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3Departamento de Ingenieŕıa, Universidad de Talca, Chile
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The complex behavior that occurs when traffic lights are synchronized is studied.

Two strategies are considered: all lights in phase, and a “green wave” with a propa-

gating green signal. It is found that traffic variables such as traveling time, velocity

and fuel consumption, near resonance, follow critical scaling laws. For the green

wave, it is shown that time and velocity scaling laws hold even for random separa-

tion between traffic lights. These results suggest the concept of transient resonances,

which can be induced by adaptively changing the phase of traffic lights. This may

be important to consider when designing strategies for traffic control in cities, where

short trajectories, and thus transient solutions, are likely to be relevant.

I. INTRODUCTION

Urban traffic is not only interesting because of its obvious social and economic impact,

but also because of its complex behavior [1, 2] which is observed daily by drivers. For

instance, differences in the timing of traffic lights can affect traffic over long distances,

or the presence of a few extra cars can suddenly lead to huge extra delays, etc. From a

scientific viewpoint, this behavior is so rich that it can be studied from several perspectives,

ranging from statistical and cellular automaton models to hydrodynamical and mean field

approaches [1, 3–10]. Of particular interest is the emergence of traffic jams as a collective

phenomenon ([11–13] among others).

On the other hand, it is worth noticing that the timing of traffic lights must be close to

the characteristic traveling time (e.g., including car interaction and so on) between signals,
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since longer or shorter timing will slow down the car mean speed, and may contribute

to jam the road [13]. This suggests that resonant conditions may lead to efficient traffic

systems. Moreover, it will be shown that around resonance, for the model presented in

this paper, dynamical variables follow certain power laws. Such power laws resemble

scaling relations near second order phase transitions, and in view of this analogy we

refer to them as critical behavior. We plan to characterize this criticality and derive

the critical behavior close to the resonance in terms of traveling time, velocity and fuel

consumption. In particular, we will discuss in detail a common control strategy used in

cities, the “green wave” [14], in which a green signal is made to propagate with velocity

vwave (the applicability to other synchronization strategies will be discussed below). This

control method tends to produce clusters of vehicles, and due to this high correlation, a

precise knowledge of the leading car can provide us with information about the cluster itself.

Therefore, as long as the leading car represents the behavior of the cluster to which it

belongs, we can describe with a single car model some common states in traffic behaviors

involving clusters of vehicles [15]. Because of this, we will limit ourselves in this paper

to study a single car moving through a sequence of traffic lights [1]. Even though many

models have been proposed to describe the dynamics of cars in cities ([2, 4, 6, 16] among

others), our model is simple enough to handle analytically, and nevertheless yields highly

nontrivial results which describe, at least qualitatively, behavior present in some practical

situations, as discussed in this paper and in [1]. Some approaches have tried to deal with

the complexity of traffic in cities, sometimes with various phenomenological components

that are capable of reproducing particular situations (see previous references), but these

approaches usually do not provide an intuitive understanding of the contributions of each

effect. It is for these reasons that we are, using our model as a starting point, developing

a first principles approach, where detailed features such as finite accelerating and braking

capabilities, or several decision levels, are included; i.e., we are searching for the underlying

robust characteristics of traffic in cities. Indeed, we will show below that finite accelerating

and braking capabilities may be a relevant source of complexity in city traffic for reasonable

city parameters. Furthermore, within this framework, additional effects such as the decision

criteria at intersections or different car interactions can then be included in a consistent and

systematic manner.
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In the model considered in Toledo et al. [1], the dynamics of successive accelerations,

brakings, and travels at cruising speed between traffic lights give rise to a map for the evo-

lution of the velocity and travel time at each traffic light. In this paper we also consider the

evolution of fuel consumption, another important variable for drivers. We analyze initially

the asymptotic behavior of two strategies for the synchronization of traffic lights, namely

(a) all traffic lights switching with the same phase, and (b) a green wave with a propagating

green signal. It is shown that in this model, the traffic variables such as travel time, velocity

and fuel consumption follow critical scaling laws near a resonance, suggesting the existence

of a universal behavior of the system in the vicinity of the resonant condition. It is also

shown that variations in fuel consumption for a given set of trajectories can be very different

from variations in travel time, thus suggesting that it may be very difficult to design traffic

light synchronization strategies which optimize both fuel consumption and travel time.

All these results are valid for long travel times, when the system has been able to reach

the attractor derived for the asymptotic solution of the map, as it may occur in large cities.

However, in situations where trips are not long in general, it makes sense to study the

transient dynamics of the system, which we also analyze in the paper. For instance, a third

control strategy is studied, which is achieved by changing the phase of the traffic lights at a

certain point in the trajectory. This resonance is not global as the green wave, but transient,

having only an impact during a few traffic lights. These results may be highly dependent

on the detailed history of the system, but they may be relevant in city traffic for the reasons

stated above.

The paper is organized as follows. In Sec. II the model is presented. In Sec. III fuel

consumption is considered. Then two models of traffic light synchronization are analyzed:

all lights in phase (Sec. IV) and the green wave (Sec. V). Scaling laws for the travel time,

velocity and fuel consumption are explicitly derived. In Sec. VI transient behavior and

transient resonances are studied. Finally, in Sec. VII results are summarized and discussed.

II. THE MODEL

A car in this model can be in one of four states: (a) at rest at the position of a traffic

light, (b) with constant acceleration a+ until its velocity reaches the cruising speed vmax, (c)

with constant speed vmax, or (d) with negative acceleration −a− until it stops or accelerates
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again. The dynamics may then be written as

dv

dt
=

{ a+ θ(vmax − v) , accelerate,

−a− θ(v) , brake,
(1)

where θ is the Heaviside step function. We notice that vmax is the cruising speed of the cars.

If the distance between successive traffic lights is a constant L, we can define the cruising

time Tc = L/vmax. Tc is also the minimum travel time between traffic lights.

The nth light is green if sin(ωnt+φn) ≥ 0 and red otherwise, where ωn is the frequency of

the traffic light, and φn is its phase shift. At a distance xd = v2
max/2a− from the next traffic

light the driver must make a decision, to step on the brakes or not, depending on the sign of

sin(ωnt + φn). If sin(ωnt + φn) ≥ 0 the driver will continue and pass the signal with vmax. If

sin(ωnt + φn) < 0 the driver will decelerate until it stops, unless the light changes to green

again while braking. In the last situation the car will accelerate again with a+. Of course,

in principle, a real driver could make the decision before xd, but we are assuming that the

driver moves the decision point as close as possible to the signal, as close as permitted by

his/her breaking capacity.

The dynamics generates a nonlinear function that maps time tn and velocity vn from

light to light, as described in detail in Toledo et al. [1].

III. FUEL CONSUMPTION

Even though travel time and velocity are good characterizations of the efficiency of a road

system, fuel consumption is also of interest to drivers. In general, fuel efficiency will improve

if the number of times the car stops is reduced, but it depends on the specific sequence of

brakings and accelerations, and thus on the initial conditions. However, general conclusions

can be obtained by studying the evolution of the attractor solution.

To account for fuel consumption, we need to study the main sources of dissipation in the

car’s motion. Fuel consumption is proportional to the mechanical energy produced by the

engine, given by
∫ tf

t0
Fv dt, where t0 and tf are the initial and final times for the complete

journey, and F is the forward force or thrust. Besides the engine thrust, we have the rolling

friction Fr which opposes the motion, and Fd, where we include other resisting forces such
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as aerodynamic drag. Therefore, if m is the car mass, the following equation holds:

F = ma+ + Fr + Fd . (2)

An analogous equation for the braking state is not necessary, as we assume that the forward

force provided by the engine is zero while braking. Let us consider each term in Eq. (2)

separately. The car acceleration is a+, as given by Eq. (1), and the total injection of energy

due to the acceleration from rest to vmax is mv2
max/2. Each time the car stops this energy

is wasted, so this term represents the effect of the driver’s behavior on fuel consumption.

The rolling friction is estimated as Fr = µmg, where mg is the weight of the car and µ is

the coefficient of rolling friction [17]. Rolling dissipation is thus given by
∫

Frvdt ∼ FrL,

which is a function of the distance between traffic lights. Both sources of energy losses can

be compared through the dimensionless number fr ≡ 2FrL/mv2
max ∼ 2µgL/v2

max which is

fr ∼ 0.2 for a car traveling at 50 km/h between lights 200 m apart and a rolling coefficient

of µ = 0.01 [18].

Finally, the force Fd is a function of the car velocity. Most of the fuel consumption in

a non-stop journey is due to the rolling and drag forces, since accelerations are minimal.

However, if the car passes through a sequence of traffic lights, it moves at lower speeds, and

then drag is less important than rolling friction. Hence, we neglect drag dissipation in our

analysis. We also neglect other dissipative sources such as the energy needed to keep the

motor running (in particular, the energy wasted while standing at the traffic light) and the

energy lost due to internal frictions in the car mechanisms [19].

Thus, under city traffic conditions, total fuel consumption can be estimated as

C =

∫ tf

t0

Fv dt = ma+L+ + Fr (L+ + L0) , (3)

where L+ is the portion of the traveling length in which the driver was accelerating and L0

is the distance traveled at constant speed.

IV. RESONANT BEHAVIOR FOR φn = 0

In Ref. [1], a specific strategy of traffic light synchronization was considered, namely, all

lights have equal phase. This synchronization makes sense only if Ln = L. Later on we will

relax this restriction when we apply a green wave. If the period of the signals, 2π/ω, is equal



6

to the cruising time, Tc, after a short transient (passing a few traffic lights), the car will

arrive at each successive decision point when the light’s phase is the same. It is important

to note that such resonance between the car motion and traffic signals corresponds to a

very narrow region of parameters (see the period-1 orbit in Fig. 1). Thus, the interesting

regime for controlling traffic situations corresponds to a narrow region around the condition

2π/ω = Tc. Introducing the dimensionless quantity Ω̄ = ωTc/2π, resonance occurs at Ω̄ = 1.

Figure 1 gives the bifurcation diagram of a car starting from rest at the first traffic light.

For a given frequency of the traffic lights, characterized by Ω̄, the normalized speed vn/vmax

and time travel between traffic lights (tn+1 − tn)/Tc at the nth light is plotted. A transient

of 500 time steps has been removed. This is too large a number of traffic lights to be

relevant in real traffic situations, but it is necessary to reach the attractor for all the initial

conditions plotted (specially in the region very close to the period-doubling bifurcation,

where convergence is particularly slow). However, we should point out that most of the

initial conditions converge to the attractor in as few as 5–20 traffic lights.
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FIG. 1: Bifurcation diagram for the normalized (a) speed at the traffic lights and (b) time travel

between traffic lights, versus normalized frequency Ω̄, for a+ = 2 m/s2, a− = 6 m/s2, vmax =

14 m/s, and L = 200 m. A transient of 500 time steps has been removed.

It is important to notice that even in this model there is already an interesting nontrivial

behavior in the range 0.75 < Ω̄ < 1 as displayed in Fig. 1, where a necessary condition

for complexity emerges even from the dynamics of a single car. It includes a period dou-

bling bifurcation transition to chaos, where the Lyapunov exponent is estimated in Toledo

et al. [2004] for a similar situation. It is interesting to note that this chaotic behavior is

produced by the finite accelerating and braking capabilities of the cars, and is thus indepen-

dent of the interactions between cars. This is one of the reasons for proposing our model as
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a starting point for a first principles approach to traffic in cities.

Intuitively, and from Fig. 1, at Ω̄ = 1 the car motion is in resonance with the traffic lights

and the traveling time between two given traffic signals is minimized. For Ω̄ > 1 (increasing

ω), there are a number of resonances, separated by ∆ω = 2π/Tc. Figure 2 displays the

average normalized speed 〈v〉/vmax (total distance traveled divided by total time elapsed) as

a function of frequency. Successive resonant points are found at Ω̄ = `, where ` is a positive

integer. We will see below that these resonances display critical behavior. On the other hand

for Ω̄ < 1 there are situations in which the car covers a distance qL, with q a positive integer,

with cruising speed for half the period of the traffic lights, and then is stopped for the other

half of the period. In these cases Ω̄ = 1/q and the average normalized speed is 〈v〉/vmax = 1/2

as shown in Fig. 2. Since for a reasonable city L ≈ 200 m and vmax ≈ 50 km/h, the traffic

light period of the first resonance P = 2π/ω ≈ 14 s is a little unreasonable, an attempt

to control the system using this parameter alone seems impractical, however, exploring this

dynamics could allow us to derive more practical control schemes.
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FIG. 2: Resonant tongues showing the average speed (total distance traveled divided by total time

elapsed) as a function of the forcing frequency Ω̄. The thin line corresponds to the scaling relation

Eq. (22). A transient of 500 time steps has been removed.

In the vicinity of the resonance Ω̄ ≈ 1, two different dynamics arise depending on the

sign of Ω̄ − 1. For simplicity, let us consider a car starting at the first traffic light when it

changes from red to green, i.e., when the green window begins. If Ω̄ < 1, the car will be

delayed with respect to the traffic lights, and will reach the second one when it is red, so

it will be forced to brake. However, if the delay is small, the traffic light will turn green

before the car gets to a full stop, so the car will accelerate again (see Fig. 3), reaching the

next traffic light with non-zero velocity. This causes the period-1 orbit below the resonance
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Ω̄ = 1 of Fig. 1.
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FIG. 3: Speed versus distance for the period-1 attractor below resonance (Ω̄ < 1). The car starts

at the first traffic light with velocity v0, accelerates until reaching velocity vmax, and arrives at the

decision point L−xd when the next traffic light is red, so it brakes. When the velocity is a certain

minimum value vmin, the sign turns green, and the car accelerates again, passing the traffic light

with the initial speed v0.

The situation for Ω̄ > 1 is very different. The car reaches the second light a time δt

after it has turned green, and this delay increases with each traffic light until it is eventually

forced to stop. Thus, for Ω̄ > 1, the car moves at maximum speed almost always, except for

a stop every p traffic lights, leading to the attractor seen above the resonance in Fig. 1.

To estimate p, we note that the driver arrives at the next signal a small time δt =

Tc − 2π/ω > 0 after the signal turns green, then with a delay 2δt at the third light, and so

on. The journey will continue until the green window is exhausted. The total number of

signals, p, that the driver will cross without stopping is given by p δt ≈ π/ω, which leads to

p ≈ 1

2

1

Ω̄− 1
. (4)

Equation (4) is very interesting, because it also suggests that there is a critical behavior

of traffic variables around resonance. However, resonance itself is not a robust feature for

φn = 0, as it is not independent of the geometry of the road, which is important, because

in real situations the distance between traffic lights is not constant, being impossible to

maintain resonance traveling at constant speed.

Fortunately, the opposite is true for another kind of traffic light synchronization strategy,

the “green wave”, which we now consider.
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V. GREEN WAVE

A common strategy for traffic light synchronization is the “green wave”, where a green

color signal is moved with a speed vwave, so that the color at the nth traffic light, located

at a position xn along the road, is given by sin ω(t− xn/vwave), where ω is the frequency of

the traffic light. This implies that φn = −
∑n

m=1 Lmω/vwave. The case φn = 0 analyzed in

Sec. IV is equivalent to the green wave case with vwave →∞.

In Fig. 4 we plot the bifurcation diagram with α = vmax/vwave of a car starting from rest

for a road with constant distance between traffic signals Ln = L = 200 m, constant frequency

ω = 2π/60 s−1, accelerations a+ = 2 m/s2 and a− = 6 m/s2, and vwave = 14 m/s. These

parameters are reasonable for an actual road, corresponding to a change of lights every 30 s,

and a green wave synchronized with cars moving at 50 km/h. The car will follow a complex

path unless the velocity of the car coincides with the wave velocity, i.e., a resonance. Under

this condition, the driver will never be stopped. However, resonance is rather fragile, as

observed in Fig. 4, hence the dynamics must be observed near the resonant condition α ∼ 1.
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FIG. 4: Bifurcation diagram for (a) normalized speed and (b) normalized time travel between

traffic lights, versus α, for a+ = 2 m/s2, a− = 6 m/s2, vwave = 14 m/s, ω = 2π/60 s−1, L = 200 m.

The transient has been removed.

The bifurcation diagram in Fig. 4 is very similar to Fig. 1, but reflected horizontally.

Thus, it is above resonance, α > 1, that a period-1 solution exists, where the car follows

a trajectory like Fig. 3, and below resonance the car crosses a certain number p of lights

before being stopped. An approximate expression for p can be obtained for the green wave,

using similar arguments to those used to derive Eq. (4).

Let us consider the number of traffic lights the car can pass without braking. In the

green wave case, close to resonance, we consider a small perturbation δv = vwave− vmax > 0.
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In the optimal case, the driver starts at one extreme of the green semi-period just when

the signal changes from green to red, so that at the next signal the driver arrives a time

δt = L/vmax−L/vwave before the signal turns red. The journey will continue until the green

window is exhausted. The total number of signals, p, that the driver will cross without

stopping is given by p δt = π/ω, or

p ≈ λ/L

2

α

1− α
, (5)

where λ = vwave · 2π/ω. Criticality is, once more, explicit. However, unlike the case φn = 0,

resonance for the green wave holds even if the distance between traffic lights is not constant,

in which case φn = −
∑n

m=1 Lmω/vwave.

An interesting example of this independence of geometry for the behavior near resonance

is shown in Fig. 5(a) for the average speed after traveling a large number of traffic lights

as a function of α = vmax/vwave. Three cases are compared: (i) a street where distance

between traffic lights Ln = L = 200 m is constant; (ii) a street with a random distribution

of distances Ln = L + ∆Ln, where ∆Ln/L is a uniform random number in the interval

[−0.5, 0.5]; and (iii) a real street, namely, the longest city street in Chile (the Avenida del

Libertador Bernardo O’Higgins, also known as Alameda Avenue; its precise geometry can

be obtained from the Chilean Military Geographic Institute at http://www.igm.cl/ ). All

curves are identical at resonance. The same is true for the average time between traffic

lights. This suggests that behavior near resonance for the green wave, at α = 1, is indeed

universal, regardless of the detailed geometry of the road. Moreover, it will be shown that

near resonance, traffic variables behave according to scaling laws. Thus, Fig. 5 shows the

universality of this critical behavior. . The figure also shows how the efficiency of the

strategy degrades as the effective speed of the cars gets away from vwave.

Based on Eq. (5), it is now easy to obtain scaling laws for the traffic variables (time,

velocity, fuel consumption). At α = 1, the system is at resonance, so that the average travel

time 〈t〉 is equal to the time of “free” travel, when no red lights are found, Tfree ≡ nL/vmax,

where n is the number of passed traffic lights. Average velocity is equal to the corresponding

maximum or free velocity 〈v〉 = Vfree ≡ vmax. Below resonance these relations change

because, if α < 1, the car is forced to stop at some point. Since π/ω is the time the red light

window lasts, the car is at rest a time ≈ kπ/ω with k as the number of times the driver
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brakes. Then the average travel time is

〈t〉 = Tfree +
kπ

ω
. (6)

The average velocity in the same run is

〈v〉 ∼ nL

〈t〉
. (7)

Fuel consumption at resonance, on the other hand, is 〈C〉 = Cfree ≡ nFrL. Below

resonance fuel consumption can be estimated by observing that the car stops k times when

it covers a distance nL at cruising speed, hence 〈C〉 ∼ FrnL + kmV 2
free/2, which is the total

work done by Fr plus the energy wasted in each stop, thus

〈C〉 ∼ Cfree

(
1 +

mkV 2
free/2

nFrL

)
. (8)

Equations (6)–(8) can be written as

〈t〉 − Tfree

Tfree

∼ λ

2L

k

n
α ,

〈v〉 − Vfree

Vfree

∼ − λ

2L

k

n
α ,

〈C〉 − Cfree

Cfree

∼ 1 +
1

fr

k

n
.
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FIG. 5: (a) Resonant tongue showing the average speed (total distance traveled after crossing n

signals, divided by time elapsed) as a function of the parameter α. The thin line corresponds to

random street length, the thick line corresponds to the Alameda Avenue, the dashed line corre-

sponds to constant street length, and the dotted line corresponds to the scaling laws derived in

the text. (b) The corresponding average fuel consumption, normalized to the free consumption

Cfree = nFrL.
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Since after p traffic signals there is one stop, we can estimate k/n ∼ 1/p. Then, using (5),

yields the following scaling laws:

〈t〉
Tfree

∼ 1 + (1− α) , (9)

〈v〉
Vfree

∼ 1− (1− α) , (10)

〈C〉
Cfree

∼ 1 +
2L/λ

fr

(1− α)

α
. (11)

Above resonance (α > 1), the period-1 solution is possible if the average time to move

between two traffic lights is

〈t〉 =
L

vwave

= Tfree α ≈ Tfree

[
1 + (α− 1) +O(α− 1)2

]
, (12)

and the average velocity is

〈v〉 = vwave =
vmax

α
≈ vmax

[
1− (α− 1) +O(α− 1)2

]
. (13)

Equations for 〈t〉, (9) and (12), and for 〈v〉, (10) and (13), can be combined as

〈t〉
Tfree

= 1 + |1− α| , (14)

〈v〉
Vfree

= 1− |1− α| , (15)

being symmetrical around resonance.

Symmetric expressions like these cannot be obtained for fuel consumption. In order to

estimate fuel consumption above resonance, let us first notice that the trajectory is analogous

to Fig. 3. The distance in which rolling friction acts against the engine is

xr = L− v2
max − v2

min

2a−
, (16)

and the energy lost when breaking is

Wa =
m

2

(
v2

max − v2
min

)
. (17)

Thus, total work between two traffic lights is

W = Fr xr +
m

2

(
v2

max − v2
min

)
= Fr L +

1

2

(
v2

max − v2
min

)(
m− Fr

a−

)
. (18)
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Note that this is equivalent to Eq. (3). In order to obtain vmin, we solve the following set of

equations:

v0 = vmin

√
1 +

a+

a−
, (19)

T =
(vmax

2
− vmin

)( 1

a+

+
1

a−

)
+

v2
0

2vmaxa+

+
L

vmax

. (20)

These equations follow from Fig. 3. Equation (20) simply states that the time to travel from

one light to the next one is equal to T = L/vwave. Thus,

〈C〉 ∼ Cfree

(
1 +

2

fr

[
1− Fr

ma−

]√
2a+a−

a+ + a−

L

v2
wave

(α− 1)
1
2

α

)
+O(α− 1) . (21)

Fuel consumption behavior is not symmetrical near resonance. This asymmetry is related

to the fact that below resonance the car fully stops only once every p signals, whereas above

resonance the car never stops, but brakes at every signal. Since C depends strongly on

the detailed pattern of acceleration in the trajectory, scalings are different at each side of

the resonance. In Fig. 5(b) numerical results, obtained by iterating the map, are plotted,

showing good agreement with the approximated expressions Eqs. (11) and (21) (dotted

lines). Let us note that fr is a function of α if we assume that vwave is constant and we vary

vmax. For α > 1 the scaling law we derived above breaks at the period doubling bifurcation,

i.e., α ≈ 1.1 as seen in Fig. 5(b). The strong asymmetry in this figure also suggests that

on average, fuel consumption is higher for “impatient” drivers traveling with velocity above

the green wave velocity.

The universality of Eq. (15) is also clearly suggested in Fig. 5(a) for the averaged velocity.

This is interesting, as the scaling laws have been obtained for equidistant traffic lights, but

also hold for varying street length.

Although this critical behavior has been derived for a single car model, we expect it to

have an effect when multiple cars (not too many, otherwise they will form a jam) are in the

road as well. Indeed, for a single car, it corresponds to traveling a large number of traffic

lights without stopping. Since it would keep its maximum velocity during most of the travel,

it would not interact with other cars also in the same situation. Then, the critical behavior,

in general, would occur when a bundle of cars passes p lights before being stopped, with

p � 1. This is analogous to a system near a phase transition, when the correlation length

goes to infinity. We have obtained analytical results for the critical behavior in our simple

model, which could then be compared with more complex simulations and measurements.
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It is interesting to notice that the scaling relations for velocity and time traveled derived

for the green wave strategy can be mapped to the equivalent scaling laws for the φn = 0

strategy by rewriting α −→ 1/Ω̄. The actual derivation follows along similar arguments as

the ones used for the green wave strategy. For instance the velocity scaling is

〈v〉
Vmax

= 1− |1− Ω̄|
Ω̄

, (22)

displayed as the thin line in Fig. 2. In the case of fuel consumption for α > 1 (and Ω̄ < 1),

this mapping is even more evident, since we need to carry the same analysis as above, but

with T = L/vwave −→ 2π/ω, i.e., α −→ 1/Ω̄.

VI. TRANSIENT BEHAVIOR

The results stated in the previous sections regarding resonance and critical behavior for

the green wave are valid in the asymptotic regime of the car dynamics. They are valid

regardless of the detailed geometry of the system (characterized by the distance Ln between

traffic lights). However, trips in cities are typically short, and transient dynamics cannot

be neglected in general. In the following sections we intend to describe some features of the

transient behavior which may be of interest for city traffic.

Let us consider the green wave strategy. Figure 6 is analogous to Fig. 4(a), but the

transient is also shown. In Fig. 6(b) the car starts later. The change in start time is relevant

only in the transient part, and of course, both trajectories converge to the same attractor

of Fig. 4(a).

Figure 6 shows that, depending on the initial conditions, the evolution can be quite

complex, which as mentioned above, may be relevant for city traffic. In particular, strategies

for optimizing fuel consumption turn out not to be very obvious even in our simple model.

For instance, let us consider the condition α = 1.3. The asymptotic solution is a period

two orbit with vn = 0 and vn+1 = vmax (see Fig. 6). This situation represents a simple case

with an interesting asymptotic behavior that may be quite annoying for the drivers. The

left panel in Fig. 7 shows vn/vmax at traffic lights n = 3 and n = 20 [Figs. 7(a) and (b),

respectively] for a range of initial conditions in time and velocity. For the same traffic lights

we also compute fuel consumption with Eq. (3). This is plotted in the right panel in Fig. 7.

Darker (lighter) color represents lower (higher) fuel consumption. Note that these zones are
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FIG. 6: Bifurcation diagram for the normalized speed vn/vmax as the control parameter α =

vmax/vwave is varied. Each figure corresponds to a different initial condition: (a) t0 = 0, v0 = 0,

and (b) t0 = π/ω, v0 = 0. They contain the transient.
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FIG. 7: Transient behavior for α = 1.3 according to the initial conditions in the v0/vmax-ωt0/2π

plane. Lighter tones correspond to higher speeds and higher fuel consumption when crossing

the traffic light. In Figs. (a) and (b), we show the distribution of speed for the third and the

twentieth traffic light respectively. In the second column, Figs. (c) and (d), we show the associated

fuel consumption. Fuel consumption is normalized by the maximum fuel consumption among all

trajectories analyzed.

fairly wide and inhomogeneous. Also, there are points associated to high consumption very

near to points of low consumption. This result points to the difficulty in designing strategies
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to save fuel or time in city traffic, as optimizations in time traveled may conflict with fuel

consumption considerations.

An interesting feature is shown in Fig. 8, for the green wave case, with α = 1.3. For two

trajectories, the difference in travel time after n = 20 traffic lights is negligible, whereas they

vary by ∼ 20∆Cfree in fuel consumption. These results show that fuel consumption can be a

more sensible index to characterize the efficiency of the road system, as compared to travel

time, and point out again the difficulty in devising general strategies for traffic control.
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FIG. 8: The comparison of the (a) time traveled (normalized to Tc) and (b) fuel consumption

(normalized to ∆Cfree = FrL), for α = 1.3, for two particular initial conditions, v0 = 18.02 m/s

and v0 = 4.55 m/s, respectively. The rest of the parameters are those for Fig. 4.

Another way to state this is to consider a set of initial conditions distributed uniformly

in the v-t plane, and let the trajectories evolve. After n = 3 and n = 20 traffic lights, the

distributions of time and fuel consumption are reconstructed and displayed in Fig. 9 with the

same arrangement as in Fig. 7. We note that the distributions are highly asymmetrical and

tend to be centered around a certain point that is related to the corresponding asymptotic

expression for α = 1.3, shown in Fig. 5(a). The width of the distribution for fuel consumption

is larger than the width of the distribution for elapsed time, which is consistent with Fig. 8.

This shows the high sensitivity of this variable and suggests its relevance in city traffic.

On the other hand, let us remember that in this figure we are representing a statistical

distribution, at a given time, of a big number of initial conditions randomly chosen over

the whole phase space. The variations that we are seeing here characterize the nontrivial

transient part of the trajectories. For the period-2 situation we are considering here, there

exist a maximum asymptotic spread in time because of those cars that are caught by a red

light during the transient part of the trajectory (remember that the average waiting time
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at the traffic light is ∼ 2Tc). Therefore, we can see the convergence of the time distribution

to two well defined peaks, whereas for the fuel distribution the two hills shown in Fig. 9(c)

will merge into the one observed in Fig. 9(d).
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FIG. 9: Transient distributions as measured at different traffic lights for α = 1.3, produced by

different initial conditions distributed uniformly in the v0/vmax-ωt0/2π plane. In Figs. (a) and (b),

we show the distributions of time traveled for the third and the twentieth traffic light respectively.

The time has been normalized by Tc. In the second column, Figs. (c) and (d), we show the

associated distribution of fuel consumption. Fuel consumption has been normalized by ∆Cfree =

FrL. The vertical arrows are the predictions by the asymptotic formulation given by Eqs. (15) and

(21). As expected from Fig. 5(b), the prediction for fuel consumption is not very good for α = 1.3.

If we are interested in short trips, we may devise strategies that can minimize certain

variables by inducing certain transients. For instance let us take α = 1.19 where we have a

period-4 orbit, and α = 1.2 where the orbit is chaotic. However, if at the 10th traffic light the

phase is changed from 0 to π, a transition to free resonant motion is observed. This motion

eventually collapses back to the period-4 or chaotic orbits respectively [see Fig. 10(a)], but

only after going through a nice transient of p traffic lights, which is in close agreement with

Eq. (4). As displayed in Fig. 10(b), the phase induced green corridor proposed above reduces
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FIG. 10: Orbit collapsing due to the phase change φ : 0 → π at the 10th traffic light. In both

figures, the period-4 orbit is represented by dots, and the chaotic orbit by a line. (a) Period-4

to free motion and chaos to free motion collapsing. (b) Fuel consumption between lights, ∆Cn,

normalized by its minimum value ∆Cfree = FrL.

fuel consumption because rolling friction is the only source of dissipation. This analysis may

suggest another control strategy to improve traffic flow by adaptively changing traffic lights

phases. It also gives further insight into the origin of complex solutions when the resonance

condition is approached. As time progresses, a periodic or chaotic solution suddenly may

spot a green corridor that changes completely its observed trajectory.

VII. CONCLUSIONS

In this paper, the dynamics of a single car moving between traffic lights is studied. The

model, presented in Toledo et al. [1], is studied for two types of synchronization strategies for

the traffic lights: all lights in phase, and the green wave. The resonant state, where the car

makes a non-stop journey through the complete sequence of traffic lights, was considered.

Near resonance, we observe critical behavior, in the sense that traffic variables such as

traveling time, average velocity and fuel consumption are described by scaling laws. We also

show that this is a universal behavior, independent of the geometry of the system for the

case of the green wave strategy. Scaling laws for average time and velocity are symmetrical

near resonance, but farther from resonance this symmetry is broken. The asymmetry is also

evident in the scaling for fuel consumption, even near resonance. This is due to the different

dynamics at each side of the resonance. One side corresponds to the car that always reaches

the signals at maximum speed, except for sporadic stops, whereas at the other side the car
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brakes and then accelerates again before fully stopping at every signal.

In this paper we also studied features of the model specifically related to the transient

behavior. This is particularly relevant for situations in which travel lengths are short in

general, and there may be not enough time to reach the asymptotic attractor, depending

on the initial conditions. It was shown that, even though at exact resonance all traffic

variables are optimized asymptotically, this may not be true during the transient. Moreover,

trajectories where small variations in initial condition lead to small variations in traveling

time, for instance, largely differ in fuel consumption. This makes the design of strategies of

traffic control more difficult.

Besides the global resonances at Ω̄ = 1 and α = 1, transient resonances appear in the

system, where periodic or chaotic orbits spot a “green corridor”, and temporarily collapse to

resonant orbits. This can be achieved by appropriately changing the phase of traffic lights

at a given point in the road, and may lead to a different strategy of traffic control.

On the other hand, it is important to note that any strategy based on a green wave

is direction dependent, so in a bidirectional road of arbitrary geometry, only one way will

experience its goodness (except for the φn = 0 case). At least in cities like Santiago, Chile,

this is a reasonable situation, because the bulk of cars usually moves in a given direction at

a given time.

Although, we have studied the “green wave” synchronization for just one car, the effects

described here should be more general as discussed in the introduction. Linking traffic lights

is one approach to more intelligent roads, and subtle changes can have big effects. Synchro-

nization of traffic lights with the characteristic car dynamics leads to resonance and critical

behavior, and both are novel features that deserve further theoretical and experimental work.

Long transients, period doubling, chaos, and criticality are concomitant with the resonant

character of city traffic models, and these features are expected to be robust and survive

in more realistic situations, where more cars and different geometries are involved. For ex-

ample, we could conjecture that as we introduce a not too large a number of interacting

cars into our road system, the effective vmax should diminish with the number of cars in a

mean field approach. Which means that the model described here would apply, except that

the scaling laws should now scale with the number of cars. However, car accelerations a±

could also change when more cars are present, and this will also affect any pre-established

synchronization with the traffic lights. Such a study is currently under development and
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will be published elsewhere.
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