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Abstract
We give closed-form non-recursive formulae for the Chadi± Cohen sets of

special points associated with the bcc and fcc symmetries. The expressions are
valid for arbitrary order n, which enters them as a parameter. This ameliorates the
situation of the Chadi± Cohen method of integration over Brillouin zones, whose
application to high-precision calculations has been severely limited by the
di� culty of generating sets of special points of order higher than n ˆ 2.

} 1. Introduction

Most equations of solid-state theory describing macroscopic properties are

expressed as integrals over the ® rst Brillouin zone (BZ) of the k space.

Quantitative results demand either simpli® ed models that usually reduce the BZ to
a sphere or numerical integration.

However, in those cases where determining the qualitative behaviour is not

su� cient and precision is required, the standard methods of numerical integration

may fail. Subintegral functions are normally sums of periodic functions with rather

complex structure and the k-space has to be discretized in a very high number of cells

to achieve a reasonable accuracy. Rounding errors may contribute signi® cantly to
the total error. This problem is more than just a technical aspect because it aŒects a

signi® cant portion of the equations and methods that constitute the output of solid-

state theory.

In an eŒort to consider the particularities of the BZ analytically, Baldereschi

(1973) discovered the existence of a special point k0 in the BZ of cubic crystals, called

by him the mean value point, which allows us to write the approximate expression

O

…2p† 3
BZ

f …k† d3k f …k0† ; … 1†

where O is the volume of the primitive cell and f …k† has cubic symmetry and the
period of the reciprocal lattice. The error was surprisingly small in several calcula-

tions of charge density and energy of real systems.

Subsequently Chadi and Cohen (1973) developed a more elaborate method that

consists essentially in determining a set of …n† special points k1; k2; . . . ; k …n† in the

irreducible BZ such that
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O

…2p† 3
BZ

f …k† d3k ˆ
…n†

iˆ 1

i f …k i† ‡ "n; … 2†

where

lim
n! 1

"n ˆ 0; … 3†

n ˆ 1; 2; . . . determines the order of the approximation and the coe� cients i do not

depend on the function f but simply weight the number of points in the BZ that are

equivalent to k i. The nth set has …n† points. The number n is related with the highest

degree of vicinity in real space whose contribution is considered signi® cant. The
Chadi± Cohen sets of points are special because they optimize the speed at which

the error "n goes to zero as n increases. They are generated recursively, starting from

the set n ˆ 1, which normally contains two points (Chadi and Cohen 1973).

Chadi and Cohen gave lists of their special points up to the order n ˆ 2 for the

cubic and hexagonal crystal symmetries, which are su� cient to establish the power
of the method. However, accurate calculations for realistic systems may require a

higher degree of approximation.

The convergence of the Chadi± Cohen method is extremely rapid. However, its

application to high-precision calculations has been severely limited by the di� culty

of generating sets of special points of order higher than n ˆ 2. The recursive method

established by Chadi and Cohen for determining the special points for each n is a
rather involved procedure that becomes practicable only when the number of points

…n† is small enough to examine them individually. Beyond n ˆ 3 the procedure

turns into too cumbersome a task.

MacGillivray and Scholl (1983) developed a computer program that generates

the sets of special points for bcc and fcc lattices following a variant of the recursive
procedure of Chadi and Cohen. However, the program was not able to reduce all

equivalent points to a single representative point in the irreducible zone after each

recursion step. This rapidly increases the number of points and lowers the associated

weights i. The method again has a limit because the number of points become

hardly manageable for orders higher than n ˆ 5. MacGillivray and Scholl (1983)
calculated in this way the lattice static Green functions of a number of cubic metals

up to the order n ˆ 5.

We report here the obtention of explicit non-recursive formulae for the Chadi±

Cohen special points associated with the bcc and fcc cubic symmetries. The expres-

sions are valid for arbitrary n, which enters them as a parameter. The explicit

equations of the special points given here were obtained by incomplete induction.
Then we used complete induction to demonstrate that the general equations for the

n-dependent points satisfy the recursive de® nition given by Chadi and Cohen. To

make sure that the set of points for each n is complete, that is no point or family of

points is missing, we calculated simple integrals that can be analytically evaluated

and performed a number of more elaborate calculations. The results for several
values of n show strong convergence. We omit here the details of the inductive

demonstration, which exhibits many branches and takes too much space. We give

only a general description of it for the bcc lattice, which should be su� cient for those

that may be interested in reproducing the technical steps.

Instead, we place emphasis on the practical results and on some examples of
applications that illustrate the method, its accuracy and convergence. This means

552 J. Rogan and M. Lagos



that the article has a rather unusual structure because a sketch of the formal math-

ematical aspects is given at the end, after the examples for the applications.

In the past we applied our closed-form equations for the Chadi± Cohen sets to
calculate the quantum diŒusion of light species in several cubic metals (Rogan 1994,

Lagos and Rogan 1995). We also calculated the static lattice Green functions of V,

Nb, Ta, Ni, Pd, Pt and Cu, up to the order n ˆ 10, and compared them with the data

obtained by MacGillivray and Scholl et al. (1983), the agreement was very close.

However, we never published these results.
In this report we intend to achieve the following:

(a) to provide explicit equations for the Chadi± Cohen sets of special points to

any order n, valid for the bcc and fcc Bravais lattices;

(b) to show some straightforward applications that make apparent the rapid

convergence of the method and give an idea of the errors associated with the
succesive sets of points;

(c) to motivate other workers to search for non-recursive closed-form equations

for the remaining crystal structures; our demonstration that the Chadi±

Cohen sets of special points for the cubic lattices can be described this

way suggests that the same may apply to other crystal symmetries.

} 2. Bcc Bravais lattice

The Chadi± Cohen set of order n associated with bcc lattices, which we denote by

B…n† , is split into two subsets. In units of 2p=a, where a is the lattice parameter, they
are given by

B
… n†
1 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 1; 2; . . . ; 2n¡ 1
;

j ˆ 1; 2; . . . ; i;

` ˆ 1; 2; . . . ; j ; … 4†

whose points are associated with the weights

…n; i; j; `† ˆ
3…1 ¡ ij† ‡ 3…1 ¡ j`† ‡ i`

2 8n¡ 1
… 5†

and

B
…n†
2 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 2n¡ 1 ‡ 1; 2n¡ 1 ‡ 2; . . . ; 2n
;

j ˆ 1; 2; . . . ; 2n ‡ 1 ¡ i;

` ˆ 1; 2; . . . ; j ; … 6†
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with the weights

…n; i; j; `† ˆ
3…1 ¡ i‡ j;2n ‡ 1† ‡ 3…1 ¡ j`† ‡ j` i‡ j;2n‡ 1

2 8n¡ 1
: … 7†

The total number of special points of B…n† ˆ B
…n†
1 [ B

… n†
2 is

jB…n† j ˆ
2n¡ 1…2n¡ 1 ‡ 1† …2n¡ 1 ‡ 2†

3
: … 8†

} 3. Fcc Bravais lattice

The set F …n† of special points of order n for the fcc cubic lattice is more complex
and was separated into seven subsets. They are

F
…n†
1 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 1; 2; . . . ; 2n¡ 1
;

j ˆ 1; 2; . . . ; i;

` ˆ 1; 2; . . . ; j ; … 9†

F
…n†
2 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 2n¡ 1 ‡ 2; 2n¡ 1 ‡ 4; . . . ; 2n
;

j ˆ 1; 2; . . . ; 3 2n¡ 2 ¡
i

2
;

` ˆ 1; 2; . . . ; j ; …10†

F
…n†
3 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 2n¡ 1 ‡ 2; 2n¡ 1 ‡ 4; . . . ; 3 2n¡ 2
;

j ˆ 3 2n¡ 2 ¡
i

2
‡ 1; 3 2n¡ 2 ¡

i

2
‡ 2; . . . ; i;

` ˆ 1; 2; . . . ; 3 2n¡ 1 ‡ 1 ¡ i ¡ j ; …11†

F
…n†
4 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 3 2n¡ 2 ‡ 2; 3 2n¡ 2 ‡ 4; . . . ; 2n
;

j ˆ 3 2n¡ 2 ¡
i

2
‡ 1; 3 2n¡ 2 ¡

i

2
‡ 2; . . . ; 3 2n¡ 1 ¡ i;

` ˆ 1; 2; . . . ; 3 2n¡ 1 ‡ 1 ¡ i ¡ j ; …12†
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F
…n†
5 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 2n¡ 1 ‡ 1; 2n¡ 1 ‡ 3; . . . ; 2n ¡ 1;

j ˆ 1; 2; . . . ; 3 2n¡ 2 ¡
i ¡ 1

2
;

` ˆ 1; 2; . . . ; j ; …13†

F
…n†
6 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 2n¡ 1 ‡ 1; 2n¡ 1 ‡ 3; . . . ; 3 2n¡ 2 ¡ 1;

j ˆ 3 2n¡ 2 ¡
i ¡ 1

2
‡ 1; 3 2n¡ 2 ¡

i ¡ 1

2
‡ 2; . . . ; i;

` ˆ 1; 2; . . . ; 3 2n¡ 1 ‡ 1 ¡ i ¡ j …14†

and

F
…n†
7 ˆ

1

2n‡ 1
…2i ¡ 1; 2j ¡ 1; 2` ¡ 1†

i ˆ 3 2n¡ 2 ‡ 1; 3 2n¡ 2 ‡ 3; . . . ; 2n ¡ 1;

j ˆ 3 2n¡ 2 ¡
i ¡ 1

2
‡ 1; 3 2n¡ 2 ¡

i ¡ 1

2
‡ 2; . . . ; 3 2n¡ 1 ¡ i;

` ˆ 1; 2; . . . ; 3 2n¡ 1 ‡ 1 ¡ i ¡ j : …15†

The relative weights are given by

…n; i; j; `† ˆ
3…1 ¡ ij† ‡ 3…1 ¡ j`† ‡ i`

4 8n¡ 1
…16†

and the total number of points of F …n† ˆ 7
ˆ 1 F …n† is

jF …n† j ˆ
2n¡ 1…2n ‡ 1† …2n¡ 1 ‡ 1†

3
: …17†

These relations for fcc lattices are valid for any n and can be blindly applied for

n > 2. However, care must be taken in the well known cases n ˆ 1 and n ˆ 2. In both

situations the de® nitions of the intervals for the indices i; j; ` in some of the subsets

determine fractional, negative or null values for them. The rule is just to discard

anomalous indices.
For n ˆ 1 the ® rst subset F

…1†
1 has no problem. In F

…1†
4 , only the upper limits i ˆ 2

and j ˆ ` ˆ 1 must be taken into account. All indices in the other subsets are frac-

tional and are thus discarded. For n ˆ 2 the subsets F
… 2†
1 , F

…2†
2 and F

…2†
5 have no

problem and F
…2†
3 ˆ F

…2†
6 ˆ show anomalous indices. Only the upper limits i ˆ 4

and i ˆ 3 are regular in F
…2†
4 and F

…2†
7 , respectively. No anomaly occurs for larger

values of n.
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} 4. Simple and more elaborate applications

To illustrate how the proposed scheme works we apply it to evaluate

two integrals, over the BZ of the bcc and fcc lattices, whose exact results are
known. They are

IB ˆ
O

…2p† 3
BZ bcc

k2 d3k ˆ
3

8

2p
a

2

…18 a†

and

IF ˆ
O

…2p† 3
BZ fcc

k2 d3k ˆ
19

32

2p
a

2

…18 b†

respectively. Because of the numerical rounding error, which increases with increas-

ing n, we determined that the total error has a minimum for about n ˆ 6 when simple

precision is used. Using double precision the error decreases monotonically even for

n ˆ 10. Table 1 shows the values obtained with double precision for IB and IF for
diŒerent values of n, together with the relative error.

Tables 2 and 3 illustrate the results of more elaborate calculations. Columns B

show our results for the static lattice Green functions calculated for the cubic metals

V, Nb, Ta, Ni, Pd and Pt. Columns A show the values obtained previously by

MacGillivray and Scholl (1983). The apparent agreement contributes to corroborate
these previous calculations.

The calculation of Green functions involve integration over the BZ of complex

functions depending on the dispersion relations !k of the crystal modes, where k
and are the wave-vector and branch index respectively (MacGillivray and Sholl

1983). The frequencies !k and polarization vectors of the modes at each point of the

BZ were calculated from the force constants obtained from neutron inelastic scatter-
ing experiments, together with the corresponding models for the crystal dynamics. In

general we used the same model employed to analyse the neutron data by the authors

of each experiment (Birgeneau et al. 1963, Woods 1964, Collela and Batterman 1970,

Miiller and Brockhouse 1971, Dutton et al. 1972, Powell et al. 1977).
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Table 1. Values of the integrals IB and IF obtained from the successive Chadi± Cohen sets of
special points.

IB Error IF Error

n jB…n† j (units of (2 =a†2† (% ) jF …n† j (units of …2p=a† 2† (% )

1 2 0.437500 00 16.666 67 2 0.562 500 00 5.263 16

2 8 0.390 625 00 4.166 67 10 0.585 937 50 1.315 79

3 40 0.378 906 25 1.041 67 60 0.591 796 88 0.328 95

4 240 0.375 976 56 0.260 42 408 0.593 261 72 0.082 24

5 1 632 0.375 244 14 0.065 10 2 992 0.593 627 93 0.020 56

6 11 968 0.375 061 04 0.016 28 22 880 0.593 719 48 0.005 14

7 91 520 0.375 015 26 0.004 07 178 880 0.593 742 37 0.001 29

8 715 520 0.375 003 82 0.001 02 1 414 528 0.593 748 09 0.000 32

9 5 658 112 0.375 000 95 0.000 25 112504 32 0.593 749 52 0.000 08

10 45 001 728 0.375 000 24 0.000 06 89 740 800 0.593 749 88 0.000 02



} 5. The formal demonstrations

As was mentioned in the introduction, the special points were ® rst obtained by

incomplete induction and then proven by complete induction. Applying the Chadi±

Cohen recursive procedure to the sets of order n ˆ 1; 2 and 3 one can gain experience

on the structure of the next set and on how this structure evolves when the recursion
procedure is iterated. The task is quite involved because the recursion rule does not

ensure that the resulting points are in the irreducible part of the BZ. The reduction to

the irreducible zone by adding a vector of the reciprocal lattice determines the

coe� cients i and the several families of points. The goal of this process is to identify

the families that remain stable for successive iterations. This can be recognized by
testing that the application of the Chadi± Cohen recursion procedure to any repre-

sentative of a family gives a point of the same family in the next set. This way, it is

not necessary to derive the whole Chadi± Cohen set of next order for testing that the

families of points are stable, which is quite fortunate for n ˆ 3.
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Table 2. Static lattice Green functions of some bcc metals. Columns A and B show the
results of MacGillivray and Scholl and our results respectively.

Green function …10¡ 2
m N¡ 1†

V Nb Ta

2l=a i j A B A B A B

(0, 0, 0) 11, 22, 33 1.523 1.569 1.399 1.573 1.065 1.063

(1, 1, 1) 11, 22, 33 0.468 0.490 0.507 0.587 0.339 0.337

23, 13, 12 0.084 0.088 0.070 0.077 0.070 0.070

(2, 0, 0) 11 0.432 0.451 0.511 0.631 0.259 0.258

22, 33 0.335 0.353 0.384 0.427 0.257 0.256

(2, 2, 0) 11, 22 0.329 0.343 0.354 0.400 0.228 0.227

33 0.208 0.221 0.251 0.231 0.157 0.156

12 0.050 0.051 0.053 0.062 0.052 0.052

(3, 1, 1) 11 0.304 0.317 0.315 0.421 0.197 0.195

22, 33 0.220 0.232 0.241 0.232 0.156 0.154

23 ¡ 0.004 ¡ 0.003 0.0003 ¡ 0.001 0.002 0.002

13, 12 0.032 0.034 0.034 0.041 0.024 0.024

(2, 2, 2) 11, 22, 33 0.241 0.247 0.258 0.266 0.178 0.177

23, 13, 12 0.040 0.046 0.030 0.032 0.041 0.041

(4, 0, 0) 11 0.242 0.253 0.315 0.340 0.140 0.138

22, 33 0.173 0.185 0.184 0.185 0.116 0.115

(3, 3, 1) 11, 22 0.206 0.211 0.229 0.235 0.146 0.144

33 0.144 0.152 0.167 0.150 0.114 0.112

23, 13 0.006 0.015 0.009 0.005 0.009 0.009

12 0.044 0.038 0.041 0.050 0.041 0.041

(4, 2, 0) 11 0.233 0.240 0.271 0.309 0.147 0.146

22 0.178 0.189 0.194 0.188 0.123 0.122

33 0.150 0.158 0.162 0.146 0.108 0.107

12 0.039 0.037 0.038 0.051 0.031 0.031

(4, 2, 2) 11 0.203 0.211 0.230 0.251 0.136 0.134

22, 33 0.148 0.154 0.163 0.150 0.108 0.107

23 0.010 0.014 0.008 0.003 0.009 0.009

13, 12 0.025 0.028 0.026 0.027 0.023 0.023



After identifying the points, their weights i and analytic expressions valid for

n ˆ 1, 2 and 3, and testing family stability for N ˆ 4, complete induction is used to

demonstrate that the results hold for any n. Although the general idea is simple, its

realization involves many cases whose detailed description would take too much

space.
Consider, for instance, the set of equations (4)± (8) for the bcc lattice. They give

the correct set of points for n ˆ 1. Hence it remains to show that the application

of the Chadi± Cohen original algorithm to the sets B
…n†
1 and B

… n†
2 gives B

…n‡ 1†
1 and

B
…n‡ 1†
2 , consistently with equations (4) and (5). That is, adding the eighth vectors

1

2m‡ 2
;

1

2m‡ 2
;

1

2m‡ 2
…19†

to each vector of the sets given by equations (4) and (5), and then reducing the

resulting vectors to the irreducible zone, one obtains the same equations (4) and
(5) with n replaced by n ‡ 1.
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Table 3. Static lattice Green functions of some fcc metals. Columns A and B show the results
of MacGillivray and Scholl and our results respectively.

Green function …10¡ 2
m N¡ 1†

Ni Pa Pt Cu

2l=a i j A B A B A B A B

(0, 0, 0) 11, 22, 33 1.112 1.111 1.371 1.340 1.068 1.068 1.616 1.614

(1, 1, 0) 11, 22 0.328 0.327 0.488 0.474 0.367 0.370 0.508 0.506

33 0.264 0.263 0.406 0.397 0.284 0.283 0.412 0.410

12 0.114 0.114 0.156 0.156 0.120 0.121 0.180 0.180

(2, 0, 0) 11 0.177 0.176 0.273 0.255 0.222 0.224 0.258 0.257

22, 33 0.177 0.176 0.293 0.286 0.204 0.205 0.285 0.283

(2, 1, 1) 11 0.184 0.183 0.279 0.267 0.215 0.217 0.284 0.282

22, 33 0.165 0.164 0.253 0.243 0.172 0.171 0.259 0.257

23 0.021 0.021 0.048 0.053 0.037 0.039 0.040 0.040

13, 12 0.039 0.039 0.071 0.072 0.049 0.047 0.066 0.066

(2, 2, 0) 11, 22 0.173 0.172 0.248 0.238 0.176 0.175 0.267 0.265

33 0.133 0.132 0.188 0.175 0.120 0.118 0.203 0.201

12 0.062 0.062 0.092 0.086 0.059 0.061 0.106 0.106

(3, 1, 0) 11 0.124 0.123 0.179 0.171 0.154 0.153 0.176 0.175

22 0.123 0.122 0.188 0.181 0.129 0.128 0.193 0.191

33 0.117 0.115 0.170 0.161 0.115 0.115 0.180 0.178

12 0.019 0.019 0.035 0.032 0.023 0.023 0.033 0.033

(2, 2, 2) 11, 22, 33 0.125 0.124 0.197 0.192 0.142 0.141 0.197 0.195

23, 13, 12 0.030 0.030 0.065 0.065 0.038 0.035 0.053 0.053

(3, 2, 1) 11 0.123 0.122 0.185 0.178 0.141 0.142 0.189 0.187

22 0.116 0.115 0.178 0.171 0.122 0.120 0.184 0.182

33 0.103 0.102 0.148 0.141 0.101 0.101 0.159 0.157

23 0.014 0.014 0.030 0.030 0.018 0.018 0.026 0.026

13 0.018 0.018 0.033 0.032 0.019 0.018 0.030 0.030

12 0.034 0.034 0.058 0.055 0.036 0.037 0.059 0.059

(4, 0, 0) 11 0.093 0.092 0.128 0.129 0.121 0.123 0.124 0.123

22, 33 0.094 0.093 0.140 0.133 0.096 0.095 0.148 0.146



To accomplish this program it is convenient to split each set B
…n†
1 and B

…n†
2 into

subsets of vectors that have the same weight factor i. There are four such subsets in

each set. The task demands some time and patience. Although the closed-form
equations determining the Chadi± Cohen set of points for the fcc lattice seem more

involved than those for the bcc symmetry, their proofs are of similar length.

} 6. Final remarks

With the formulae given above the computer subroutine for Chadi± Cohen inte-

gration becomes very short and rapid. However, the method has inherent limita-

tions. As the density of points is not uniform it may be inaccurate if the subintegral

function has a sharp step that separates the BZ into two sectors. In these cases the

method gives values that are in¯ uenced by the number of special points in the two
sectors. The same applies for functions whose integral is dominated by sharp max-

ima. This way, the method is not accurate in electronic calculations involving the

Fermi distribution at low temperatures. Any simple s-band calculation serves to

illustrate the point. At T 0 the dependence on n of the results show steps and

may converge to wrong values.

The method gives excellent accuracy for functions that vary smoothly, even if
they exhibit complex structure.
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