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We describe a simple method to control a known unstable periodic orbit (UPO) in the presence of
noise. The strategy is based on regarding the control method as an optimization problem, which
allows us to calculate a control matrix A. We illustrate the idea with the Rossler system, the Lorenz
system, and a hyperchaotic system that has two exponents with positive real parts. Initially, a UPO
and the corresponding control matrix are found in the absence of noise in these systems. It is shown
that the strategy is useful even if noise is added as control is applied. For low noise, it is enough to
find a control matrix such that the maximum Lyapunov exponent A_,, <0, and with a single
non-null entry. If noise is increased, however, this is not the case, and the full control matrix A may
be required to keep the UPO under control. Besides the Lyapunov spectrum, a characterization of
the control strategies is given in terms of the average distance to the UPO and the control effort
required to keep the orbit under control. Finally, particular attention is given to the problem of
handling noise, which can affect considerably the estimation of the UPO itself and its exponents,
and a cleaning strategy based on singular value decomposition was developed. This strategy gives
a consistent manner to approach noisy systems, and may be easily adapted as a parametric control
strategy, and to experimental situations, where noise is unavoidable. © 2008 American Institute of

Physics. [DOL: 10.1063/1.2956981]

Controlling chaotic systems has a range of well known
techniques and procedures mainly based on the ideas of
Ott, Grebogi, and Yorke for maps and in the Pyragas
procedure for continuous systems, both of which use
small perturbations to drive the system dynamics to a
stabilized behavior. In spite of the many successes in the
area, this is still a very active field of research. In this
article, we explore an optimal procedure to control con-
tinuous noisy chaotic systems. Noise is unavoidable in ac-
tual experimental situations, affecting both the determi-
nation of an unstable periodic orbit (UPO) to control, and
the success of a control strategy once the UPO is known.
In this article, we propose a strategy to deal with both
problems, thus it can be useful in a wide range of experi-
mental situations. Besides, a given control strategy may
be satisfactory in one sense, and not in others. For in-
stance, it can keep the orbit very close to the UPQO, but it
may require a large effort, which can make it hard to
realize experimentally. We consider this issue as well, and
describe how to obtain a control matrix, optimal with
respect to various criteria. This is interesting in itself,
because once the problem is posed as an optimization
one, as we have done in this paper, the control strategy
can be further improved by using more advanced global
optimization techniques.

I. INTRODUCTION

It is well known that a large number of natural' ™ and
technological“f7 systems behave chaotically for some ranges
of their parameters. In many applications chaotic behavior is
undesirable, and thus regions of the parameter space where
nonlinear effects are present are avoided, or the chaotic mo-
tion is eradicated by some large modification of the underly-
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ing system. Evidently, major modifications are costly and
truncation of the parameter space may be too restrictive an
approach. An alternative is to take advantage of basic prop-
erties inherent in a chaotic system: Unlike a linear system, it
possesses many usable periodic orbits, many different time
evolutions are simultaneously possible, and the motion on
the chaotic attractor is exponentially sensitive to small per-
turbations. Ott, Grebogi, and Yorke (OGY)? illustrated not
only that chaotic systems described by maps may be con-
trolled, but that the richness of possible behaviors in chaotic
systems may be exploited to enhance the performance of a
dynamical system in a manner that would not be possible
had the system’s evolution not been chaotic. Shortly thereaf-
ter, Ditto er al.’ reported a successful laboratory implemen-
tation of the control strategy outlined in Ref. 8, demonstrat-
ing that controlling chaos is not just a theory, but is
physically attainable as well. Pyragas10 developed these
ideas in continuous dynamical systems using a delayed feed-
back control strategy for unstable periodic orbit (UPO)."
This approach uses a feedback mechanism to achieve control
and shares the good feature that a small perturbation is re-
quired to keep the orbit close to the desired UPO, consistent
with the inherent noise level. Many studies have continued
along these lines (Refs. 7 and 12—18, to cite a few). For our
purpose, it is worth mentioning the study of the effect of an
external noise on the controlled system,19 and the search for
optimal control strategies using a periodic driving,20 but in
which the control strength does not remain small.

In this paper, we continue along the lines set forth by
Pyragas,10 being interested in control strategies for noisy sys-
tems, where control is both optimal under a given criterion
and remains small, consistent with the inherent noise level.

© 2008 American Institute of Physics
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We begin by describing a fairly simple method to esti-
mate the Lyapunov spectrum of a known UPO. This method
will allow us to map the issue of controlling the UPO to an
optimization problem, as suggested in Refs. 18 and 20. We
will use a driving term that is natural for these types of
systems, as suggested by Pyragas,10 and that can converge to
a small control effort, consistent with a given noise level.
Under noisy conditions, it is relevant to find optimal control
strategies that minimize the effect of noise on the orbit close
to the UPO. However, “optimal” does not have a unique
meaning. A given strategy may be very efficient at keeping
the orbit close to the UPO, but the effort to implement it can
be large, a relevant issue in actual experimental situations.
We take this into account in our discussion, and notice that
not all criteria are equivalent. Given a noise level, we show
how optimization methods allow us to find an optimal (by a
certain criterion, say, the effort to maintain control) control
strategy, and how the resulting control matrix depends on the
level of noise. It turns out that, for low noise levels, it is
enough that the control matrix has a single non-null entry,
but high noise levels may require the use of the full control
matrix. In either case, though, the fact is that an optimal
control matrix can be found, so that control is achieved even
for rather large noise levels. We illustrate these ideas with the
Lorenz and Rossler systems that have a single Lyapunov
exponent with a positive real part, and with a hyperchaotic
system that has two Lyapunov exponents with positive real
parts.

The above strategy, though, depends on the knowledge
of the UPO to control, and of the associated Lyapunov ex-
ponents. However, noise can affect considerably the estima-
tion of the exponents themselves, and the strength of the
force required to keep the orbit close to the UPO. Moreover,
for noisy systems, finding the UPO experimentally may be a
nontrivial issue in itself. Special attention is given to this
issue as well. We develop a cleaning strategy based on sin-
gular value decomposition,m which we illustrate with the
Rossler system with added inherent noise. In particular, we
show how to estimate a cleaned UPO, then compute the
Lyapunov exponents, implement the optimization routine,
and finally construct an optimal control matrix.

We believe that, given that noise is unavoidable in actual
experimental situations, the issues discussed in this paper
may be relevant to a wide range of laboratory and simulated
systems.

Il. CONTROL METHOD

Let us consider a dynamical nonlinear system described
by

x=f(x), (1)

where X is a vector in B¢ and f: RY— R is a nonlinear and at
least C! function. Following the OGY ideas, we will take
advantage of the existence of UPOs concomitant with the
chaotic trajectory in the phase space.8 Due to the ergodicity
assumption, the trajectory will approach these UPOs, as
close as necessary, but consistent with the noise level, as the
system evolves. For this paper, controlling a UPO of period 7
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in this system implies (a) reducing the asymptotic average
distance to the UPO for a given 7; and (b) converging to an
asymptotically small average control effort, consistent with a
given noise level. These two concepts will be defined in
more detail later on.

For the purpose of illustration, in this work we will ap-
ply a control strategy when the state of our chaotic system is
near a known target UPO x*(¢) (this is not a restriction of the
method, as will be discussed below). Here x*(z)
—x*(t mod 7) is understood. Following Ref. 18, we can de-
fine the instantaneous distance of a trajectory to the UPO as

DX(%,1) =[x - 2* (0

and we take the control as (1/2)AV D>~ A(F—5*(1)), using
an optimization analogy.21 Hence, for this work we will as-
sume a feedback control scheme,

x=f() + A - x*(1), 2)

where the control is taken as C(¥,7)=A(¥—x*(z)). Let us note
that this is the form suggested by Pyragas.lo We can control
the UPO x*(¢) by finding the conditions on the matrix A that
force a negative real part for all the exponents of the UPO,
i.e., Re(\;) <O0. In this paper, we are interested in finding the
restrictions on A that guarantee the convergence to the UPO
within a given noise level.

Of course, in some applications the control strategy is
applied only when the trajectory is close to the UPO, which
can be defined by a formal restriction on the values of

|C(%,1)| or D*(%,1). The last restriction is necessary to ensure
convergence to x*(¢) and not to other spurious UPO, as we
will see below. For the rest of the paper, we will relax these
restrictions and allow the control to be always active, since
the time it takes for the system to reach a particular neigh-
borhood of the UPO, so that control can be turned on, has
been studied in detail in the literature. We will concentrate on
characterizing (a) the Lyapunov exponents, (b) the average
distance to the UPO, and (c) the effort required to keep the
system under control, consistent with a given noise level.
We first turn to the estimation of the Lyapunov expo-
nents of the UPO. In an infinitesimal neighborhood of the
UPO, we have the trajectory x(¢)=x*(t)+ 7(t), where 7 is a
small perturbation whose evolution can be approximated by

7= (DE(X*) + A) 7, 3)

where Df is the Jacobian of f. In the Floquet approach, there
exists a set of vectors {#,(), ..., 17,(t)} such that

7t + 1) =M1, (4)

where \; are the Floquet exponents corresponding to the 7,
direction. We now describe a numerical method to compute
the spectrum A; using the linearity of the above problem.
There exists a fundamental matrix B(7) such that any solution
v(r) of Eq. (3) is

(1) =B(1)v(0) (5)

for any initial vector v(0), which requires that B(0)=1. Now
let us take an arbitrary initial basis {v,(0),v,(0),...,0,0)},
so that an arbitrary vector 7(0) can be written as 7(0)
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= j”-lzlcjﬁj(O), where the set ¢={c,,...,c,} satisfies Ejlzlcj
=1. Hence we need to determine the set of coefficients that

corresponds to 7;. The above expression implies that

d d
7(7) = B(T)E lejj(o) = 2 Cij(T), (6)
j=1 j=1

where v;() can be found numerically by integrating Eq. (3)
from the initial condition ¥ /(0), and 7 is the period of the
UPO. The above relations can be rewritten in matrix form,

[V(DV(0) ' =er1]c=0, (7)

where V(¢) is the known matrix {v;(), ...,v,(¢)}. Notice that
B(1)=V(r)V~'(0). Solving the eigensystem (7) yields all the
7, vectors and their corresponding \; exponents.

There are a few interesting comments we can make here.

 First, we do not need to resort to infinitesimal perturba-
tions since the above analysis can be applied equally well
to small finite perturbations, in which we integrate an ini-
tial condition y,(0) close to the UPO with Eq. (2), instead
of using Eq. (3). In this case the vector for Eq. (7) is
v,(1)=y(t)—x*(¢). This situation is especially suitable to
high noise levels and experimental situations, as simulated
below.

e Second, in a similar manner we can apply the above
method to estimate the exponents in a parametric control
scheme with the dynamics given by x=fx, p* +K(x—x*)],
where p is a vector of system parameters, and p* is their
target value. In this case A — Kdf/dp, where K is the ma-
trix that needs to be determined.

e Third, this methodology can be applied to experimental
situations since we are only required to know the state x(7)
after an initial condition x(0) that started close to the un-
stable trajectory, which can in principle be obtained as the
system evolves in real time.

* Fourth, the system state can be reconstructed, if necessary,
from a single or multiple time series measurements, e.g.,
by an appropriate embedding.zz’23

These issues will be analyzed in detail elsewhere. For
now, we turn to optimization methods to determine the ma-
trix A in a feedback control strategy.

lll. THE OPTIMAL MATRIX A

The Rossler system consists of three coupled ordinary
differential equations24 defined by

x(1) = x,(1) = x5(2) &(1)
Xo(1) | = x1(2) + Byx,(2) +| &) |. (8)
x5(1) Ba+x1(1)x3(t) = B3x3(1) &(1)

We take as parameters the values 8,=0.2, £,=0.2, and
B3=4.5, in order to ensure a bounded chaotic behavior, as
shown in Fig. 1(a). From now on, a vector x represents all
the dynamical variables of the system, and x; represents its i
component. The variables &(7) represent a particular realiza-
tion of a noise sequence, and we will describe below in detail
how it is introduced in the equations.
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FIG. 1. (a) Rossler attractor for the parameters 3,=0.2, 3,=0.2, and B;
=4.5, showing chaotic behavior. (b) A UPO in the Rossler system with 7
=5.86.

Let us assume first that &(¢)=0. Then we need to find a
UPO to stabilize, represented by a local minimum of the
function

H()z(), T) = |)Z('T) —.fo 2

; )

where x(7) is the numerical solution of Eq. (8) with x(0)
=X. Of course, we could have defined the UPO as the zero
of x(7)—x(0). But, let us note that to the dynamical variable
Xp» in d dimensions, we have added an extra variable to the
function H(x,,7) to optimize, namely 7, and hence a search
for a zero of x(7)—x(0) is not trivially defined. Of course, in
the presence of noise one cannot guarantee that a minimum
of H(x,,7) implies a UPO of the original system (e.g., see
the appearance of spurious attractors in the Lorenz system
below), but if we use enough seeds in our optimization rou-
tines, and characterize the solutions with the asymptotic av-
erage distance to the UPO and the asymptotic average con-
trol effort defined below, we will eventually find UPOs.

The optimization is done with respect to 7 and X, using
standard conjugate gradient or Monte Carlo methods,”’ from
which we found a local minimum 7,=5.86, x; (=0.913, x;
==7.05, x3(=0.0418. The corresponding UPO is shown in
Fig. 1(b). We note that in general, the problem of finding a
minimum of H(x,,7) is a nontrivial but interesting task.
There are other methods to estimate UPOs, and more ad-
vanced optimization techniques, such as genetic algorithms25
or configurational space annealing,26 can be used.

Initially, we will assume the usual control strategy in
which the matrix A has a single non-null entry A;;=ca. The
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Lyapunov exponents can be estimated from Eq. (3), where
for simplicity we take as initial basis the vectors v;(0)
=(1,0,0), v,(0)=(0,1,0), and v5(0)=(0,0,1). Before con-
tinuing, a description of the numerical procedure is due here.
A standard Runge—Kutta integratorZI was used to numeri-
cally solve Egs. (8) and (9) with a time step Ar=0.01 [those
equations contain information equivalent to Egs. (2) and (3)
when applied to this system]. If we set the control parameter
a=0 (no control), we find for the Lyapunov exponents \,
~0.111+0.538i, \,~-4.80X 1078, and N;=~-2.41. Note
that as is characteristic for the UPOs in these systems, one
exponent is nearly zero, one has a positive real part, and one
has a negative real part. When applying the control strategy
(a#0), we are interested in the range of values of a such
that the real parts of all eigenvalues are negative. The maxi-
mum exponent A, defined as the maximum of the real
parts of all exponents, can be readily calculated as a function
of @, which is shown in Fig. 2(a). This figure is similar to the
one estimated by Pyragas,10 but using a different Lyapunov
exponent estimation methodology.

We can now determine the value «,,;, for which the
maximum exponent A, iS minimized. For the Rossler sys-
tem, this occurs at a,;,=—1.11 with \,,,=-0.38, and the
stabilized UPO, obtained by integrating the controlled Eq.
(2), is shown in Fig. 2(b), after the transient has been re-
moved. We will see below that a;=-0.35, corresponding to
the condition A, =0, is also a point of relevance.

Notice that, in order to be useful, the above approach
must be robust in the presence of noise. The noise in the
system, as described by the variables &(7) in the above equa-
tions, is introduced by adding different white noise se-
quences &, € [-0.1,0.1], where the time is discretized as 1,
=nAt, to each component of Eq. (8). For each time integra-
tion step, we assume that &, is constant over the time interval
At=1/w. The same procedure will be repeated for the other
systems analyzed in this paper. The white noise sequence
mentioned above has standard deviation o=0.1/V3, but we
may also use different values of o to study the effect of
increasing noise.

In certain applications we may not be interested in A,
but instead in minimizing the average distance to the UPO,

[ -
(@ =A - f [6(0) - x*(0)dr )
T 0 =z
*o
or the amount of effort required to keep the orbit under con-
trol,

T
#)=( 1| - eora
0

%o
The average is over time, over initial conditions, and over
realizations of the noise sequences (ensemble average). For
0=0.1/43 [Fig. 2(c)] and 0=0.5/3 [Fig. 2(d)], taking o
=100 Hz, we show these two characterizations as a function
of « for the Rossler system using an ensemble of initial
conditions around the UPO. We note that for 0=0.1/+3 the
curve of (F?) has a very well defined minimum that is close
to the N\,,,=0 case, which is represented by the vertical
dashed line. This is an interesting result, as it suggests that in
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FIG. 2. (a) N\ as a function of « for the Rossler system. The two vertical
lines correspond to «, (dashed line) and a,;, (solid line). (b) Stabilized UPO
for the Rossler system with ay,;,=—1.11, 0=0.1/13, and =100 Hz. We
also show —(d?) and (F?) as a function of a for two different noise levels (c)
0=0.1/V3 and (d) 0=0.5/ V3. We averaged over 50 different noise realiza-
tions, or trajectories, for 10 periods of the UPO. The transient has been
removed.

these systems it may be more relevant to find «; than a,,,
for small noise levels. We will see below that this also occurs
in the Lorenz system. Making the Lyapunov exponents as
small as possible is a tempting criterion for “optimal” con-
trol, but in an actual experimental setup, it can be more rel-
evant to optimize the effort to maintain control. Figures 2(a)
and 2(c) show that they are not equivalent requirements.
Also, let us point out that (d?) and (F?) are not the only
sensible choices. Other useful characterizations could be the
average, in the same sense as above, of the work-like quan-

tities C-(x—x*) and C-x.
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350

10

FIG. 3. (a) The average distance (d?) of the trajectories to the UPO, and (b)
the average effort (F2) to keep the system under control, as a function of o
for the matrices A, (dashed line), A,, (dotted line), and the single non-null
entry matrix (continuous line) using w=100 Hz. The cases A, and A,, are
explained below. Eventually, as we increase the noise level, the contracting
effect of the controlled dynamics is not capable of compensating the ex-
panding effect of the noise. Hence, for larger noise levels, two of the strat-
egies are not capable of controlling the system. The close to quadratic de-
pendence with o is expected from the analysis described above and in the
Appendix.

To understand the effect of noise, we can suggest the
following argument. In a given direction, the random term is
equivalent to a random walk that on average tries to push the
trajectory away from the UPO by an amount (Ax?)
~ 0*(w7), where o is the standard deviation of the noise
added to the system. On the other hand, the control pushes
the trajectories back to the UPO as Ax~ AxyeXp[Amq7]
along the direction of slowest contraction, assuming A\«
< 0. The two effects balance in a nontrivial manner in these
systems, since the simple analysis described in the Appendix
shows that the noise makes the different directions interact,
i.e., the problem becomes a tensorial one, as expected for
dynamical noise. Still, we see from Fig. 3 and the Appendix
that the quadratic dependence with o, derived from this
simple argument, is approximately correct.

We can also observe from Figs. 2(c) and 2(d) that the
value of (F?) increases in magnitude as the noise increases,
and at the same time its minimum moves to the left, i.e., to
more negative values of «. In fact, values close to «; are no
longer capable of controlling the system, or require large
amounts of control effort. This analysis suggests that as we
increase the noise level, it may become more convenient to
use values of « that are closer to «a,,;, as a benchmark. Figure
2(d) shows that {d*) converges for values close to a,;,, even
though (F?) is not a minimum at a,,,. If we had a system
and a control strategy that are required to work in a variety of
noisy conditions, the choice a,,;,, if it exists, may be the
reasonable approach. Furthermore, it suggests that in order to
control UPOs under even larger noise levels, we may need to
resort to the full matrix A. We will confront this issue below.
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FIG. 4. Exchange between two Lyapunov exponents for the Rossler system
estimated with the method described above.

Incidentally, for this UPO in the Rossler system, the op-
timal value of « seems to be associated with the crossing of
the real part of two Lyapunov exponents as shown in Fig. 4.
We notice that a strength of the above procedure for estimat-
ing the spectrum is that we can follow each exponent as a
function of the control parameter in a simple manner, pro-
viding a robust way to estimate the Lyapunov exponents.

Another system of interest is the Lorenz system, de-
scribed by

x(1) — y1x1 (1) + yxp(0) & (1)
Xp(1) | =] v2x1(t) = x2(1) = x1()x3(0) |+ &(2) |.
x5(1) x1()x,(2) = y3x5(1) &)

The system is chaotic for the values y,;=16, y,=45.92, and
vs=4. The variables &(r) represent a particular realization of
a noise sequence as described above. Let us assume first that
&(1)=0. As done before, we find a UPO by minimizing
H(xy,7), from which we obtain 7=0.941, x;(=7.19, x,
=12.4, and x; (,=23.0. Again, we assume a control strategy in
which the matrix A has a single non-null entry A;;=ca. The
maximum Lyapunov exponent as a function of « is shown in
Fig. 5(a). The stabilized UPO for a=-23 with \,,=-0.8 is
shown in Fig. 5(b).

It is interesting to note from Fig. 5(a) that \,,,, does not
seem to have an optimal value, as it decreases monotonically
with a. Figures 5(c) and 5(d) display (F?) and —(d°) as a
function of « for two different noise levels. For a=1/ \JE
again we see that (F?) has a minimum close «, but for large
values of o a more negative value of « is required to achieve
control. Let us note that the value a=-23 provides a specific
tradeoff between the optimal values of (d*) and (F?). Let us
also note that while (d?) saturates as we make & more nega-
tive, the value (F2) increases as expected. Of course, in ex-
perimental situations the particular tradeoff between (d?) and
(F?) would depend on the situation at hand.

Figure 5(d) also shows another interesting effect: for
large values of the noise, e.g., 0=5/v3, the controlled tra-
jectory may converge to some spurious attractors. These are
not UPO in the native system, as far as we could resolve, but
have a similar period 7 to the desired trajectory, and arise due
to a nontrivial interaction between the native system and the
control procedure. This is an important issue to keep in mind
when controlling these systems, especially in the presence of
noise.
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FIG. 5. (a) \,,,x as a function of « for the Lorenz system. (b) Stabilized UPO for the Lorenz system with a=-23, o=1/ \3, and w=100 Hz. We also show
—(d?) and (F?) as a function of « for two different noise levels (¢) =1/v3 and (d) 0=5/43. The spurious attractors are clearly seen in (d?) and (F?), for the
larger values of «. We average over 50 different realizations or trajectories, for 10 periods of the UPO. The transient has been removed. The inset in (d) is a
zoom of the region close to the minimum of (F2). Note that the positive and negative axes have different scales.

For instance, some authors have proposed that control
could be achieved by replacing the knowledge of the UPO in
the control signal, as specified by x*(r), by a delayed state
vector x(t—7)."® This is an interesting idea, which may re-
duce the complexity in an experimental realization, but the
strategy may converge to some spurious UPOs, as this work
has shown. Hence, especially in the presence of noise, it may
not be possible to distinguish a UPO induced by the specific
control strategy from a native one, based only on the knowl-
edge of the period 7. We may think of certain schemes that
may be able to distinguish between native and spurious
UPOs, but they will certainly increase the complexity of the
method. In any case, these periodic orbits induced by the
control strategy are something that deserves some attention,
and will be explored elsewhere.

A. Optimization

It becomes clear from this analysis that the control strat-
egy depends on what we are interested in optimizing, e.g.,
Anaxs (F2), {(d%), etc. Besides, as the noise of the system in-
creases, the control strategy based on the matrix with the
single non-null element A;;=a may not be sufficient, or ef-
ficient enough, to keep the system under control. Indeed,
there have been suggestions that a full control matrix may be

the answer in systems with noise.”*® The required effort

(F?) as a function of the noise level o for this strategy, with
Qmins 18 shown in Fig. 3 as the continuous line, where it is
compared to two other strategies explained below. As seen in
the figure, (F?) for this control strategy rapidly increases as
the noise level is increased.

Therefore, it is natural to explore what happens when we
relax the restriction of a single element matrix for A. For
example, let us take a two-element matrix with A;; #0 and
Ay, # 0, and arbitrarily set &(¢)=0 to estimate \,,,, as a func-
tion of Ay and A,,. This is shown in Fig. 6. We observe that
by including the second element in the matrix, we can reduce
considerably \,. Figures 6(b) and 6(c) show (F?) for o
=O.1/\e"§ and 0=0.5/3, respectively. We can clearly see
how the values of the matrix elements that allow for optimal
control effort change as the noise level is increased. A similar
analysis can be conducted for (d”). It becomes clear that the
behavior of (F2) is not trivial in the presence of noise, as we
allow for these types of control strategies.

We will now concentrate on the problem of finding a
control strategy that uses the full matrix A. Again, we arbi-
trarily set &(1)=0 and chose the optimization problem of
finding the minimum of the scalar function A, but now in
a parameter space of dimension dXd (the number of ele-

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



033106-7 Optimal control in a noisy system

0.0

-2.0
-2.0

0.0

< -1.0

0.0

< -1.0
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FIG. 6. (a) N\, When the system is controlled by the two-element matrix
(A}, #0 and A,, #0). The range between the smallest value of A, (—0.65)
and A\, =0 is divided into 10 contours such that darker means more nega-
tive values, and lighter means values closer to zero. The horizontal lines
correspond to a (upper line) and «,,;, (lower line). Similarly, we display
(F?) as a function of A, and A,, for (b) 0=0.1/43 (max(F2)=54) and (c)
0=0.5/3 (max(F2)=250). w=100 Hz. Again, the range of values is di-
vided into 10 contours from dark to light.

ments in A). We chose to optimize \,,,,, instead of (F2) or
(d?), so that we could characterize the reliability of these
control strategies for different noise levels as we increase o.
Otherwise, we would have to find a different control strategy
for each noise level. We first optimize A, with a conjugate
gradient method,”! taking as seed the matrix with the single
non-null element A;;=a,,;, obtained above. Then, the fol-
lowing optimum control matrix is found:

Chaos 18, 033106 (2008)

—0.27903 -0.02445 0.04248
0.02551 -0.46523 0.18590 |,
0.04679  0.02087 -0.05430

A =

c

with an exponent A,,,=—0.720. As expected, this improves
on the single element control matrix strategy, where the op-
timal value A\, =-0.4 was obtained, for a=ay;,=—1.11.
Given that a lower Lyapunov exponent has been found, we
could expect a considerable improvement of the average dis-
tance as a function of the noise level o, but this is not nec-
essarily the case, as shown in Fig. 3(a). Still, it has an aver-
age control effort (F?) much lower that the single element
matrix strategy, as seen in Fig. 3(b).

We now notice that, although the optimization of
with respect to the control matrix A should intuitively work,
the fact is that the parameter space in d Xd dimensions is
probably complicated, and using a conjugate gradient
method with a given seed will at most lead us to a local
minimum. This suggests that a global optimizer should be
used instead. We choose a Monte Carlo method,21 which
leads to the optimum control matrix

—-33.65913 1.06570 —-13.79109
A,=| 012775 -31.07222 -5.77190 |,
20.29251 -4.29226 -21.10780

giving N\,,,=—30.3. This is indeed lower than the minimum
found by the previous local method.

In Figs. 3(a) and 3(b), we show the average distance (d*)
to the UPO and the average control effort (F?) required to
keep the system under control with the matrix A,,. We notice
that control has improved considerably with respect to the
previous strategies, and that it is much more robust as noise
is increased (that is, as o increases). Thus, the possibility to
use the full control matrix, and an adequate choice of the
optimization technique, are very relevant in the presence of
noise, which may be unavoidable in experimental situations.
In particular, the decision to search for a global minimum
improved results noticeably, which suggests that more ad-
vance techniques for global optimization, such as genetic
algorithms25 or configurational space annealing,26 would lead
to better control strategies. Furthermore, the existence of
multiple minima is an interesting and unexpected result in
itself, which can have relevant implications in experimental
situations. We plan to analyze these issues elsewhere.

B. Higher dimensions

The above method is also applicable to hyperchaotic sys-
tems (two or more positive Lyapunov exponents) such as the
following system:

%) —Xp— X3 & (1)
X, (1) _|x 01y + X4 N &(1)
%5(1) 0y + x1x3 &(1)
%y(t) — O3x3+ 04y (1)

The variables &(r) represent a particular realization of a
noise sequence. Let us assume first that &,(¢)=0. For the ini-
tial conditions (xl’o,xZ’o,X3,o,X4,0)=(—10,—6,0, 10), with
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(b) w 0T

FIG. 7. (a) The hyperchaotic attractor for the parameters 8,=0.25, ,=3,
83=0.5, and 5,=0.05 showing a chaotic behavior. (b) A UPO in the hyper-
chaotic system. Both figures correspond to a projection onto the space
X1X0X3.

0;=0.25, 6,=3, 6;=0.5, and §,=0.05, it generates the orbit
shown in Fig. 7(a) (projected onto the x;x,x; space).
One UPO is obtained from the initial condition
(1. UPO> X2.UP0» X3.UP0> X4.uP0) = (=24.9, —12.6,0.117, 16.0)
with period 7=6.19, Re(\;)=0.18 and Re(\,)=0.02. The re-
sult is shown in Fig. 7(b).

For this hyperchaotic case, where we have two positive
Lyapunov exponents, we rapidly realize that we need at least
two nonzero parameters in the control matrix to achieve con-
trol. If we are interested in an optimal control scheme, we
may need to resort to finding the full matrix A that mini-
mizes A, The Monte Carlo procedure yields the solution

-9.91786 -0.80592 -2.23062 0.93314
1.39533 -9.11671 0.05988 —1.12702

—-0.18147 0.02410 -1.57179 -0.35275

—1.44968 -1.35083 -2.11769 -7.84050

>

H=

with N ,x=—8.59. With this value for the maximum expo-
nent, we expect that the controlled UPO, shown in Fig. 8,
can endure a fairly strong noise. In this case, we used o
=10/v3 and w=100 Hz.

We note that our optimal control strategy, using the full
matrix Ay, permits a considerable degree of stability of the
controlled system, even when strong noise is applied. In Fig.
9, we show the control effort (F?) required to keep the sys-

FIG. 8. UPO in the hyperchaotic attractor for the parameters a=0.25, b=3,
¢=0.5, and d=0.05. Projection on the space xx,x;. Gray dots represent a
controlled trajectory with added noise. Note the high stability even for this
strong noise, namely o= 10/y3 and w=100 Hz.

tem under control as a function of ¢. In this case, the slope of
(F?) with respect to o changes as o is increased in an almost
quadratic fashion as expected from our analysis above and in
the Appendix.

IV. HANDLING NOISE

An issue usually not addressed by other authors is how
to control systems that have inherent noise, from estimating
the UPO, then computing the exponents, and to finally
implementing the optimization routine and constructing an
optimal matrix A. These issues may be of particular rel-
evance in experimental situations. We will demonstrate how
to use the approach described in this paper to rcontrol a
Rossler system with intrinsic noise, 0=0.1/V3 and o
=100 Hz.

In a noisy system, the estimation of the UPO may not be
a trivial task, since the same initial condition would in gen-
eral produce many different trajectories xf(t) (here, i
=1,...,d labels the space dimensions, and k=1, ...,N labels
trajectories resulting from the same initial condition evolving
under N different noise sequences). Thus, finding the mini-
mum of H(x,,7) has to be understood in an average sense,
ie., x(1)=3x(7)/N. Another method that may be more
suitable for large noise levels is to resort to singular value

1.0
0.8
~ 0.6
~ 04
0.2
0.0

0 10 20 30 40 50

a3

FIG. 9. The average control effort (F2) required to keep the hyperchaotic
system under control as a function of ¢ with the control matrix Ay, using
»=100 Hz. (F?) has been normalized to its maximum value. The close to
quadratic dependence with o is expected from the analysis described above
and in the Appendix.
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X1 5 T~ (

FIG. 10. The estimated UPO using the two noise reduction methods out-
lined in Sec. IV (gray and black dots) and the one calculated without noise
(continuous line). The three curves are very similar.

decomposition (SVD), which is generally used in signal pro-
cessing of images..21 We start by constructing the matrix
L =1 (A,

where Ar=7/N, for some integer N,. The SVD transforma-
tion of M=VXUT is described in general books on linear
algebra or in Ref. 21. The first column of U should be pro-
portional to the cleaned orbit, which can be rescaled by x;(0).
Then we repeat this analysis for i=1,...,d, from which we
can obtain the value of H(X,, 7). For this approach to give
sensible results, we need to be close to a UPO for obvious
reasons. Then we search for a local minimum of H(x,,7)
over X, and 7 as in Sec. IIl. The result of the two noise
cleaning procedures outlined, and the UPO estimated with-
out noise, are shown in Fig. 10. We observe that the trajec-
tories are very similar. For the rest of the paper, we use the
UPO )E»;(t) estimated by the SVD procedure. In general, we
prefer to use the SVD method as a cleaning strategy, because
of its orthogonal properties, and because it gives us a con-
sistent method to correct for the noise level through the sin-
gular values.”!

The second step is to compute the Lyapunov exponents.
Since noise is present, standard estimation procedures will
give considerable fluctuations. Rather, we estimate finite ex-
ponents from Eq. (2), that is, we integrate numerically an
initially small, not necessarily infinitesimal, perturbation
x(1) =fs*(t)+5(k)(t) from t=0— 7. In essence, this analysis
simulates an experimental situation in which we do not nec-
essarily have a handle on the exact dynamical equations.
Notice that in practice we can do this calculation in real time,
since we only need to measure x(z) and x(t+7) every time
these two states are close to the UPO.

We start all the trajectories with [0¥(0)|=6,. We will
resort again to singular value decomposition to clean the
exponents. In order to compute the matrix B(7)
=V(7)V~'(0), we need to invert the matrix V(0). We can
take a nonsquare matrix of initial conditions

V(0)={v,(), ....on(0)},

with N=d, with d the dimension of the system. These N
initial conditions can be chosen at random, or taken from the
dynamics of the system each time the trajectory passes close
to the UPO, in the case of experiments. Even though V(0) is
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FIG. 11. Maximum exponent A, calculated for a generalized Rossler sys-
tem with intrinsic noise. (a) The value of A, at ag=—1.1 as a function of
& using the average of 40 sets of N=3 initial conditions (dotted line), the
average of 12 sets of N=10 initial conditions (dashed line), and the result of
1 set of N=120 initial conditions (thin line). The estimated value of X\,
using the infinitesimal approach is shown as the horizontal thick line. (b)
The estimated maximum exponent as a function of @ using the SVD clean-

ing procedure for the same sets as before. We take o=0.1/13 with o
=100 Hz.

. . . 21
a nonsquare matrix, we can compute its pseudoinverse” and

estimate a square d X d matrix B(7)=V(7)V(0)~'. For sim-
plicity, we assume again a control strategy based on the ma-
trix with the single non-null element A;;=a. Of course we
could resort to the full matrix A if necessary, i.e., if the noise
level is larger than what we assumed for this demonstration.

Let us take 120 initial trajectories close to fsk(O) for ay
=-1.1, and construct 40 different sets of N=3 trajectories
with [0®(0)|=8y, k=1,...,120. For each set we compute
Nmax» and average it over the 40 sets. Figure 11(a) shows this
estimated value of A\, as a function of &, We can then
repeat the analysis for 12 sets of N=10, and for 1 set of N
=120, using the same 120 vectors for comparison. We see
that the set of N=120 is numerically more stable for this
noise level. Also notice that the behavior illustrated in Fig.
11(a) is expected. For small &, the noise becomes more rel-
evant than the dynamics, and the distance to f:(t) should
increase in time. For large &, we start sampling other re-
gions of phase space, and not the local properties of the UPO
in question, so the distance should also be large. Therefore,
there is an optimal range in which estimating A, makes
sense. With this information, we choose §,=0.1 and we now
proceed to estimate A, using our cleaning procedure as a
function of «, as shown in Fig. 11(b) for each set of trajec-
tories.

We take the case of ax=—1.1, as suggested by our clean-
ing procedure of Fig. 11, that gave \,,=~—0.4 using one set
of N=120 vectors. With this value for the maximum expo-
nent, the very unstable orbit of Fig. 12 was controlled di-
rectly from the noisy equations, using the control strategy
A=apJ'.
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FIG. 12. The controlled UPO of the Rossler system with az=—1.1 using the
control strategy with cleaning. The transient has been removed.

Incidentally, this SVD procedure seems to be a proper
manner to estimate Lyapunov exponents, finite or infinitesi-
mal, since it consistently reduces the observed fluctuations in
exponent estimation, especially in the exponents with lower
real parts as the number of components increases.

V. CONCLUSIONS

We have described a simple method to estimate the
Lyapunov spectrum and control a known unstable periodic
orbit (UPO) in the presence of noise, approaching the issue
of controlling the UPO as an optimization problem. The idea
is illustrated with the Rossler system, the Lorenz system, and
a hyperchaotic system that has two exponents with positive
real parts. For a given system, an optimal control matrix can
be calculated, in the sense of minimizing either the maxi-
mum of the real parts of the Lyapunov exponents A, the
average distance to the UPO (d?), the average effort required
to control the system (F?), or other possible criteria, depend-
ing on the experimental setup. For small noise levels, the
optimal average effort (F?) required to control the system
seems to occur close to the condition for A,,,=0, and control
can be achieved with a single-entry control matrix A;;=a.
As the noise level is increased, optimal effort seems to occur
for more negative values of a. When there is strong inherent
noise in the system, we saw that the use of the full matrix A
may be required to achieve control. These optimal matrices
were found using standard optimization methods such as
conjugate gradient or Monte Carlo methods. It is expected
that these methods yield better control than the single-entry
case, as they explore a larger set of control matrices, and
indeed lower values of A,,, were found. The strategy ob-
tained with the Monte Carlo method, which gave a very
negative value for A\, allowed us to confront a very large
level of noise as suggested by (F?) and (d?) in Fig. 3. Even-
tually, it could be more appropriate to use more advanced
optimization techniques, such as genetic algorithms25 or con-
figurational space annealing.26

Particular attention was given to the problem of handling
noise that can affect considerably the estimation of the UPO
itself and the exponents, hence a cleaning strategy based on
singular value decomposition (SVD) was developed. In gen-
eral, it is preferable to use the SVD method as a cleaning
strategy, because of its orthogonal properties, and because it
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gives us a consistent method to correct for the noise level
through the singular values.”! This strategy establishes a con-
sistent way to approach noisy systems. In particular, it may
be relevant in higher dimensions and experimental situations,
and can be easily adapted as a parametric control strategy.

Another important issue related to noise is the appear-
ance of spurious attractors. These are not UPO in the native
system, as far as we could resolve, but have a similar period
7 to the desired trajectory, and arise due to a nontrivial inter-
action between the native system and the control procedure.
It has been proposed to replace the UPO in the control signal
by a state vector delayed in 7, a scheme that may reduce
complexity in an experimental realization. However, in light
of our results, it may converge to spurious UPOs instead of
the desired trajectory. As it may not be possible, in general,
to distinguish a UPO induced by the specific control strategy
from a native one, based only on the knowledge of the period
7, this is an issue that deserves attention when controlling
noisy systems.

Finally, we can mention that this procedure of finding
the optimal matrix A can be combined with the UPO search
routine for cases in which it may be difficult to estimate a
UPO, or in cases in which we may not be interested in a
particular UPO (see Ref. 18 for a related approach in maps).
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APPENDIX: ANALYTICAL ESTIMATION
OF THE CONTROL EFFORT

Let us analyze what is the dependence of (F?) as we
change A and the noise level. Given the Floquet solutions
ﬁi(t)=f,»(t)e)‘i’ of the noiseless perturbation equations, we in-
troduce the vector g?(t):(fl (1)&(1)..., E,(1)), which describes

a particular noise sequence, and write in vectorial form the
general perturbation in the presence of noise as

V(1) = LOEDa() = 2 a0 70 = 2 a0,
witll Ehe deﬁPitions for the
=(£1(08(1)... ., L4(r) and

basis matrix  (¢)

M0 0
Mt 0
E(r) = .
0 0 eMdt

The vector a(f) contains the information about the initial
condition and particular noise sequence. The solution to the
noisy equations can now be written as
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V(r) = L0 E)a(0) + (1) J E(1-5)¢ ' (5)E(s)ds,
0
where the average effort is given by
T
(Fy=1 J (V)| APV())d.
T 0

We first note that when we introduce V(¢) in the above ex-
pression, and take the limit 7— oo, the initial conditions do
not contribute if A, <0. Hence, we need to analyze

f f d31d32<§T(S1)§_T(51)ET(f—S1)ﬂ(¢)|A|2>
0Jo

(LOE( = 5)8 (5 E(s)).
Given that
<§,T(S1)§j(sz)> = 0'25(S1 ~52) ;s

we obtain
(F?) = o? f ds 2 [EHE (1= 5)QE( - )L ()]
0 i

where Q(#)=(t)|A]*{(z). If we assume the control strategy
that uses a matrix with the single non-null element A;;=«,
we get Qij=a2§>1ki§1 j- Hence, the noise makes the different
directions interact, i.e., the problem becomes a tensorial one,
as expected for dynamical noise. Still it is interesting to note
the quadratic dependence on o. Of course, the matrices in-
side the integral depend on « as the basis {(7) and the expo-
nents E(¢) change with the control parameter.
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