vmax

2 − vmin,n
2

2a−
t3,n =

vmax − vmin,n

a−
,

x4,n =
vn+1

2 − vmin,n
2

2a+
t4,n =

vn+1 − vmin,n

a+
,

with t4,n= t4,n+m, vn+m=vn, and vmin,n, as shown in Fig. 1, for
the case m=2, which we now consider in detail. Note that
Eq. �6� gives the solution

vmin,n+1 =	 a−

a+ + a−
vn.

By solving the remaining equations for the case m=2, we
can obtain vn�P� and vn+1�P�, and in particular, PU can be
solved from vn�PU�=vn+1�PU�, which gives

PU =
L

vmax
+

2a+vmax

a−�a− + a+�

or

	U

2�
= � 2A+

A−�A+ + A−�
+ 1�−1

. �8�

It may be of interest to note the limit a+=a−, even though in
city traffic a−�a+. Note that we could use this methodology
to find any periodic orbit and the point it bifurcates. In Figs.
2�a�–2�c� we show the bifurcation diagram, which includes
the region in which we have the nontrivial dynamics and the
chaotic behavior, with these three relevant frequencies. Let
us note that the range of parameters in Fig. 2 is relevant for
real city traffic. For reference, we also show the stable and
unstable period-one orbits, obtained from Eqs. �6� and �7�,
which agree with the numerical bifurcation diagram.

It is clear that Eqs. �5� and �8� give us a lower and upper
bound for the region on which the nontrivial dynamics may
occur in the model. Since 	L�	U, we find that

A− � A+

for the nontrivial behavior to occur. Let us also note that
given the form of Eqs. �5� and �8�, it is sufficient to fix A+

and vary A− /A+. The chaotic region, which is contained in
the region of the nontrivial dynamics, occurs for a larger
ratio of A− /A+, as we will see below.

If we do not consider the finiteness of the acceleration
and braking capabilities, then

lim
A+,A−→


	0 =
1

2
,

lim
A+,A−→


	L = 	1 = 1,
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lim
A+,A−→


	U = 	1 = 1,

which is exactly the statement we made above about the
impossibility of observing the details of this nontrivial dy-
namics and chaotic behavior in traditional cellular automaton
models and hydrodynamical models, where the transition
from 	L to 	U to 	1 occurs at a single point, i.e.,
	L=	U=	1. The way in which the system approaches this
limit is shown in Fig. 2�d� for A+=A−=10ao; here the chaotic
region disappears when 	L→	U. On the other hand, it is not
difficult to show that the behavior that determines 	0 does
appear in cellular automaton models.

Now that we have characterized the region in which we
have the nontrivial behavior, we turn our attention to the
chaotic region.

IV. ANALYSIS OF THE CHAOTIC REGION

We define the chaotic region as the region of the bifur-
cation diagram where we can estimate a positive numerical
Lyapunov exponent �see below for a definition�. The chaotic
region is bounded by 	L and 	U�	1 �see Eqs. �5� and �8��,
but care must also be taken to satisfy the restrictions imposed
by Eq. �3�.

Let us note in Fig. 2�c� that as we reduce 	, the chaotic
region stops when the attractor collides with the v=0 thresh-
old condition, which means that at some point the car must
wait at the traffic light until the light turns green. Thus, the
traffic light forces the system to go into periodic orbits, for a
range of 	, which must go through the state �u=0,
	� mod 1=0�.

In order to compute a numerical Lyapunov exponent for
the chaotic region, we follow Ref. 1. We take the initial
condition t0=0 and v0=0, and evolve the map for ni=500
iterations to reach the attractor. Once at the attractor, we
numerically follow two trajectories slightly separated in ve-
locity, that is, ��n ,un� and ��n ,un+�un�, with an initial veloc-
ity difference of �uni

=10−5. The separation of the trajectories
behaves as

�n = �ni
e��n−ni�.

Hence, we can estimate the Lyapunov exponent � by fitting a
graph of �n

2=��n
2+�un

2 versus n−ni, as shown in Fig. 3�a�, for
	 /2�=0.883, A−=6.5ao, and A+=2ao. Figures 3�b� and 3�c�
show the bifurcation diagram and the numerical Lyapunov
exponent as a function of 	 for values of A−=6.5ao and
A+=2ao. Figure 3�b� is a bifurcation diagram for these values
and has + marks above the 	 /2� values for which it is
positive. We choose the numerical threshold condition
��0.1 to include a particular evolution in the chaotic region.
This value, which defines a positive numerical Lyapunov ex-
ponent, is about the error in � obtained in Fig. 3�a�. Figure
3�c� has the value of � in the same horizontal scale as the
bifurcation diagram of Fig. 3�b�. For 	 values below the
chaotic regime the two trajectories essentially converge to
the same solution, and hence the Lyapunov exponents be-
come �→−
.

Now that we have a procedure that allows us to estimate
�, we can look in parameter space the regions in which we

have ��0.1. In Figs. 4�a�–4�c� we plot the region of positive
Lyapunov exponent in the A+−	 /2� space for A−=4ao, 6ao,
and 8ao. In all figures the solid lines display the curves de-
fined by 	L and 	U, and the restrictions given by Eq. �3� are
satisfied. We note that as we increase the braking capability
a− we increase the size of the chaotic region in parameter
space, as suggested in Ref. 1.

It is interesting to note that we need a braking capability
a− much larger than the accelerating capability a+ to obtain
chaos. The relation seems to be a−�3a+ for chaos to appear.
It is not possible to obtain a chaotic behavior for a+
a−.

(a)

(b) (c)

FIG. 3. �a� log��n
2� vs n−ni for 	 /2�=0.883, A−=6.5ao, and A+=2ao;

points represent the simulation results, the solid line is the fit for the nu-
merical Lyapunov exponent. �b� Bifurcation diagram for A+=2ao and
A−=6.5ao. The marks above the diagram are the values of 	 /2� for which
the numerical Lyapunov exponent is positive. �c� The numerical Lyapunov
exponent as a function of 	 for the bifurcation diagram in �b�. The dashed
line indicates the threshold we define to consider a positive numerical
Lyapunov exponent, namely, ��0.1.

(b)(a)

(c) (d)

FIG. 4. �Color online� Chaotic regions for 	 /2� vs A+ for �a� A−=4ao, �b�
A−=6ao, �c� A−=8ao, and �d� A−=10ao. Black dots on the plots mean a
positive numerical Lyapunov exponent. On all plots the solid lines represent
	L and 	U, see Eqs. �5� and �8�, respectively. The restrictions given by Eq.
�3� are satisfied.
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This is a result of interest in itself, which may have implica-
tions for city traffic. Notice that there are some regions of
order, periodic windows, inside the chaotic region, and they
run diagonally. We note that Figs. 4�a�–4�d� are strikingly
similar, and there may be a way to map the three-
dimensional parameter space into a 2D effective parameter
space through some scaling relations. These scaling rela-
tions, which we will describe below, will show that chaos
indeed appears if A−�3A+, which corresponds to a relevant
situation for real city traffic.

Similarly, we can fix A+ and look at the chaotic region in
the A− versus 	 /2� parameter space, as shown in Figs.
5�a�–5�d�. It is interesting to note that although we have fixed
A+ the region for which we observe a positive numerical
Lyapunov exponent only happens for a small region of val-
ues for 	. Our previous statement about the relation between
A+ and A− to obtain a chaotic behavior becomes more appar-
ent. Again we observe that Figs. 5�a�–5�d� are strikingly
similar, and it becomes more apparent that there may be a
way to map the three-dimensional parameter space into a 2D
effective parameter space through scaling relations.

Finally we fix 	 and do an exploration of the A−−A+

space. The results are shown in Fig. 6. As previously men-
tioned, we need a braking capability a− larger than the accel-
erating capability a+ to obtain chaos, and notice that it is not
possible to obtain a chaotic behavior for a+
a−. Some re-
gions of order inside the chaotic region can also be observed,
and they run diagonally up to some point. A new feature
appears however. If we look to the right side of these figures
we observe that the dense region where we have a positive
numerical Lyapunov exponent, which runs diagonally, starts
to thin out for bigger values of A−, while the regions of order
stop going diagonally. They widen and start running horizon-

tally. This is an effect that takes place when the system is
moving toward the limit a−→
 �	U→	1� with constant a+,
which may be relevant in city traffic, and which is com-
pletely consistent with our previous observations. In Fig.
6�b� three insets have been added, corresponding to the bi-
furcation diagrams for un versus A+ with constant A−. In the
plot for A−=4.25 we see that the chaotic region appears to
the left of a period doubling cascade. Whereas in the diagram
for A−=6.5 this is not the case, and we observe a more com-
plicated behavior. This behavior, which is also present in Fig.
2�c�, occurs when the chaotic attractor collides with the u=0
threshold around 	 /2��0.9. It has to do with situations in
which the car stops completely at a traffic light, and then
needs to wait a while until the next green light. This complex
dynamics gives rise to a behavior described by supertracks,19

which will be studied in detail elsewhere.

A. Approximate scaling

It is possible to capture some of the dynamics that we
have previously discussed by doing an approximate rescaling
of the axis in Figs. 4–6. From Fig. 4 it becomes apparent that
we need to divide A− by A+, as originally suggested in Ref. 1,
but that requires rescaling 	 in some way. Hence, using the
definitions of 	L and 	U, it becomes natural to rescale 	
with

	� =
	 − 	L�A−�

	U�A−� − 	L�A−�
.

This rescaling is also suggested by the similar curvatures of
the chaotic region and 	U and 	L in Figs. 4 and 5. With
these two scaling laws, we can represent Figs. 4 and 5 by the
single plot of Fig. 7�a�. Let us note that besides the chaotic
region, the periodic windows are clearly apparent. Hence,
these approximate scaling laws allow us to approximate the
2D parameter space that describes the chaotic and nontrivial

(b)(a)

(c) (d)

FIG. 5. �Color online� Chaotic regions for 	 /2� vs A+ for �a� A−=1ao, �b�
A−=2ao, �c� A−=3ao, and �d� A−=10ao. A black dot on the plots means a
positive numerical Lyapunov exponent. On all plots the solid lines represent
	L and 	U, see Eqs. �5� and �8�, respectively. The restrictions given by Eq.
�3� are also included.

(b)(a)

(c) (d)

FIG. 6. Chaotic region in the A−−A+ space for �a� 	 /2�=0.77, �b� 	 /2�
=0.85, �c� 	 /2�=0.87, and �d� 	 /2�=0.91.
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behavior of the system. Here it becomes clear that the cha-
otic behavior can only occur for a−�3a+, which is a realistic
condition for today’s cars.

It then remains to consider a way to scale the four panels
represented in Fig. 6 into a single plot. It is natural to nor-
malize the horizontal axis by

A� =
A− − Au�	,A+�

Au�	,A+�

and keep the vertical one as A+ /A−. Here we have used

Au�	,A+�

=

A+�1 −
	

2�
� + 	A+	 	

2�
− 1	A+

	

2�
− A+ − 8

	

2�

2� 	

2�
− 1� ,

which represents the A− value evaluated from the definition
of 	U, namely, Eq. �8�. Note that it does not make any sense
to use the definition 	L to rescale. Figure 7�b� is constructed
with all the data from Figs. 6�c� and 6�d�. This figure is even
more striking than Fig. 7�a�, for the periodic windows are
better defined. It may also happen that this figure may be a
fractal as we increase A�, which we plan to analyze else-
where.

V. CONCLUSIONS

We derived bounds for the nontrivial dynamics and cha-
otic behavior for the simple city traffic model previously
presented in Refs. 1 and 2. The relevance of this study re-
sides in that the range of parameters defined by these bounds
is of relevance in city traffic, and is usually not considered in
standard models of city traffic dynamics, such as cellular
automata or hydrodynamic models.

We found that chaos is only possible if A−�3A+, and
that the chaotic region in the bifurcation diagram with re-
spect to 	 gets bigger as we increase this ratio. Note that this
is a common situation on every day traffic since most cars
have a braking capability �loose speed� larger than their ac-
celeration capability. Hence, the dynamics of the system may
be more prone to form an emergent traffic jam. It is interest-
ing to note that this is exactly the tendency shown by drivers
in crowded roads, where the usual car movement starts with
a low acceleration �A+� and ends with a larger braking value

�A−�. Even though the analysis of the present paper is con-
ducted on a simple model of one car in a sequence of traffic
signals, it may be expected that this stop and go behavior in
a dense city traffic may enhance the probability of producing
a disordered state, and hence a traffic jam, which is, in this
manner, a self-organized state.

Through a numerical exploration of the parameter space
of the model, we found the combination of parameters for
which the system shows a positive numerical Lyapunov ex-
ponent. We also found that the region of values of 	 for
which this occurs is small and has embedded on it windows
of nonchaotic dynamics as expected, hinting at the possibil-
ity of controlling this nontrivial dynamics and chaotic behav-
ior via the traffic light frequency. However, we also conclude
that even for high values of A− there are values of 	 for
which there is a positive numerical Lyapunov exponent, al-
though not produced by a period doubling cascade, but by
the discontinuities in this simple traffic model. Regarding a
real life situation these observations highlight the fact that
chaotic behavior may be present on city traffic systems re-
gardless of driver behavior, arising from the traffic light ex-
istence itself.
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APPENDIX: THE M„t ,v… MAP

It is convenient to construct an exact map that relates
successive crossings of the traffic lights. Let L be the dis-
tance between origin O and next traffic light. After crossing
the nth light, the car reaches vmax at

xc =
vmax

2 − vn
2

2a+
→ yc =

1

2A+
�1 − un

2� ,

tc = tn +
vmax − vn

a+
→ �c = �n +

1

A+
�1 − un� ,

vc = vmax → uc = 1,

and continues to move at constant velocity until the decision
point

xd = Ln −
vmax

2

2a−
→ yd = 1 −

1

2A−
,

td = tc +
xd − xc

vmax
→ �d = �c + �yd − yc� ,

(b)(a)

FIG. 7. Approximate scaling for �a� 	� vs A− /A+; black values represent the
data from Fig. 5�c�; gray ones from Fig. 5�d�. �b� A+ /A− vs A�; black values
represent the data from Fig. 6�c�; gray ones from Fig. 6�d�.
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vd = vmax → ud = 1.

At this point we have two choices depending on the sign of
sin��ntd+�n�.

If sin��ntd+�n�=sin�	�d+�n��0, the car reaches the
traffic light with a state

xn+1 = Ln → yn+1 = 1,

tn+1 = td +
Ln − xd

vmax
→ �n+1 = �d + 1 − yd,

vn+1 = vmax → un+1 = 1.

If sin��ntd+�n�=sin�	�d+�n��0, the car must start slow-
ing down with a−, and it will take an extra time �t
=vmax /a−, or ��=1 /A−, to reach the �n+1�th traffic light and
stop. This time must be compared with the next time the light
turns green tg, at which point the car can accelerate again.
Defining the phase �d=�ntd+�n=	�d+�n, we can compute

�g = �ntg + �n = 2��Int� �d

2�

 + 1� ,

where Int�x� is the integer part of x. Therefore, if td+�t
� tg, or �d+����g, the car will cross the �n+1�th traffic
light with

xn+1 = Ln → yn+1 = 1,

tn+1 = tg → �n+1 = �g,

vn+1 = 0 → un+1 = 0.

In the other case, td+�t� tg, or �d+����g, the car starts
accelerating at the state

xg = xd + vd�tg − td� − a−�tg − td�2/2

→ yg = yd + ud��g − �d� − A−��g − �d�2/2,

tg = tg → �g = �g,

vg = vd − a−�tg − td� → ug = ud − A−��g − �d� ,

and again we have two cases before it reaches L. We need to
determine if the car reaches vmax before the light. We com-
pute the distance at which the car reaches vmax, namely,
xm=xg+ �vmax

2 −vg
2� /2a+, or ym=yg+ �1−ug

2� /2A+. Therefore,
if xm�L, then the car reaches the traffic light with

xn+1 = Ln → yn+1 = 1,

tn+1 = tg +
vn+1 − vg

a+
→ �n+1 = �g +

1

A+
�un+1 − ug� ,

vn+1 = 	vg
2 + 2a+�Ln − xg� → un+1 = 	ug

2 + 2A+�1 − yg� ,

otherwise, it reaches vmax at

xm = xm → ym = ym,

tm = tg +
vmax − vg

a+
→ �m = �g +

1

A+
�1 − ug� ,

vm = vmax → uf = 1,

and the light at

xn+1 = Ln → yn+1 = 1,

tn+1 = tm +
Ln − xm

vmax
→ �n+1 = �m + �1 − ym� ,

vn+1 = vmax → un+1 = 1.
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