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The complex behavior that occurs when traffic lights are synchronized is studied for a row of interacting
cars. The system is modeled through a cellular automaton. Two strategies are considered: all lights in phase and
a “green wave” with a propagating green signal. It is found that the mean velocity near the resonant condition
follows a critical scaling law. For the green wave, it is shown that the mean velocity scaling law holds even for
random separation between traffic lights and is not dependent on the density. This independence on car density
is broken when random perturbations are considered in the car velocity. Random velocity perturbations also
have the effect of leading the system to an emergent state, where cars move in clusters, but with an average
velocity which is independent of traffic light switching for large injection rates.
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I. INTRODUCTION

Transportation problems represent an interesting field in
physics, mainly due to its high social impact and its emer-
gent properties �1–6�. Ubiquitous among these are the traffic
flow and pedestrian flow problems that have been studied
extensively in the literature �7–12�. Behaviors such as jam-
ming transitions and chaos have been found to be common
�3,13�. In this work we will consider the traffic in a city as
represented by a number of interacting cars moving through
a sequence of traffic lights, a system which has many non-
trivial features �1,2,14–17�.

In Ref. �1� it was shown that, for a minimal deterministic
model of a car traveling through a sequence of traffic lights,
the car dynamics can behave in nontrivial ways, displaying,
for example, intermittency and chaos for a realistic range of
parameters. The important contribution of that work is that
the nontrivial dynamics depends on the finite braking and
accelerating capabilities of the cars, which are in general
different quantities. The study of the system was character-
ized for two traffic light phase behaviors: �a� synchronized
phases �1� and �b� phases linked by a green wave �2�. The
analysis of this model was continued in Ref. �2�, which
showed that the car dynamics follows a critical scaling law
around the resonance condition. Resonance occurs when �a�
the traveling time between traffic signals is the same as the
period of the signals in the synchronized phase strategy and
�b� when the average speed of the car is the same as the
green wave velocity in the green wave strategy. These reso-
nances are the boundary between two different dynamics;
but, as was shown numerically and analytically for one car,
the behavior close to the resonance does not depend on the
finite braking and accelerating capabilities of the car. Al-
though the dynamics of a single car has been shown to be
very rich �1,2�, it is still an idealized situation. The purpose
of this paper is to investigate whether the universal behavior
close to resonance persists when multiple interacting cars are
considered or if it is rather a feature of the simplified single-

car model. We will argue that, indeed, the same resonant
phenomenon exists when we include interacting cars in the
traffic sequence, as it has also been suggested in Ref. �18� for
a small and highly correlated cluster. We will study how this
resonant behavior changes as we increase the number of in-
teracting cars. For that purpose we will simulate the dynam-
ics of a number of cars by a simple cellular automaton �CA�
model. A large number of CA variants have been proposed to
simulate city traffic, including many details of the car dy-
namics. But, for the purpose of this work, we will concen-
trate on a very simplified CA model since we expect that the
critical behavior, close enough to the resonance, should be
more or less insensitive to these details �e.g., finite braking
and accelerating capabilities, etc. �1,2��.

II. MODEL

We model the behavior of cars in a sequence of traffic
lights with a simple CA. In this model, we divide the dis-
tance Ln between successive traffic lights by a number Nn

c

=Ln /� of cells that can be occupied by a vehicle or can be
empty, with � as the size of the cell and n labeling the nth
traffic light. The car will move to the next cell in one time
step � if that cell is empty. Conversely, the vehicle will stay
in its cell during the next time step if the next cell has a
vehicle. Hence, the cars cannot pass each other, and the ve-
locity takes two states of 0 or 1. If the cell is at a traffic light,
the car must stay in its cell while the traffic light is red.

Figure 1 shows a possible state of the system, with three
cars in the street. Cars always enter the street on the left side
and move from left to right. In the lower part of the figure,
we represent this state schematically with black �white� cells
for occupied �empty� cells. An arrow over a cell boundary
represents a traffic light. A cell can only be occupied by a
single car or by none at all.

If we assume that �a� the distance between traffic lights is
about L=200 �m�, �b� the size of each cell is about �
=10 �m�, and �c� the cruising velocity is about vmax
=10 �m /s� �36 �km /h��, then each time step corresponds to
��1 �s�. Let us note that these values are consistent with*btoledo@fisica.ciencias.uchile.cl
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the car having equal accelerating and braking capabilities of
a=vmax

2 /2�=5 �m /s2�.
Switching for the nth traffic light is given by the function

fn�t�=sin��nt+�n�, where �n is the frequency and �n is the
phase delay for that traffic light. Of course, any periodic
function can be used. In this work, we consider a single
frequency �n�� and two traffic light phase behaviors: �a�
synchronized phases and �b� phases linked by a green wave
�2�. For the first case, in which all traffic lights turn green or

red at the same time, a useful parameter is �̄=Tc / P, where
Tc ��20� for the parameters above� is the minimum travel
time between traffic lights and P=2� /� is the traffic light
period. In these simulations, half of the period P the traffic
light is red �meaning the car at the traffic light is at rest� and
the other half of the period is green �meaning that the cars
can move freely�.

In general, each traffic light can have a given time delay
�tn, with respect to the previous one, so that different traffic
lights can turn green and red at different times. For the case
of the green wave strategy, a green pulse propagates through
the sequence of traffic lights with speed vwave, so that the
parameter �=vmax /vwave will be useful. Then, the phase for
the nth traffic light is �n=−�m=1

n Lm� /vwave �2�, so that the
time delay between consecutive traffic lights can be written
as

�tn =
�n−1 − �n

�
= �

Ln

vmax
.

In our simulations we use a realistic value of P=60�=60 s.
As we discussed in Sec. I, with this simplified model and

these parameters, we expect to represent only the robust dy-
namics of the critical behavior close to the resonance condi-

tions, where �̄�1 and ��1, respectively. In order to in-
clude some nontrivial effects that may affect the resonance
behavior, we will also consider perturbations to the vehicle
velocity, by including a parameter r that represents the ran-
dom probability that a car may stop in the next time step,
regardless of the occupation of the next cell. This will be
done in Sec. V. We will see that the resonance behavior is

robust against this kind of perturbation, within a certain
range of r and car injection rate, even though the detailed
dynamics may change considerably.

III. SYNCHRONIZED PHASES

We consider a sequence of ns=50 traffic lights with Nn
c

=Nc=20, hence Tc=20�, and consider a set of traffic lights
with all phases synchronized to �tn=0, so that all lights turn
green or red at the same time with a period P. Cars enter at
the first simulation cell at a rate 1 / f , that is, we try to inject
a car every f time steps �if that first cell is occupied, no car is
injected�. The car density thus depends on f . Also, the model
is fully deterministic and cars have r=0 probability of stop-
ping in the next time step, unless the next cell is occupied.

Initially the street is empty. First, we inject cars at the left
end at a rate 1 / f =1, that is, we inject a car at every time step
when the first cell is empty. The system is evolved during a
time 103P to eliminate transient behaviors, and then the dy-
namics is followed during a time 103P. We compute the
average speed of the cars over the last 30 traffic lights �total
distance traveled divided by total travel time�. The results are
shown in Fig. 2 for the average car speed as a function of the

normalized traffic light frequency �̄. Let us note that this
figure is exactly the same figure as in Ref. �2�, where a single
car moving through a sequence of traffic lights is considered.
In particular, we observe the same critical behavior around

�̄=1,

	v

vmax

� 1 − �1 − �̄� �1�

for �̄�1, which suggests that the behavior around resonance
is robust under variations on the car density. This strengthens
the proposal that the single-car model in Ref. �1� may model
certain aspects of real city traffic. Figure 2 shows that, near
resonance, a single car is able to model the dynamics of a
cluster of cars.

As we change the injection rate 1 / f we observe the same
critical behavior. In fact the curves for f =1,5 ,10,20 over-
lap. The dilute case f �20 essentially corresponds to the
model in Ref. �2�, because there is one car per traffic light on

FIG. 1. �Color online� A possible state of the system, with three
cars and one traffic light. A schematic representation of the state is
shown in the lower part of the figure.
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FIG. 2. Average car speed for different traffic signal periods
�synchronized traffic lights, �tn=0; deterministic model, r=0�. The
dashed line represents the analytical prediction around the critical

point �̄=1 �Eq. �1��.
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average. Hence, as a first approximation, the resonant behav-
ior does not depend on the injection rate 1 / f .

IV. GREEN WAVE

Now we consider the green wave strategy, also for the
deterministic case r=0. That is, the time delays �tn for the
traffic lights are such that the nth traffic light turns to green a
time �Ln /vmax after the �n−1�th traffic light. As before we
consider ns=50 traffic lights; a fixed street length Nn

c =Nc

=20, hence Tc=20�; an empty street initial condition; and an
injection rate 1 / f . For the green wave, a larger time is
needed to establish a pseudoequilibrium state, so in this case
the system is evolved during a time 104P in order to drop
transient behaviors, and then the dynamics is followed dur-
ing a time 104P. The average car speed is calculated across
the last 30 traffic lights �total distance traveled divided by
total travel time�.

Figure 3 shows the results obtained for the average car
speed as a function of � for the dilute case f =20. The same
behavior around resonance is observed as in the single-car
model �Fig. 5�a� in Ref. �2��, where the analytical prediction
for the average speed is

	v

vmax

= 1 − �1 − �� . �2�

Equation �2� is also plotted in Fig. 3 �dashed line�, and it can
be noticed that it closely represents simulation data near
resonance.

Behavior near resonance also turns out not to depend on
car density, or f , as in the synchronized case studied in Sec.
III. This is shown in Fig. 4, where results for several values
of f from the dilute case f =20 to the maximally dense case
f =1 are plotted. In this and the following figures, the line-
width represents the standard deviation of the car velocity, as
calculated when averaging over the simulation run. �This
was also considered in Figs. 2 and 3, but the dispersion is
negligible in that case.�

Again, a single car is able to model the dynamics of a
cluster of cars. We can understand this cluster dynamics by
analyzing Fig. 5, which shows snapshots of our simulation
for the green wave strategy, and for three values of �: just
below, at, and just above resonance.

For the resonant case �=1.0 �Fig. 5�b�� cars organize
themselves in clusters of length �P / �2�� containing P / �4��
cars �in Fig. 5�b�, 15 cars in a cluster of length 30� that never
stop. Let us first notice that since cars can only move if the
next cell is empty, the minimum distance between consecu-
tive cars is one empty cell. Thus, although f =1, cars will
quickly organize in a sequence of alternating occupied and
empty cells as in Fig. 5�b�. If there were no traffic lights, this
sequence would never end. However, cars can only pass
through a traffic light during one half of the period, P /2,
which corresponds to M = P / �2�� time steps. Since one car
moves a single cell in one time step, and since cars are al-
ways separated by one empty cell, this means that only
M /2= P / �4�� cars can pass during a traffic light cycle, thus
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FIG. 3. Average car speed as a function of �, for the green wave
strategy, f =20, and r=0. Dashed lines correspond to the analytical
prediction near resonance �=1 �Eq. �2��; solid lines correspond to
the more general result �4�.
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FIG. 4. Same as Fig. 3, but for several values of f , such that
1	 f 	20. Linewidth represents the standard deviation of the car
velocity over the simulation run.

(a)

(b)

(c)

FIG. 5. Dynamics of a car cluster as it propagates in the green
wave with �a� �=0.9, �b� �=1.0, and �c� �=1.1. Within each panel,
each row represents the state of the simulation from the 20th to the
25th traffic light �see Fig. 1�. We let the system evolve for 104P
iterations, and then we show the same street sector during the times
t=104P+nP /6, for n=0–6. n increases downward in each panel.
Horizontal arrows indicate the direction of motion; vertical ones
indicate traffic light positions. For the purpose of illustration we
have painted gray one of the cars.
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breaking the line of cars in clusters of this size, as shown in
Fig. 5�b�. Since �=1.0, 	v
 /vmax=1.

For the case �=1.1 �Fig. 5�c��, in which case vmax

vwave, a single car starting from a red light would reach the
next light before the green wave �2�. Figure 5�c� shows that,
when multiple cars are considered, a car cluster is stopped at
each traffic light and must wait for the green wave, as re-
vealed by the existence of adjacent occupied cells in Fig.
5�c�. Hence, the time traveled between traffic lights is
L /vwave, so that we obtain 	v
 /vmax=1 /� for the average
speed, which is the same result obtained for the single-car
model �Eq. �2� for �
1�. For the case �=0.9 a single car
starting from a red light would reach the next light after the
green wave �2�. For multiple cars, Fig. 5�a� shows that some
of the cars �one in this case� at the tail of the car cluster are
stopped at a given traffic light when it turns red, while a car
cluster picks the cars left behind by the cluster that is moving
ahead. Even though the cluster pulse is moving with speed
vmax, the individual cars are not capable of staying within a
given cluster and are eventually stopped by the traffic lights
�notice that at every time step there is a car at each traffic
light in Fig. 5�a��. Hence, the average car speed is 	v
 /vmax
�1. As to the car leading the cluster, its dynamics is equiva-
lent to the single-car model. Following Ref. �2�, the leading
car goes through q traffic lights before being forced to stop,
which occurs when

qL

vmax
−

qL

vwave
=

P

2
,

that is,

q =
Pvmax

2L

1

1 − �
.

Since the leading car covers a distance qL in a time qTc
and then waits a time P /2 for the next green light, its aver-
age speed is 	v
=qL / �qTc+ P /2�, which can be written as

	v

vmax

=
1

1 + �1 − ��
. �3�

This is the same expression given in Eq. �2� close to 1, for
��1. Hence,

	v

vmax

= 
1

�
, � � 1

1

1 + �1 − ��
, � 	 1,� �4�

which is a generalization of Eq. �2�.
Let us notice that these results are independent of the

injection rate 1 / f of the cars, because once the cluster is
formed the leading car behaves as in the single-car case. This
is not true when we include random velocity perturbations
�Sec. V�.

Let us also note that, for the three cases considered in Fig.
5, the dynamics is periodic with period P �the same state is
obtained after a time P�. This is in contrast with the nonpe-
riodic chaotic orbits found for the single-car model �1,2�.
Such chaotic orbits are not present in the CA model pre-

sented here, and this is due to the fact that, in this CA model,
cars stop or start instantaneously. It is the finite accelerating
and braking capabilities of a car which lead to orbits of pe-
riod 1, 2, 4, and eventually to chaotic orbits �1,2�. A system-
atic study of the influence of accelerating and braking capa-
bilities will be presented elsewhere.

The results presented here do not depend on the street
length and do not change if the street length varies randomly.
Figure 6 shows the average speed for a sequence of street
lengths Ln=L�1+n� /2, where −0.5	n	0.5 is taken from
a uniform distribution and f varies between 1 and 20. We
note that critical behavior close to resonance does not
change. That is, the critical behavior near �=1 found in Ref.
�2� is not only universal in the sense that it does not depend
on the street length sequence, but also in the sense that it
does not depend on the car density, at least within our CA
model.

V. RANDOM VELOCITY PERTURBATIONS

In the previous section, it was shown that the critical be-
havior around resonance is robust under changes in the car
density and street length sequence. In this section we will
study the effects of random perturbations on car velocity
�19–21�.

In order to do so, cars in our model will have, at every
time step, a probability r of not moving during one time step.
Figure 7 shows the average speed for f =20 and for different
perturbation probabilities r. Unlike the effects studied in the
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FIG. 6. Same as Fig. 4, but for a random sequence of street
lengths. The dashed line represents the analytical prediction of Eq.
�2�, and the solid line represents the analytical prediction of Eq. �4�.
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FIG. 7. The average car speed as a function of � for the green
wave strategy, for f =20. We take equal street lengths Nn

c =Nc=20
and r=0.0, 0.02, 0.04, 0.06, 0.08, and 0.10. The larger the value of
r, the lower the curve. The solid line corresponds to the result given
by Eq. �8�, and the dashed line corresponds to that given by Eq. �2�.
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previous section, resonance and critical behavior are modi-
fied if r�0. Resonance occurs for a higher value of � and
average velocity decreases, with respect to the deterministic
�r=0� single-car model.

An analytical expression can be obtained to describe the
behavior observed in Fig. 7. For any given car, the probabil-
ity of moving one cell after one time step is 1−r, the prob-
ability of moving one cell after two time steps is r�1−r� �not
moving in the first time step, then moving in the second one�,
etc. The probability of moving one cell after n time steps is
rn−1�1−r�, in which case its mean velocity is vmax /n, and the
time it has taken to move is n�.

The average time to move through a given cell is

	t
 = �
n=1

�

nrn−1�1 − r� =
1

1 − r
. �5�

On average the car will advance n cells in a time n� / �1−r�;
therefore, its average speed is 	v
 /vmax=1−r.

Let us now consider the effect of moving through a se-
quence of traffic lights for one car. Given Eq. �5�, the average
time to reach the next traffic light is Tc / �1−r�. In order to
decide whether to continue or stop, this time must be com-
pared with the time L /vwave it takes the green wave to reach
the next traffic light. If Tc / �1−r�	L /vwave, that is,

� �
1

1 − r
,

we will have 	v
 /vmax=1 /�.
If the car moves slower than the green wave, Tc / �1−r�

�L /vwave, the car will go through q traffic lights before be-
ing forced to stop. Following a similar argument as that lead-
ing to Eq. �3�, the car is forced to stop when

qL

vmax�1 − r�
−

qL

vwave
=

P

2
, �6�

that is,

q =
Pvmax

2L

1 − r

1 − ��1 − r�
. �7�

Since the car traveled the distance qL during the time
qTc / �1−r�, and then waited a time P /2 for the next green
light, its average speed is 	v
=qL�1−r� / �qTc+ �1−r�P /2�,
which can be written as

	v

vmax

=
1 − r

1 + �1 − ��1 − r��
.

The maximum occurs at �=1 / �1−r�, in which case

	v

vmax

= 1 − r .

This is equivalent to Eq. �5�, which simply means that, in
resonance, the traffic light has no effect on car motion.

In summary,

	v

vmax

= 
1

�
, � �

1

1 − r

1 − r

1 + �1 − ��1 − r��
, � 	

1

1 − r
.� �8�

Equation �8� suggests that, if average velocities are rescaled
by 1 / �1−r�, and � is rescaled by �1−r�, then all curves in
Fig. 7 should collapse onto a single one for ��1. This is
indeed the case, as shown in Fig. 8.

We now consider a nondilute case f =5. Results are shown
in Fig. 9. Comparing with Fig. 7, it is clear that the system is
more sensitive to velocity perturbations in the denser case.
The behavior near resonance follows only approximately the
dilute scaling given by Eq. �8�. Thus, it is not independent of
the car injection rate, as expected, since the cars that are in
front of the cluster affect the motion of the cars behind it.
Still the general shape is consistent with the scaling provided
by Eq. �8�. It is interesting to note that for r
rc�0.07 the
average speed becomes independent of �; hence, the traffic
lights are no longer relevant in the car dynamics. This critical
value rc turns out to depend on f , as suggested by comparing
Figs. 9 and 10. This may be interpreted as a collective state
in city traffic, where light switching has no effect on car
motion. Against expectations, this state is obtained by in-
creasing random velocity perturbations, even for not very
dense situations.

Figure 10 shows the effect of r for the dense case f =1.
The system is maximally sensitive to velocity perturbations,
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FIG. 8. Same as Fig. 7 near resonance, with average velocities
rescaled by 1 / �1−r� and � rescaled by �1−r�. Solid lines corre-
spond to the analytical results �8�, and dashed lines correspond to
Eq. �2�. Linewidth represents the standard deviation of the car ve-
locity over the simulation run.
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FIG. 9. Same as Fig. 7, but for f =5. r varies from 0 to 0.1, in
increments of 0.01. Solid lines correspond to the analytical results
�8�, and dashed lines correspond to Eq. �2�. Linewidth represents
the standard deviation of the car velocity over the simulation run.
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so that even for a very small value of r, resonance disap-
pears.

We can visualize the car dynamics in Fig. 11, which is
analogous to Fig. 5, but for r=0.01. Due to the randomness
introduced by the parameter r, the initial conditions �top row
in each panel� are not the same in each run. For the same
reason, the state evolution is no longer periodic. We can still
see the car clusters propagating with a speed close to vmax, as
individual cars drop out of a given cluster in a random fash-
ion, while cars left behind by the previous cluster are picked
up by the next one. This can be seen in Fig. 11, where a
particular car has been marked in gray in each panel. In Figs.
11�a� and 11�c�, this car belongs to a given cluster; this clus-
ter is broken at a traffic light, and then the gray car will travel
with the following cluster once the traffic light turns green.
In Fig. 11�b� the situation is similar, except that the gray car
is the first one to be stopped by a red traffic light, so that it
will be the leading car of the corresponding cluster when the
light turns green �see the last row in Fig. 11�b��. Even though
the number of cars being dropped at a given traffic light
varies randomly in time, there is a coherent structure �a clus-
ter of cars� propagating in the system, and on average the

cars take about the same amount of time to reach the end of
the simulation box, independent of vwave �and, hence, of ��.
There is no noticeable difference among the three panels of
Fig. 11, meaning that traffic lights have no effect on car
dynamics, as confirmed in Fig. 10.

The collective state described in the previous paragraph
and in Fig. 11 is an emergent state, which would certainly
not be possible if traffic lights were not present, because they
are responsible for breaking the row of cars in the first place.
However, once the clusters are established they move coher-
ently, and the individual car velocity is independent of the
traffic light frequency. In a way, this resembles a classical
gas subject to binary collisions. Collisions are always
present, and they are necessary for the gas to reach equilib-
rium; but once this is established, collisions simply maintain
the equilibrium, but are otherwise not relevant to calculating
any thermodynamic variable. In other words, the collisional
term in the Boltzmann equation is not zero because there are
no collisions, but because collisions manage to make it zero.

Our simulations suggest that the average cluster size 	Cs

can be estimated—in the absence of noise �r=0�—in terms
of f only,

	Cs
 � �P/�f�� , f 
 4

P/�4�� , f 	 4.
� �9�

For instance, for P=60�, clusters of 15 cars on average are
formed if the injection rate is high enough �f 	4�. For lower
injection rates �f 
4�, clusters will have 60 / f cars on aver-
age. Equation �9� states that it is possible to start a cluster of
size �P / �4�� at the left border of the simulation box during
the period of the traffic light when f 	4, as long as r is not
large enough to destroy the cluster during one period of the
traffic light.

We also calculate the average car speed as a function of �
for the same injection rates as in Fig. 4, and for r=0.01 �Fig.
12�a�� and r=0.05 �Fig. 12�b��. For r=0.01 we have a sharp
transition from dilute to collective state at f 	4, which is
exactly when we have the transition P /4
 P / f relevant to
Eq. �9�. In view of the discussion above, this threshold value
f =4 is very important because, once we settle to this particu-
lar pseudoequilibrium, the incoming flux at the first traffic
light �n=1� should be equal, on average, to the outgoing flux
at the last one �n=ns�. �It should be remarked, though, that
our simulations show that this threshold value f =4 is not
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FIG. 10. Same as Fig. 9, but for f =1.
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FIG. 11. Same as Fig. 5, but considering the effect of velocity
perturbations as given by the parameter r. Injection rate is 1 / f =1
and r=0.01. �a� �=0.9, �b� �=1.0, and �c� �=1.1.
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FIG. 12. The average car speed as a function of � for the green
wave strategy, for 0	 f 	20. The smaller the value of f , the lower
the curve. �a� r=0.01 and �b� r=0.05. In both cases for f 	4 the
average speed is essentially constant as a function of �. Linewidth
represents the standard deviation of the car velocity over the simu-
lation run.
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independent of the street length L or the traffic light period
P.� Let us also note that for f 	4 the average speed seems to
be independent of f and only depends on r as discussed
before. For f 
4 we note that the resonance is shifted and
reduced, but is still there �see Fig. 12�b��. Hence, a tiny per-
turbation on car velocities is enough to produce a noticeable
change around �=1. We also note that the smaller the size of
the cluster that is initiated as the light turns green at the first
light, the less effective are the perturbations on the collective
motion of the cars. This is expected since perturbations on a
given car velocity will have less effect if there are fewer cars
behind it.

It is not a coincidence that both the average velocity and
the cluster size �see Eq. �9�� do not depend on f , for f 	4.
Both are related to the fact that f is actually the intended
injection rate so that, if f is too small, the first light is not
able to release, during the light period, more cars than the
maximum permitted, e.g., P /4 in the case r=0.

VI. CONCLUSIONS

We have discussed a CA model for city traffic that in-
cludes car interactions and traffic lights and studied the criti-

cal behavior close to the resonances �̄=1 �traffic lights in
phase� and �=1 �green wave strategy�. For a single-car
model, this was done in Ref. �2�. The car density is modeled
by a parameter f , which measures the frequency with which
cars enter the street. Even though some detailed effects such
as the finite accelerating and braking capabilities of the cars
are missing �which can be improved by allowing multiple
velocity states �7�, a study we intend to carry out in a future
paper�, the CA model reproduces results previously obtained
in Ref. �2�, in the appropriate limit �dilute case f =20, with
no velocity perturbations r=0�. Thus, it is shown that the

critical behavior found around both resonances is robust not
only with respect to the street length sequence �2�, but also
with respect to the car density.

Also, the fact that this universality holds shows that the
single-car model proposed in Ref. �1� is a good model, at
least near resonance, for the leading individual in a cluster of
cars. However, when cars are allowed to vary their velocities
in a random manner �modeled in our case as a probability r
of not moving in a given time step�, behavior around reso-
nance changes, resonance itself is shifted, and resonant av-
erage velocity decreases, depending on the injection rate 1 / f
and r. For a given value of f , there is a threshold value of r,
rc, such that car velocity is independent of �, which can be
interpreted as the system entering a collective state, where
traffic light switching has no effect on car velocity, with rc
depending on f . Also, for a given value of r, the system
enters this collective state if f is small enough.

The situation described above is an emergent state, which
is caused by the traffic light switching in the first place; but
once it is established, the light switching is not relevant for
car dynamics anymore. This resembles a classical gas, where
collisions establish and maintain an equilibrium state, but do
not otherwise affect macroscopic thermodynamic quantities.

We should point out that, in all cases studied, the initial
condition was an empty street. However, the choice of the
initial condition is not a trivial matter, and “equilibrium clus-
ter configurations” such as those in Fig. 5 turn out to depend
on that choice. We intend to explore this subject in the future.
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