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Abstract

An analytic solution for the Heisenberg Hamiltonian with long-range RKKY interactions on a Bethe lattice is obtained in the

semi-classical approximation (S!1). The main dif®culty that has to be overcome is the exponential growth of the number of

neighbors in a Bethe lattice. We suggest a way of handling this problem and derive physically meaningful results. q 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Heisenberg Hamiltonian [1,2] has been a powerful

tool in the description and understanding of a large variety

of magnetic systems [3,4], ever since it was independently

put forward, three quarters of a century ago, by Heisenberg

[1,2] and Dirac [5,6]. However, and in spite of numerous

and signi®cant efforts, few analytic results have been

achieved [7]. This is in sharp contrast with the wealth of

approximate and numerical results that have been obtained

during this time span.

A signi®cant feature of most of the treatments implemen-

ted so far is that they are limited to nearest-neighbor inter-

actions. At least three reasons explain this state of affairs: (i)

generally the magnetic exchange interaction originates in

the direct overlap of orbitals on neighboring ions and thus

decays rapidly with distance; (ii) the considerable additional

complications the inclusion of longer-range interactions

implies; and (iii) the fact that the magnitude of the longer-

range interactions was not well established until very

recently. However, the powerful development of the ab

initio computational machinery has allowed extraction of

precise values of exchange integrals, even beyond the ten

®rst neighbors. An example of the latter is the computation

by Zhou et al. [8] of the Jk's, for 1 # k # 11, of antiferro-

magnetic fcc Fe and Mn. These results are quite surprising:

not only does the sign of the Jk's display an oscillating

behavior, but also a much slower decay with k than

expected. In fact, the values of uJ11/J1u , 0.06 for Fe and

0.014 for Mn were obtained. Even more remarkable is the

fact that, for this fcc structure, the absolute value of the

computed next-nearest-neighbor exchange parameter uJ2u
for Fe is larger in magnitude than J1 < 20.134 mRy, yield-

ing uJ2/J1u < 1.42. The same happens with the sixth-neighbor

for which uJ6/J1u < 1.10.

The above situation is not at all limited to particular

elementary metals. In fact, in FeF2 and MnF2, both materials

of interest for the manufacture of spin-valve devices [9],

also the ®rst-neighbor exchange is slightly ferromagnetic,

while the second-neighbor one is antiferro and signi®cantly

larger in magnitude [10].

In addition, there are several systems, such as the rare

earths and their alloys, where the exchange interaction is

well known to be long-ranged. The magnetic order of

these materials is adequately described by the RKKY inter-

action, initially introduced by Ruderman and Kittel [11] to

describe the indirect interaction of two nuclei via their
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hyper®ne coupling with the conduction electron sea. Later

on, the mechanism was extended, and widely applied, to the

indirect exchange interaction of the f-shells of rare-earth

ions [12,13]. The experimental evidence, obtained by

neutron diffraction [14,15], shows that many of the rare

earths order magnetically, principally in ferromagnetic and

helical structures.

In a recent paper, we presented an analytic solution of the

Heisenberg Hamiltonian with long-range interactions on a

Bethe lattice, in the spin-wave approximation [16]. The

latter approximation corresponds to the semi-classical

limit in which the spin component in a given direction is

quasi-continuous [17,18] or, equivalently, the spin S is

assumed S!1. In spite of its semi-classical nature, it has

contributed to the understanding of magnetism and provided

many surprisingly accurate results [16,19,20], even in the

extreme quantum limit S � 1=2:

As far as the topology is concerned, the Bethe lattice

allows one to treat problems, which are too dif®cult to

handle on a regular (Bravais) lattice, while keeping constant

the number of nearest neighbors. In other words, each lattice

point maintains the same coordination, but the closed loops

that are present in a Bravais lattice disappear. This simpli-

®ed topology has been widely used, for example in the

treatment of the anisotropic next-nearest-neighbor Ising

model (ANNNI) [21±23].

In 1983, Trias and Yndurain [24] obtained an analytic

solution of the Heisenberg Hamiltonian with long-range

interactions on a Bethe lattice. In our recent work [16], we

removed the restriction of using a ferromagnetic ground

state as the initial con®guration and, thus, we were able to

obtain analytically the one-magnon excitation spectrum for

an arbitrary helical structure, including the classical ferro-

and antiferromagnetic initial con®gurations.

The aim of this paper is to focus our attention on the

RKKY interaction and tackle the dif®culties that the use

of the Bethe lattice topology brings about. These dif®culties

are due to the exponential growth of the results as a function

of the coordination number and we suggest a way to prop-

erly treat this problem. In addition, we study the commen-

surability effects between the exchange ®eld and the lattice

periodicity.

This paper is organized as follows: after Section 1, we

present the model and its solution in Section 2. Next, in

Section 3, we apply the model to the RKKY interaction

and discuss its implications for the physical properties of

these systems, in particular for the magnetic ordering of the

rare earths. The paper is closed in Section 4 with a summary

and the drawing of conclusions.

2. Model and formalism

Our system consists of an arrangement of atoms located

on the nodes of a Bethe lattice. Each atom has a single

degree of freedom: its spin component along a spatial axis

is subject to an arbitrarily long-ranged interaction. That is,

the spin ~Sj (at site j) interacts, with a coupling constant Jjk

with spin ~Sk (at site k) located at a distance L. This distance L

is measured in units of the Bethe lattice parameter a, which

we adopt as our unit of length.

The Heisenberg Hamiltonian for our system thus reads

H � 2
1

2

X
j;k

Jj;k
~Sj
~Sk; �1�

where the sum extends over all pairs (j,k) so that j ± k. The

factor 1/2 compensates for the double counting.

Our treatment of the system dynamics is carried out using

Zubarev-type [25] Green functions. The initial con®guration

is assumed to be helical and the constant angle between

adjacent spins is denoted by u . Obviously, making u � 0

leads to the re-derivation of the results obtained by Trias and

Yndurain [24]. u � p; on the other hand, implies the

adoption of the NeÂel antiferromagnetic ground state as the

starting con®guration. Without repeating the analysis of

Ref. [16], to which we refer the interested reader for details,

we write down the one magnon dispersion relation v (k), for

the case of a Bethe lattice of coordination c and lattice

parameter a. It reads

vu�f� �
���������������������
W1�f; u�W2�f; u�

p
; �2�

where f � ka; and W1 and W2 are given by

W1�f; u� �
X1
n�1

Vn cos�nu�
"

c�c 2 1�n21 2 �c 2 1�n=2

�
 

2 cos�nf�1
c 2 2

c 2 1

sin��n 2 1�f
sin�f�

!#
; �3�

W2�f; u� �
X1
n�1

Vn

"
cos�nu�c�c 2 1�n21 2 �c 2 1�n=2

�
 

2 cos�nf�1
c 2 2

c 2 1

sin��n 2 1�f�
sin�f�

!#
: �4�

Above Vn � SJn corresponds to the interaction of two

spins S which are separated by n lattice parameters. This

yields, for the local density of states at the lattice origin

D0(v)

D0�v� � 2c�c 2 1�
p

sin2�f�v��
c2 2 4�c 2 1� cos2�f�v��

df

dv
; �5�

where f is obtained solving the implicit Eq. (2). Finally, the

angle u is obtained by minimization of the per site energy

E(u ,k), given by the N q 1 limit of

E�u; k� � 2
S

2

X1
n�1

Vnc�c 2 1�n21 cos�nu�1
vu�k�

N
: �6�
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3. RKKY interaction

The 15 elements with atomic number 57 # z # 71 are

denominated lanthanides or rare earths. They have very

strongly localized 4f states, which make the lanthanide

atom magnetic, unless all states are either empty or comple-

tely full. In a solid, the 4f states on different ions interact, via

the long-range RKKY indirect exchange coupling, and their

magnetic behavior can properly be described by the

Heisenberg Hamiltonian. The explicit form of the indirect

interaction is given by

Vn � Jq4 sin�pqn�2 pqn cos�pqn�
�pqn�4 � Jq2

�pn�2 j1�pqn�; �7�

where J is a positive constant introduced to scale the magni-

tude of the exchange coupling, while q is de®ned as

q � 2kF

kmax
B

� 2kFa

p
; �8�

and j1 is the index 1 spherical Bessel function.
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Fig. 1. Exchange coupling constant Jn, normalized to the module of the nearest-neighbor interaction. In order to make visible the values of Jn for

n . 2, the magnitudes of J1 and J2 have been rescaled by the factor indicated in the graph.



Above, in Eq. (7), it is usual to include an exponential

decay factor to incorporate mean free path effects, which

limit the range of the interaction. Since we are considering a

perfect lattice at zero temperature, we will ignore this decay

factor. However, if one does incorporate a weakening of the

interaction with distance its only consequence is to reinforce

the effect of the ®rst-neighbor interaction. It is noticed that

Vn is a spatially decaying oscillatory function of distance /
n. On the other hand, q characterizes the commensurability

of the interaction with the lattice periodicity; integer and

half-integer values of q correspond to commensurate inter-

actions. The following are several examples of commensu-

rate q values, except for the second row �q � e=p�, which is

incommensurate:

Since it is our interest to study both commensurate and

incommensurate systems, we allow q to vary in the interval

]0, 2[. The value q � 0 implies kF � 0; and q � 2 corre-

sponds to a full band; both these limits are physically

uninteresting.

The analytic properties of the spherical Bessel function

allow one to develop an understanding of the strongly oscil-

lating interactions Vn of Eq. (7). For small nq values Vn . 0,

i.e. it is always ferromagnetic; this is the case while

nq , 1.43, value that corresponds to the ®rst zero of j1. It

is important to stress that, due to the fact that the RKKY

interaction decreases rather rapidly with distance (actually

as r23
i;j ), the dominant term is always V1, and V1 . 0 as long

as q , 1.43. Thus, in spite of the fact that the RKKY inter-

action is long-ranged, its strong decrease with interatomic

separation, in the case of a lattice, limits its effects to a few

neighbors. We illustrate this behavior in Fig. 1.

We now turn our attention to the per site energy as given

by Eq. (6). For the RKKY interaction, it adopts the form

E�u; k � 0� � 1

2
JSq4

X1
n�1

sin�pqn�2 pqn cos�pqn�
�pqn�4

� �
� Zc�n� cos�nu�; (9)
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Fig. 2. Angle between neighboring spins along the Bethe lattice, as a function of the commensurability parameter q, calculated on the basis of

replacing the number of neighbors by the fcc Bravais lattice value.

´ ´ ´ n � 1 2 3 4 5 6 7 8 9 10

q � 1=2 u sgn�Vn� � 1 1 2 2 1 1 2 2 1 1
q � e=p u sgn�Vn� � 1 2 1 1 2 1 2 1 2 1
q � 1 u sgn�Vn� � 1 2 1 2 1 2 1 2 1 2
q � 3=2 u sgn�Vn� � 2 1 1 2 2 1 1 2 2 1
q! 2 u sgn�Vn� � 2 2 2 2 2 2 2 2 2 2



where Zc�n� � c�c 2 1�n21 is the number of n-nearest neigh-

bors on a Bethe lattice of coordination c. The angle between

consecutive spins is obtained minimizing E with respect to

u . However, the sum in Eq. (9) only converges for the trivial

linear chain �c � 2� case. This constitutes an undesired

consequence of choosing the Bethe lattice topology and

we now focus our attention on surmounting this shortcom-

ing.

It is a known fact that the number of neighbors on a Bethe

lattice grows exponentially with n, while the interaction

strength only decreases as n23. To visualize this trend, it

is suf®cient to realize that, in an N-atom 3D Bravais lattice,

the number of surface atoms is N2=3
: For a quantitative illus-

tration, we mention that, for the fcc and hcp lattices of

coordination c � 12 we are interested in, the number of

10th nearest neighbors is of the order 102, while for a

Bethe lattice, it is of order 1010. The way we treat this over-

estimate is to substitute the number of neighbors, given by

Zc�n� � c�c 2 1�n21
; with the actual number of neighbors

on the particular Bravais lattice of interest.

The results of implementing this procedure are given in

Figs. 2 and 3, where the angle u as a function of q for both

the fcc and hcp lattices is plotted. It is observed that, in both

cases, the formalism yields ferromagnetism for q , 1.3,

while for q . 1.5, the ground state is antiferromagnetic, in

agreement with previous authors [7]. Moreover, it is also

apparent that the transition between the two magnetic

phases is quite abrupt and coincides with q < 1.4, which

corresponds to the ®rst change of sign of the nearest-

neighbor interaction V1. However, the fcc structure exhibits

two narrow regions of helical order; one around q � 0:6; in

the ferromagnetic region, with a rather long pitch compared

to the lattice parameter. Another helically ordered region

appears in the antiferromagnetic domain, around q � 1:6;

with a pitch of around two lattice parameters, and which

is slightly wider than the q � 0:6 region.

On the contrary, the hcp case of Fig. 3 exhibits a feature-

less ferromagnetic region, with an abrupt transition to anti-

ferromagnetism. In the antiferromagnetic regime, a helically

ordered region, also with a pitch of around two lattice para-

meters, is observed around q � 1:6:

The results for the angle between contiguous spins u (q)

only exhibit an abrupt transition, from ferromagnetism to

antiferromagnetism, at q < 1.43, the ®rst zero of V1. It

should be kept in mind that our model makes several

approximations, like spherical Fermi surfaces and forcing

the angles between nearest-neighbor spins to be constant,

which preclude the possibility of a detailed comparison with

experiment.

4. Summary and conclusions

For many years, the RKKY interaction has been
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Fig. 3. Angle between neighboring spins along the Bethe lattice, as a function of the commensurability parameter q, calculated on the basis of

replacing the number of neighbors by the hcp Bravais lattice value.



extensively used [14,15] to describe the magnetic properties

of the rare earths. In this paper, an analytic treatment of the

Heisenberg Hamiltonian with RKKY long-range inter-

actions on a Bethe lattice topology was developed, on the

basis of a formalism we presented previously [16].

While the Bethe lattice topology allows one to derive an

analytic solution, there is a price that has to be paid: for

coordination c . 2, the number of neighbors is grossly over-

estimated in relation to a Bravais lattice of the same coordi-

nation. We tackled this problem by substituting the Bethe

lattice Zc(n) value with the actual number of neighbors of the

particular Bravais lattice we chose to study. Once this

substitution is implemented, we obtain results in satisfactory

qualitative agreement with the literature [7].

We found that for the RKKY interaction, the magnetic

ordering is dominated by the nearest-neighbor exchange

coupling, which is signi®cantly larger than the rest, as

long as q , 1.4, for the fcc and hcp structures. In both

cases, for small q values, the system is ferromagnetically

ordered and undergoes a rather sharp transition to antiferro-

magnetism around q � 1:4: The transition is slightly

smoother in the fcc structure, which displays a narrow inter-

mediate helically ordered region.

Another feature worth mentioning is the fact that the

commensurability of q with the lattice symmetry is

irrelevant as far as the magnetic ordering is concerned.

Actually, it is the change of sign of the ®rst-neighbor inter-

action, as q varies, which is the key element to trigger the

ordering transition.

In summary, we have developed an analytic treatment for

the Heisenberg Hamiltonian with long-range RKKY inter-

actions on a Bethe lattice and suggested a way to handle the

exponential growth in the number of neighbors this topology

implies.
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