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Abstract

A simplified traffic model is studied, consisting of two vehicles traveling through
a sequence of crossroads regulated by yield signs. A car approaching a yield sign
stops if, in the other street, there is a car closer than a certain distance xtol from
the intersection. It is shown that the function which maps the state of the vehicles
displays a period doubling transition to chaos. An interesting feature of the dynamics
is that for extremely cautious drivers (xtol too large), the map turns chaotic, thus
becoming a potential source of emergent jams. Complex behavior such as the one
observed in this simple system seems to be an essential ingredient in traffic patterns,
and could be of relevance in studying actual crossroads situations.
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1 Introduction

Efficient transportation systems are essential for the every day activities of
modern industrialized societies. This is a highly nontrivial problem, which
has been analyzed using various strategies (see for example [1], and references
therein). Early attempts were based on statistical and dynamical models like
gas-kinetic models, car-following models, and fluid dynamic models (see, e.g.
Refs. [2,3] and references therein). Modern approaches, on the other hand,
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are in general based on statistical methods [4], cellular automata [5–7] and
computer simulations [8–12].

Problems studied include traffic jams, pedestrian flows, bus-route, etc. [13–17].
An important component of modern city traffic is road signs. For instance,
traffic lights optimization has been the subject of several papers, based on
cellular automata models [18], optimal velocity models [19], etc. However, not
much attention has been devoted to other road signs, such as yield and stop
signs, and it is the purpose of this paper to study car interactions in their
neighborhood.

Studies have revealed that complex behavior is a strong component of traffic
systems [11,20]. For example, small time differences can affect traffic over long
distances, or the existence of pedestrian-controlled traffic lights can randomize
an otherwise synchronized traffic flow, etc.

Toledo et al. [11] considered a model consisting of a single vehicle traveling
through a sequence of equidistant traffic lights. This is equivalent to a single
vehicle traveling in a circle with one traffic light. It was shown that even in such
a simple model, complex behavior (chaos, resonance, synchronization, etc.)
arises. In this paper, we are interested in extending this model by considering
yield signs.

In our case, a vehicle moves on its road, finding a sequence of yield signs. This
is an straightforward extension of the work by Toledo et al. [11], replacing
traffic lights with yield signs. In spite of its simplicity, it introduces several
interesting new features in the model, as the yield sign by itself does not deter-
mine the behavior of the driver. Rather, the driver decides to stop or continue
considering whether a second vehicle actually approaches the crossing. Even
in that case the decision is not uniquely determined, as it also depends on
psychological characteristics of the driver. Cautious drivers will make the de-
cision to stop or not when the other car is far from the crossing, whereas the
more aggressive drivers will decide when it is very close to the crossing. These
features have nontrivial consequences when a detailed analysis is made of the
evolution of the system, suggesting a specific mechanism for the emergence of
complex dynamics in real city traffic, even under ideal conditions. The model
is presented in detail in Sec. 2. Then, in Sec. 3 the complex behavior of the
system is analyzed. Bifurcation maps and Lyapunov exponents are studied.
Finally, in Sec. 4, conclusions are presented.
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2 The model

In Toledo et al. [11], a single car moving through a sequence of equidistant
traffic lights was studied. The system is equivalent to a car moving in a circle
with a single traffic light. In this paper, we intend to study the effect of a
yield sign. We therefore extend the previous work by considering a second car
moving in a second road as shown in Fig. 1. Both roads intersect at a point,
where flow is regulated by a yield sign. We label the car with the right of
way as mobile A, and the other one as B. We are interested in studying the
dynamics of B.

xtol

xd

B A

A

B
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Fig. 1. (a) A sketch of the intersection to be studied: B is the mobile approaching
the yield sign; A has preference to pass. xd is the distance at which B must make
a decision to stop or not. xtol should be such that collisions are always avoided [see
Eq. (1)]. (b) The roads are made to intersect at a periodic number of points.

In principle, we could assume that B finds a sequence of yield signs, where
the distance between the nth and nth + 1 intersection will be Ln,B for the
mobile B. Also, at each intersection the cars with right of way could have
different velocities. However, to keep the analysis simple, we will consider that
yield signs are equidistant, and that mobile A always moves with velocity
v0,A = vmax,A. Thus, the model is equivalent to having two cars moving in two
circular roads intersecting at a single point [see Fig. 1(b)]. The position of
mobile A is given by xA(t) = vmax,At.

On the other hand, mobile B can be in one of four possible states: (a) accel-
erating with constant acceleration a+,B, until its velocity reaches the cruising
speed vmax,B; (b) moving with constant speed vmax,B; (c) braking with a nega-
tive, constant, acceleration −a−,B until it stops or begins to accelerate again;
(d) at rest, waiting for mobile A to leave the crossing.

To study the interaction between the cars, we introduce the tolerance param-
eter xtol. When B approaches the yield sign at the intersection, the driver
must make a decision to stop or not at a distance xd = v2

max,B/2a−,B (the last
stopping distance to the yield sign) from the yield sign. If A is at a distance
xA ≤ xtol from the crossing, then B brakes. If A is at larger distances, B
continues. xtol depends on the position and velocity of A, but also on driver
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B’s psychological features. Aggressive drivers will take more risks, so xtol will
be shorter. However, it is convenient to set a restriction on xtol in order to
avoid collisions. First, notice that, in our model, B always reaches the decision
point xd at maximum velocity vmax,B. This is because positive accelerations
may only occur while leaving the crossing, and the car reaches maximum ve-
locity within a distance short compared with the distance to the next crossing;
and negative accelerations can only occur at and after xd, if B is forced to
stop. On the other hand, A always moves at constant speed. If B decides to
brake, then there will be no collision, given the relation between xd and a−.
If B decides not to brake, there will be a collision only if both cars reach the
crossing at the same time tcoll. This occurs if A is at a distance xA,c from the
crossing such that tcoll = vmax,A/xA,c = vmax,B/xd, which leads to

xA,c =
vmax,Avmax,B

2a−,B

. (1)

Thus, taking the restriction xtol > xA,c is enough to avoid all collisions. (Of
course, it is possible to improve the estimation of xA,c by taking into account
the streets’ width and car size, for instance, but we neglect such effects in this
model.)

In our model, if B decides to stop, it accelerates again as soon as A leaves the
crossroad, so two things can happen to B: either it stops completely and waits
until the mobile A passes, or accelerates before stopping completely. Figure 2
shows the types of possible trajectories between two yield signs in the present
model.

xd LB
x

0

vmax

v

1

3

2

Fig. 2. Possible situations for B at the decision point xd, namely, (1) continuing,
(2) braking to stop at x = LB before A leaves the crossroad, and (3) braking and
accelerating again as A leaves the crossroad before B stops completely.

Applying this set of rules, we can study the evolution of the system. Its state
will be characterized by the time tn at which B reaches the nth intersection
[or crosses by the nth time the single intersection in Fig. 1(b)], and by the
velocity vn at the nth intersection.

We thus determine a 2-D map M(tn, vn) that evolves the state (tn,vn) at the
nth crossing to the state (tn+1,vn+1) at the (n + 1)th intersection. This map
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for the dynamics of B is constructed explicitly in the appendix, and is very
similar to the map in the model of Toledo et al. [11], since A is essentially a
traffic light for B. However, there is a crucial difference: the decision point xtol

is now dynamics-dependent. In the former model [11], it was fixed only by the
braking capability of the car.

3 Analysis

In this work, we will consider a single maximum velocity, vmax,A = vmax,B =
vmax = 14 m/s. The cruise time Tc will be defined as the time it takes for a
car moving with velocity vmax to move from one intersection to the next one.
Thus, Tc,{A,B} = L{A,B}/vmax,{A,B}. We define the acceleration ratio of B as
a = a+/a−. We will assume a+ = 2 m/s2, a− = 6 m/s2, so that a = 1/3.
We also take LA = 200 m. These parameters are consistent with average city
traffic conditions.

As the car B iterates through the yield sign sequence, we can observe that com-
plex behavior appears for certain ranges of Tc,B/Tc,A. Figure 3 shows the veloc-
ity of B at each intersection, for Tc,B/Tc,A = 0.88 [Fig. 3(a)], and Tc,B/Tc,A =
0.856 [Fig. 3(b)]. A period-2 solution is clearly observed in Fig. 3(a), where B
is caught in every second intersection by A, affecting the effective traffic flow,
whereas in Fig. 3(b) more complex orbits appear, giving rise to non trivial
traffic flow.
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Fig. 3. The iterated map for the speed vn at the nth crossing point, for (a)
Tc,B/Tc,A = 0.88 and (b) Tc,B/Tc,A = 0.856, for xtol = LA/2, LA = 200 m,
a+ = 2 m/s2, and a− = 6 m/s2. The transient has been removed.

As Tc,B/Tc,A varies, a bifurcation diagram is obtained for the speed of mobile
B. This is shown in Fig. 4(a) for xtol = LA/2 (low risk of collision) and in
Fig. 4(b) for xtol = LA/6 (high risk). In the particular case when Tc,A = Tc,B,
both cars are synchronized, B is not affected by A, and thus will always cross
the intersection with maximum velocity. (In general, this behavior will not be
seen if appropriate initial conditions are chosen, so that although Tc,A = Tc,B,
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B sees A at the intersection and thus applies the brakes. But this is a tran-
sient effect, absent when the evolution is followed for long enough times.) The
bifurcation diagram of Fig. 4 suggests a period doubling bifurcation to chaos
as we decrease the rate Tc,B/Tc,A. Also, when Tc,B < Tc,A a crisis occurs for
several values of Tc,B/Tc,A as a function of xtol, where the chaotic attractor col-
lides with one of the velocity thresholds, producing an inverse period doubling
bifurcation.
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Fig. 4. The bifurcation diagram for the speed against Tc,B/Tc,A for two different
values of xtol, (a) xtol = LA/2 (low risk of collision) and (b) xtol = LA/6 (high risk).
The other parameters are as in Fig. 3: LA = 200 m, a+ = 2 m/s2, a− = 6 m/s2.
The transient has been removed.

In Fig. 4(b), we observe a behavior similar to the case studied by Toledo et
al. [11]. This is expected, because xtol = LA/2 means half of the time A is in
a state that forces B to stop, and the other half in a state that allows B to
continue. Thus, A can be considered as a traffic light for B, with a frequency
of light change equal to ω = 2πLA/vmax. For values Tc,B > Tc,A, we obtain
completely different dynamics, behavior that resembles a phase transition [12].
If we zoom into one of the frequency ranges where the map displays chaotic
behavior, as shown in Fig. 5(a), we find an intricate structure of periodic
and chaotic behavior, as expected of a chaotic regime after a period doubling
bifurcation.

Estimating the relevance of this chaotic behavior and its sensitivity to pertur-
bation and noise, may be of importance in control strategies [21]. In this sense
a finite amplitude Lyapunov exponent can be estimated [22,11]. Let us take
a trajectory in the attractor that starts from a given state (τ0 = t0/Tc, u0 =
v0/vmax) and an initially perturbed trajectory starting from (τ0 + δ0, u0), with
δ0 � τ0. After n iterations of the map the error becomes δn. Care must be
taken to include only the scaling region where

δn ∼ δ0e
λn .

Given an initial condition over the attractor an exponent can be estimated by
a fitting procedure in the scaling region. Of course, the discontinuous nature
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of the map complicates this calculation, where for example, both trajectories
can reach the same state in one step, yielding λ = −∞. Nevertheless, a final
Lyapunov exponent can still be constructed by excluding those exceptional
cases. Figure 5(b) shows the Lyapunov exponent as a function of Tc,B/Tc,A

and the chaotic behavior arising in this interaction (λ > 0).

0.86 0.87 0.88
TcB�TcA

0.0

0.2

0.4

0.6

0.8

1.0

V
n
�V

m
ax

HaL

0.86 0.87 0.88
TcB�TcB

-8

-6

-4

-2

0

2

4

Λ
HV

m
ax
�L

B
L

HbL

Fig. 5. The bifurcation diagram. (a) Zoom of a chaotic region in Fig. 4(a), and (b)
the associated Lyapunov exponent.

The parameter xtol plays a very important role in the system behavior. Fig-
ure 6 shows the result of varying the tolerance distance, for LB = 172 m
and Tc,B/Tc,A = 0.862. For small tolerances (xtol ∼ LA/10) the behavior cor-
responds to low period orbits, which by increasing xtol becomes an intricate
pattern, seemingly chaotic. The corresponding Lyapunov exponent becomes
positive for a certain range of xtol. This makes sense because the cautious
driver has more time to acquire any dynamical state before the intersection
(see trajectory labeled 3 in Fig. 2). In this case the Lyapunov exponent is
indicating the richness of its dynamics.

It is interesting to note that, in general, for different values of TcB/TcA, the
chaotic region appears for larger values of xtol, but complex behavior is highly
reduced in the upper neighborhood of xA,c. This also occurs for traffic param-
eters which fit well to ordinary city traffic conditions, i.e., those used through-
out this paper. This suggests that, even though cautious driving (larger xtol)
is preferable to aggressive one, extremely cautious drivers may be unfavorable
to efficient traffic flow. In effect, a very large value of xtol means the driver
approaching the yield sign brakes even if the other car is very far from the
crossing. By taking the decision to brake too early, his/her resulting evolution
tends to be chaotic, which may lead to the emergence of traffic jams for cars
behind him/her. Thus it is better to choose a lower xtol, near the critical value
xA,c, so that even in the worst scenario, chaotic behavior would be avoided
with a higher probability. We stress, though, that avoiding (1) precludes the
possibility of a collision. For Fig. 6, xA,c = 16.3 m, so there is a range of values
(up to xtol ' 21 m) that xtol can take which both avoid collisions and chaos.
Notice that these values of xtol approximately correspond to 10% of the total
street length (LB = 172 m) in this case.
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Fig. 6. The bifurcation diagram with xtol for (a) LB = 152 m (Tc,B/Tc,A = 0.760)
and (b) LB = 172 m (Tc,B/Tc,A = 0.862).

4 Conclusions

In this work, a simple model of two cars whose flow is regulated by a sequence
of yield signs at intersections was studied. This can be regarded as an exten-
sion of the work of Toledo et al. [11], where a single car traveling through a
sequence of traffic lights was considered. In our present model, the traffic lights
are replaced by yield signs. A two dimensional-map model is derived which
describes the dynamics of the system. Despite the simplicity of the model, it
exhibits unpredictable behavior which suggests that chaotic behavior may be
an essential part of any traffic network.

Since transients have been removed, this model applies to long trips through
the city. Short trips would be better described by the transient behavior.

The analysis highlights the difficulties involved in the control of traffic flow
in cities. With one car, we already have a possibly complicated situation. As
we include more cars, we can only expect more interesting and complicated
situations, i.e., emergent phenomena arising from several kinds of interactions.
Controlling such systems will usually require a control strategy that involves
a large number of interacting agents.

Several improvements are possible for the model presented here, to make it
closer to real traffic situations. The cars with the right of way need not have
the same velocity, and yield signs need not be equidistant. And of course, in
general, not one but a flux of cars in both roads will reach the intersection.
This can modify some parameters in the model. For example, the averaged
cruising speed of the system vmax, and the accelerations a+ and a−, may change
with the number and density of interacting cars as discussed before. This will
certainly affect the overall dynamics in the system.

Although our model does not pretend to describe exactly real traffic, we be-
lieve that it reflects an important feature of the system at hand, that is, the
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unavoidable complex behavior even at its simplest level. Moreover, it sug-
gests us an additional possible origin of fluctuations in real traffic, and noting
that they are present even under ideal conditions, we conclude that it is very
necessary a complete knowledge of the basic interactions to have a hope of
controlling those instabilities. In effect, spontaneous small fluctuations can
lead to large emergent traffic jams [21]. But fluctuations are a consequence of
an underlying rich dynamics, and that is precisely what we obtain for a cau-
tious driver maneuvering at the crossroad. This does not mean, of course, that
aggressive driving is the solution to avoid traffic jams in this system. Rather,
this result suggests the need to regulate just how cautious a driver can be in
order to not to contribute to block the flux.
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6 Appendix: The M(t, v) map

In this section we construct the exact map for the dynamical states of mobile
B. The distance between two consecutive crossings and between the origin
and the first crossing is LB. Position of mobile A is given by:

xA(t) = vmax,At .

At any given point, the state of B is characterized by three variables: time t,
distance x from the origin, and velocity v.

After crossing the nth yield sign, B reaches vmax,B at a certain time tc,B and a
distance xc,B from the origin. Thus, at this point, the state of B is given by

xc,B =
v2

max,B − v2
n,B

2a+,B

,

tc,B = tn,B +
vmax,B − vn,B

a+,B

,

vc,B = vmax,B .

Then B continues at constant velocity until it reaches the decision point xd.
This is the point where B has to brake in order to stop at the crossing (see
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Fig. 2). At the decision point, the state is given by

xd,B = Ln+1,B −
v2

max,B

2a−,B

,

td,B = tc,B +
xd,B − xc,B

vmax,B

,

vd,B = vmax,B .

Here we have two choices depending on the position of A. First, if LA −
xA(t, B) > xtol, B does not brake and reaches the (n + 1)th yield sign with a
state

xn+1,B = Ln+1,B ,

tn+1,B = td,B +
Ln+1,B − xd,B

vmax

,

vn+1,B = vmax,B .

On the other hand, if LA−xA(t, B) < xtol, the car must brake with acceleration
a−,B, and it will take an extra time ∆t to reach the (n + 1)th yield sign and
stop, with ∆t = vmax,B/a−,B. This time must be compared with the time it
takes for A to cross the intersection,

tp = td,B +
LA − xA(td,B)

vmax,A

.

As shown in Fig. 2, if A reaches the crossing before B stops, then B can
accelerate again before reaching the yield sign. Otherwise, B stops and waits
until A leaves the crossing to start again. Therefore, if td,B + ∆t < tp, B will
cross the (n + 1)th yield sign with

xn+1,B = Ln+1,B ,

tn+1,B = tp ,

vn+1,B = 0 .

On the other hand, if td,B + ∆t > tp, B starts accelerating at the state

xp = xd,B + vd,B(tp − td,B)− 1

2
a−,B(tp − td,B)2 ,

tp = tp ,

vp = vd,B − a−,B(tp − td) ,

and again we have two cases before it reaches Ln+1,B. We need to determine
if the car reaches vmax,B before A reaches the intersection. The distance at
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which B reaches vmax,B is

xm,B = xp + (v2
max,B − v2

p)/2a+,B .

Therefore, if xm,B > LB, then B reaches the intersection with

xn+1,B = Ln+1,B ,

tn+1,B = tp +
vn+1,B − vp

a+,B

,

vn+1,B =
√

v2
p + 2a+,B(Ln+1,B − xp) .

Otherwise, it reaches vmax,B at

xm,B = xm,B ,

tm,B = tp +
vmax,B − vp

a+,B

,

vm,B = vmax,B .

and the intersection at

xn+1,B = Ln+1,B ,

tn+1,B = tm,B +
Ln,B − xm,B

vmax,B

,

vn+1,B = vmax,B .
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